1
|
Kohzuki H, Miki S, Sugii N, Tsurubuchi T, Zaboronok A, Matsuda M, Ishikawa E. The Safety of Intraoperative Photodynamic Diagnosis Using 5-Aminolevulinic Acid Combined with Talaporfin Sodium Photodynamic Therapy in Recurrent High-Grade Glioma. World Neurosurg 2024; 190:e716-e720. [PMID: 39116940 DOI: 10.1016/j.wneu.2024.07.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Intraoperative photodynamic diagnosis (PDD) using 5-aminolevulinic acid (5-ALA) is a widely adopted technique to enhance the extent of resection during high-grade glioma (HGG) surgery. Recent updates to the package insert for 5-ALA in Japan now allow its use in combination with drugs that may induce photosensitivity, such as talaporfin sodium (TS). TS is employed in intraoperative photodynamic therapy (PDT) and has been shown to improve overall survival. The combination of 5-ALA with TS is expected to offer further benefits. However, the safety of this combination had not been established. This study reports on the safety of 5-ALA-PDD with TS-PDT in the treatment of recurrent HGG. METHODS 7 patients with recurrent HGG underwent tumor resection using a combination of 5-ALA-PDD and TS-PDT. The incidence of photosensitivity as an adverse effect associated with 5-ALA and TS was evaluated as described in the package insert. Adverse events were assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. RESULTS Tumor-specific fluorescence intensity was strong in 4 cases and weak in 3. Photosensitivity occurred in only 1 patient (14.3%). Three patients exhibited CTCAE grade 1 or 2 abnormal liver function, and 1 patient experienced CTCAE grade 1 γ-GTP elevation. All abnormalities improved during follow-up. CONCLUSIONS The combined use of 5-ALA-PDD and TS-PDT for HGG surgery did not increase the risk of serious adverse events in our study. Further investigations with a larger number of cases are needed for a more accurate assessment of its safety and efficacy.
Collapse
Affiliation(s)
- Hidehiro Kohzuki
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shunichiro Miki
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Narushi Sugii
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Alexander Zaboronok
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
2
|
Sonokawa T, Fujiwara Y, Pan C, Komohara Y, Usuda J. Enhanced systemic antitumor efficacy of PD-1/PD-L1 blockade with immunological response induced by photodynamic therapy. Thorac Cancer 2024; 15:1429-1436. [PMID: 38739102 PMCID: PMC11194119 DOI: 10.1111/1759-7714.15325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an antitumor therapy and has traditionally been regarded as a localized therapy in itself. However, recent reports have shown that it not only exerts a direct cytotoxic effect on cancer cells but also enhances body's tumor immunity. We hypothesized that the immunological response induced by PDT could potentially enhance the efficacy of programmed death-1 (PD-1) / programmed death-ligand 1 (PD-L1) blockade. METHODS The cytotoxic effects of PDT on colon 26 cells were investigated in vitro using the WST assay. We investigated whether the antitumor effect of anti-PD-1 antibodies could be amplified by the addition of PDT. We performed combination therapy by randomly allocating tumor-bearing mice to four treatment groups: control, anti-PD-1 antibodies, PDT, and a combination of anti-PD-1 antibodies and PDT. To analyze the tumor microenvironment after treatment, the tumors were resected and pathologically evaluated. RESULTS The viability rate of colon 26 cells decreased proportionally with the laser dose. In vivo experiments for combined PDT and anti-PD-1 antibody treatment, combination therapy showed an enhanced antitumor effect compared with the control. Immunohistochemical findings of the tumor microenvironment 10 days after PDT indicated that the number of CD8+ cells, the area of Iba-1+ cells and the area expressing PD-L1 were significantly higher in tumors treated with combination therapy than in tumors treated with anti-PD-1 antibody alone, PDT alone, or the control. CONCLUSIONS PDT increased immune cell infiltration into the tumor microenvironment. The immunological response induced by PDT may enhance the efficacy of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic SurgeryNippon Medical School HospitalTokyoJapan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Jitsuo Usuda
- Department of Thoracic SurgeryNippon Medical School HospitalTokyoJapan
| |
Collapse
|
3
|
Sonokawa T, Ino M, Kera S, Tanaka M, Suzuki K, Tomioka Y, Machida Y, Kawasaki N, Usuda J. Long-term outcomes of PDT for centrally-located early lung cancers with tumor diameters > 2.0 cm. Photodiagnosis Photodyn Ther 2024; 47:104200. [PMID: 38723757 DOI: 10.1016/j.pdpdt.2024.104200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used for the treatment of centrally-located early lung cancers (CLELCs) and is recommended for tumors ≤ 1.0 cm in diameter. We previously reported that PDT using talaporfin sodium, second-generation photosensitizer, for tumors > 1.0 cm but ≤ 2.0 cm in diameter was able to achieve a therapeutic outcome comparable to that of tumors with a diameter of ≤ 1.0 cm. However, the effectiveness of PDT using talaporfin sodium for tumors > 2.0 cm in diameter remains unclear. We conducted a retrospective analysis of cases in which PDT was performed for flat-type CLELCs with tumor diameters of > 2.0 cm. METHODS We retrospectively analyzed seven cases (eight lesions) with tumor diameters > 2.0 cm and no evidence of extracartilaginous invasion or lymph node metastasis. RESULTS All the patients underwent multiple PDT sessions. The PDT treatment results over the study period were partial response in one case (14.3 %), stable disease (SD) in three cases (42.9 %), and progressive disease (PD) in three cases (42.9 %). At the time of writing this report, five of seven cases (71.4 %) are still undergoing treatment. The duration of SD-the time from the start of treatment until the criteria for PD were met (SD or better maintained)-ranged from 7 to 52 months (mean, 25.3 months). CONCLUSIONS "Maintenance PDT" for CLELCs > 2.0 cm in diameter has the potential to inhibit tumor progression in the long term while maintaining quality of life, rather than simply aiming only for a quick radical cure.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Mitsunobu Ino
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Satoshi Kera
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Mariko Tanaka
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Kento Suzuki
- Department of Thoracic Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan
| | - Yuuya Tomioka
- Department of Thoracic Surgery, Nippon Medical School Musashikosugi Hospital, 1-383 Kosugi-cho, Nakahara-ku, Kawasaki, Kanagawa 211-8533, Japan
| | - Yuichiro Machida
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Norihito Kawasaki
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| |
Collapse
|
4
|
Rozman A, Grabczak EM, George V, Marc Malovrh M, Novais Bastos H, Trojnar A, Graffen S, Tenda ED, Hardavella G. Interventional bronchoscopy in lung cancer treatment. Breathe (Sheff) 2024; 20:230201. [PMID: 39193456 PMCID: PMC11348910 DOI: 10.1183/20734735.0201-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
Interventional bronchoscopy has seen significant advancements in recent decades, particularly in the context of lung cancer. This method has expanded not only diagnostic capabilities but also therapeutic options. In this article, we will outline various therapeutic approaches employed through either a rigid or flexible bronchoscope in multimodal lung cancer treatment. A pivotal focus lies in addressing central airway obstruction resulting from cancer. We will delve into the treatment of initial malignant changes in central airways and explore the rapidly evolving domain of early peripheral malignant lesions, increasingly discovered incidentally or through lung cancer screening programmes. A successful interventional bronchoscopic procedure not only alleviates severe symptoms but also enhances the patient's functional status, paving the way for subsequent multimodal treatments and thereby extending the possibilities for survival. Interventional bronchoscopy proves effective in treating initial cancerous changes in patients unsuitable for surgical or other aggressive treatments due to accompanying diseases. The key advantage of interventional bronchoscopy lies in its minimal invasiveness, effectiveness and favourable safety profile.
Collapse
Affiliation(s)
- Ales Rozman
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Elzbieta Magdalena Grabczak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Vineeth George
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Mateja Marc Malovrh
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- University Clinic of Respiratory and Allergic Diseases, Golnik, Slovenia
| | - Helder Novais Bastos
- Department of Pulmonology, Centro Hospitalar Universitário São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anna Trojnar
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Simon Graffen
- Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, Australia
| | - Eric Daniel Tenda
- Dr. Cipto Mangunkusumo National General Hospital, Artificial Intelligence and Digital Health Research Group, The Indonesian Medical Education and Research Institute - Faculty of Medicine Universitas Indonesia (IMERI-FMUI), Jakarta, Indonesia
| | - Georgia Hardavella
- 4th–9th Department of Respiratory Medicine, ‘Sotiria’ Athens’ Chest Diseases Hospital, Athens, Greece
| |
Collapse
|
5
|
Aebisher D, Rogóż K, Myśliwiec A, Dynarowicz K, Wiench R, Cieślar G, Kawczyk-Krupka A, Bartusik-Aebisher D. The use of photodynamic therapy in medical practice. Front Oncol 2024; 14:1373263. [PMID: 38803535 PMCID: PMC11129581 DOI: 10.3389/fonc.2024.1373263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Kacper Rogóż
- English Division Science Club, Medical College of The Rzeszów University, Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, Rzeszów, Poland
| |
Collapse
|
6
|
Kai K, Nakashima K, Kawakami H, Takeno S, Hishikawa Y, Ikenoue M, Hamada T, Imamura N, Shibata T, Noritomi T, Sasaki F, Nakamura Y, Nanashima A. Clinical Impact of the Charlson Comorbidity Index on the Efficacy of Salvage Photodynamic Therapy Using Talaporfin Sodium for Esophageal Cancer. Intern Med 2024; 63:903-910. [PMID: 37558484 PMCID: PMC11045372 DOI: 10.2169/internalmedicine.1907-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/02/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction Photodynamic therapy (PDT) is a salvage treatment for local failure after chemoradiotherapy for esophageal cancer. Salvage PDT is the treatment available for vulnerable patients with various comorbidities at risk of salvage esophagectomy. This study assessed the impact of the Charlson comorbidity index (CCI) on the outcomes of salvage PDT using talaporfin sodium (TS) for esophageal cancer. Metohds Consecutive patients with esophageal cancer who underwent salvage TS-PDT from 2016 to 2022 were included in this retrospective study. We investigated the local complete response (L-CR), progression-free survival (PFS) and overall survival (OS) and evaluated the relationship between the CCI and therapeutic efficacy. Results In total, 25 patients were enrolled in this study. Overall, 12 patients (48%) achieved an L-CR, and the 2-year PFS and OS rates were 24.9% and 59.4%, respectively. In a multivariate analysis, a CCI ≥1 (p=0.041) and deeper invasion (p=0.048) were found to be significant independent risk factors for not achieving an L-CR. To evaluate the efficacy associated with comorbidities, we divided the patients into the CCI=0 group (n=11) and the CCI ≥1 group (n=14). The rate of an L-CR (p=0.035) and the 2-year PFS (p=0.029) and OS (p=0.018) rates in the CCI ≥1 group were significantly lower than those in the CCI=0 group. Conclusion This study found that the CCI was negatively associated with the efficacy of salvage TS-PDT for esophageal cancer.
Collapse
Affiliation(s)
- Kengo Kai
- Department of Surgery, Faculty of Medicine, University of Miyazaki, Japan
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Japan
| | - Koji Nakashima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Hiroshi Kawakami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Shinsuke Takeno
- Department of Surgery, Faculty of Medicine, University of Miyazaki, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Japan
| | - Makoto Ikenoue
- Department of Surgery, Faculty of Medicine, University of Miyazaki, Japan
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Japan
| | - Takeomi Hamada
- Department of Surgery, Faculty of Medicine, University of Miyazaki, Japan
| | - Naoya Imamura
- Department of Surgery, Faculty of Medicine, University of Miyazaki, Japan
| | - Tomotaka Shibata
- Department of Gastroenterological and Pediatric Surgery, Oita University, Japan
| | | | - Fumisato Sasaki
- Department of Gastroenterology, Ikeda Hospital, Japan
- Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | - Yoshitaka Nakamura
- Department of Gastroenterology, Kagoshima Prefectural Oshima Hospital, Japan
| | - Atsushi Nanashima
- Department of Surgery, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
7
|
Sun W, Zhang Q, Wang X, Jin Z, Cheng Y, Wang G. Clinical Practice of Photodynamic Therapy for Non-Small Cell Lung Cancer in Different Scenarios: Who Is the Better Candidate? Respiration 2024; 103:193-204. [PMID: 38354707 PMCID: PMC10997268 DOI: 10.1159/000535270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a relatively safe and highly selectivity antitumor treatment, which might be increasingly used as a supplement to conventional therapies. A clinical overview and detailed comparison of how to select patients and lesions for PDT in different scenarios are urgently needed to provide a basis for clinical treatment. SUMMARY This review demonstrates the highlights and obstacles of applying PDT for lung cancer and underlines points worth considering when planning to initiate PDT. The aim was to make out the appropriate selection and help PDT develop efficacy and precision through a better understanding of its clinical use. KEY MESSAGES Increasing evidence supports the feasibility and safety of PDT in the treatment of non-small cell lung cancer. It is important to recognize the factors that influence the efficacy of PDT to develop individualized management strategies and implement well-designed procedures. These important issues should be worth considering in the present and further research.
Collapse
Affiliation(s)
- Wen Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China,
| | - Qi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Fang Y, Ma H, Zhang X, Zhang P, Li Y, He S, Sheng C, Dong G. Smart glypican-3-targeting peptide-chlorin e6 conjugates for targeted photodynamic therapy of hepatocellular carcinoma. Eur J Med Chem 2024; 264:116047. [PMID: 38118394 DOI: 10.1016/j.ejmech.2023.116047] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive and lethal malignancy with poor prognosis, necessitating the urgent development of effective treatments. Targeted photodynamic therapy (PDT) offers a promising way to selectively eradicate tumor cells without affecting normal cells. Inspired by promising features of peptide-drug conjugates (PDCs) in targeted cancer therapy, herein a novel glypican-3 (GPC3)-targeting PDC-PDT strategy was developed for the precise PDT treatment of HCC. The GPC3-targeting photosensitizer conjugates were developed by attaching GPC3-targeting peptides to chlorin e6. Conjugate 8b demonstrated the ability to penetrate HCC cells via GPC3-mediated entry process, exhibiting remarkable tumor-targeting capacity, superior antitumor efficacy, and minimal toxicity towards normal cells. Notably, conjugate 8b achieved complete tumor elimination upon light illumination in a HepG2 xenograft model without harm to normal tissues. Overall, this innovative GPC3-targeting conjugation strategy demonstrates considerable promise for clinical applications for the treatment of HCC.
Collapse
Affiliation(s)
- Yuxin Fang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Haoqian Ma
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Xianghua Zhang
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Peifeng Zhang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China; National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmacy, Changzhou University, Changzhou, 213164, China
| | - Yu Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
9
|
Huang F, Li Y, Zhang XJ, Lin MY, Han GY, Lin HY, Lin HY, Miao Z, Li BH, Sheng CQ, Yao JZ. Novel chlorin e 6-based conjugates of tyrosine kinase inhibitors: Synthesis and photobiological evaluation as potent photosensitizers for photodynamic therapy. Eur J Med Chem 2023; 261:115787. [PMID: 37690263 DOI: 10.1016/j.ejmech.2023.115787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Since tyrosine kinase inhibitor (TKI) could reverse ABCG2-mediated drug-resistance, novel chlorin e6-based conjugates of Dasatinib and Imatinib as photosensitizer (PS) were designed and synthesized. The results demonstrated that conjugate 10b showed strongest phototoxicity against HepG2 and B16-F10 cells, which was more phototoxic than chlorin e6 and Talaporfin. It could reduce efflux of intracellular PS by inhibiting ABCG2 in HepG2 cells, and localize in mitochondria, lysosomes, golgi and ER, resulting in higher cell apoptosis rate and ROS production than Talaporfin. Moreover, it could induce cell autophagy and block cell cycle in S phase, and significantly inhibit tumor growth and prolong survival time on BALB/c nude mice bearing HepG2 xenograft tumor to a greater extent than chlorin e6. Consequently, compound 10b could be applied as a promising candidate PS due to its good water-solubility and stability, low drug-resistance, high quantum yield of 1O2 and excellent antitumor efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Fei Huang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xing-Jie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mei-Yu Lin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Gui-Yan Han
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266000, China
| | - Hui-Ying Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Hui-Yun Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Bu-Hong Li
- School of Science, Hainan University, 58 Renmin Avenue, Haikou, 570228, China.
| | - Chun-Quan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jian-Zhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Jo J, Kim JY, Yun JJ, Lee YJ, Jeong YIL. β-Cyclodextrin Nanophotosensitizers for Redox-Sensitive Delivery of Chlorin e6. Molecules 2023; 28:7398. [PMID: 37959817 PMCID: PMC10648776 DOI: 10.3390/molecules28217398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with β-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu). After that, cystamine was attached to the carboxylic end of bCDsu (bCDsu-ss), and the amine end group of bCDsu-ss was conjugated with Ce6 (bCDsu-ss-Ce6). The chemical composition of bCDsu-ss-Ce6 was confirmed with 1H and 13C NMR spectra. bCDsu-ss-Ce6 nanophotosensitizers were fabricated by a dialysis procedure. They formed small particles with an average particle size of 152.0 ± 23.2 nm. The Ce6 release rate from the bCDsu-ss-Ce6 nanophotosensitizers was accelerated by the addition of glutathione (GSH), indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive photosensitizer delivery capacity. The bCDsu-ss-Ce6 nanophotosensitizers have a low intrinsic cytotoxicity against CCD986Sk human skin fibroblast cells as well as Ce6 alone. However, the bCDsu-ss-Ce6 nanophotosensitizers showed an improved Ce6 uptake ratio, higher reactive oxygen species (ROS) production, and phototoxicity compared to those of Ce6 alone. GSH addition resulted in a higher Ce6 uptake ratio, ROS generation, and phototoxicity than Ce6 alone, indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive biological activity in vitro against HeLa human cervical cancer cells. In a tumor xenograft model using HeLa cells, the bCDsu-ss-Ce6 nanophotosensitizers efficiently accumulated in the tumor rather than in normal organs. In other words, the fluorescence intensity in tumor tissues was significantly higher than that of other organs, while Ce6 alone did not specifically target tumor tissue. These results indicated a higher anticancer activity of bCDsu-ss-Ce6 nanophotosensitizers, as demonstrated by their efficient inhibition of the growth of tumors in an in vivo animal tumor xenograft study.
Collapse
Affiliation(s)
- Jaewon Jo
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ji Yoon Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Je-Jung Yun
- Research Center for Environmentally Friendly Agricultural Life Sciences, Jeonnam Bioindustry Foundation, Jeonnam 58275, Republic of Korea;
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea; (J.J.); (J.Y.K.)
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Republic of Korea
- Tyros Biotechnology Inc., 75 Kneeland St. 14 Floors, Boston, MA 02111, USA
| |
Collapse
|
11
|
Kim TE, Chang JE. Recent Studies in Photodynamic Therapy for Cancer Treatment: From Basic Research to Clinical Trials. Pharmaceutics 2023; 15:2257. [PMID: 37765226 PMCID: PMC10535460 DOI: 10.3390/pharmaceutics15092257] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging and less invasive treatment modality for various types of cancer. This review provides an overview of recent trends in PDT research, ranging from basic research to ongoing clinical trials, focusing on different cancer types. Lung cancer, head and neck cancer, non-melanoma skin cancer, prostate cancer, and breast cancer are discussed in this context. In lung cancer, porfimer sodium, chlorin e6, and verteporfin have shown promising results in preclinical studies and clinical trials. For head and neck cancer, PDT has demonstrated effectiveness as an adjuvant treatment after surgery. PDT with temoporfin, redaporfin, photochlor, and IR700 shows potential in early stage larynx cancer and recurrent head and neck carcinoma. Non-melanoma skin cancer has been effectively treated with PDT using methyl aminolevulinate and 5-aminolevulinic acid. In prostate cancer and breast cancer, PDT research is focused on developing targeted photosensitizers to improve tumor-specific uptake and treatment response. In conclusion, PDT continues to evolve as a promising cancer treatment strategy, with ongoing research spanning from fundamental investigations to clinical trials, exploring various photosensitizers and treatment combinations. This review sheds light on the recent advancements in PDT for cancer therapy and highlights its potential for personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Republic of Korea
| |
Collapse
|
12
|
Yamashita S, Kojima M, Onda N, Shibutani M. In Vitro Comparative Study of Near-Infrared Photoimmunotherapy and Photodynamic Therapy. Cancers (Basel) 2023; 15:3400. [PMID: 37444510 DOI: 10.3390/cancers15133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a new phototherapy that utilizes a monoclonal antibody (mAb) against cancer antigens and a phthalocyanine dye, IRDye700DX (IR700) conjugate (mAb-IR700). Photodynamic therapy (PDT) is a combination therapy that utilizes photoreactive agents and light irradiation as well as NIR-PIT. In the present study, we compared these therapies in vitro. The characterization of cellular binding/uptake specificity and cytotoxicity were examined using two mAb-IR700 forms and a conventional PDT agent, talaporfin sodium, in three cell lines. As designed, mAb-IR700 had high molecular selectivity and visualized target molecule-positive cells at the lowest concentration examined. NIR-PIT induced necrosis and damage-associated molecular patterns (DAMPs), a surrogate maker of immunogenic cell death. In contrast, talaporfin sodium was taken up by cells regardless of cell type, and its uptake was enhanced in a concentration-dependent manner. PDT induced cell death, with the pattern of cell death shifting from apoptosis to necrosis depending on the concentration of the photosensitizer. Induction of DAMPs was observed at the highest concentration, but their sensitivity differed among cell lines. Overall, our data suggest that molecule-specific NIR-PIT may have potential advantages compared with PDT in terms of the efficiency of tumor visualization and induction of DAMPs.
Collapse
Affiliation(s)
- Susumu Yamashita
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Miho Kojima
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Nobuhiko Onda
- Medical Evaluation Engineering, Olympus Medical Systems Corporation, 2-3 Kuboyama-cho, Hachioji 192-8512, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| |
Collapse
|
13
|
Penetra M, Arnaut LG, Gomes-da-Silva LC. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology 2023; 12:2226535. [PMID: 37346450 PMCID: PMC10281486 DOI: 10.1080/2162402x.2023.2226535] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
Photodynamic therapy (PDT) is a medical treatment used to target solid tumors, where the administration of a photosensitizing agent and light generate reactive oxygen species (ROS), thus resulting in strong oxidative stress that selectively damages the illuminated tissues. Several preclinical studies have demonstrated that PDT can prime the immune system to recognize and attack cancer cells throughout the body. However, there is still limited evidence of PDT-mediated anti-tumor immunity in clinical settings. In the last decade, several clinical trials on PDT for cancer treatment have been initiated, indicating that significant efforts are being made to improve current PDT protocols. However, most of these studies disregarded the immunological dimension of PDT. The immunomodulatory properties of PDT can be combined with standard therapy and/or emerging immunotherapies, such as immune checkpoint blockers (ICBs), to achieve better disease control. Combining PDT with immunotherapy has shown synergistic effects in some preclinical models. However, the value of this combination in patients is still unknown, as the first clinical trials evaluating the combination of PDT with ICBs are just being initiated. Overall, this Trial Watch provides a summary of recent clinical information on the immunomodulatory properties of PDT and ongoing clinical trials using PDT to treat cancer patients. It also discusses the future perspectives of PDT for oncological indications.
Collapse
Affiliation(s)
- Mafalda Penetra
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | - Luís G. Arnaut
- CQC - Coimbra Chemistry Center, Universidade de Coimbra, Coimbra, Portugal
| | | |
Collapse
|
14
|
Almeida J, Tomé AC, Rangel M, Silva AMG. Microwave-Assisted Synthesis and Spectral Properties of Pyrrolidine-Fused Chlorin Derivatives. Molecules 2023; 28:molecules28093833. [PMID: 37175243 PMCID: PMC10179977 DOI: 10.3390/molecules28093833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In this work we pursued research involving the microwave-assisted N-alkylation of a NH pyrrolidine-fused chlorin with methyl 4-(bromomethyl) benzoate and subsequent ester hydrolysis as a straightforward strategy to obtain carboxylic acid functionality in the pyrrolidine-fused chlorin, as a single reaction product. We studied the reaction's scope by extending the N-alkylation of the free-base chlorin and its corresponding Zn(II) complex to other alkyl halides, including 1,4-diiodobutane, N-(2-bromoethyl)phthalimide, and 2-bromoethanaminium bromide. In addition, two new chlorin-dansyl dyads were synthesized by reacting dansyl chloride with the 2-aminoethyl pyrrolidine-fused chlorin (dyad 6) and NH pyrrolidine-fused chlorin (dyad 7). According to spectral studies, the linker length between the two fluorophores influences the response of the dyads to the solvent polarity. Because of the simplicity of these approaches, we believe it will enable access to a vast library of custom-tailored N-functionalized chlorins while preserving their important absorption and emission spectra as photosensitizers in photodynamic therapy (PDT) of cancer and photodynamic inactivation (PDI) of microorganisms.
Collapse
Affiliation(s)
- José Almeida
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Rangel
- LAQV-REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, 4099-003 Porto, Portugal
| | - Ana M G Silva
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
15
|
Claes E, Wener R, Neyrinck AP, Coppens A, Van Schil PE, Janssens A, Lapperre TS, Snoeckx A, Wen W, Voet H, Verleden SE, Hendriks JMH. Innovative Invasive Loco-Regional Techniques for the Treatment of Lung Cancer. Cancers (Basel) 2023; 15:cancers15082244. [PMID: 37190172 DOI: 10.3390/cancers15082244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Surgical resection is still the standard treatment for early-stage lung cancer. A multimodal treatment consisting of chemotherapy, radiotherapy and/or immunotherapy is advised for more advanced disease stages (stages IIb, III and IV). The role of surgery in these stages is limited to very specific indications. Regional treatment techniques are being introduced at a high speed because of improved technology and their possible advantages over traditional surgery. This review includes an overview of established and promising innovative invasive loco-regional techniques stratified based on the route of administration, including endobronchial, endovascular and transthoracic routes, a discussion of the results for each method, and an overview of their implementation and effectiveness.
Collapse
Affiliation(s)
- Erik Claes
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Reinier Wener
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Arne P Neyrinck
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Anesthesia and Algology Unit, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Axelle Coppens
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Paul E Van Schil
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Annelies Janssens
- Department of Thoracic Oncology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Thérèse S Lapperre
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- LEMP (Laboratory of Experimental Medicine and Pediatrics), University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Annemiek Snoeckx
- Faculty of Medicine and Health Sciences, University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Department of Radiology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Wen Wen
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Hanne Voet
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- LEMP (Laboratory of Experimental Medicine and Pediatrics), University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stijn E Verleden
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Pulmonology, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| | - Jeroen M H Hendriks
- ASTARC (Antwerp Surgical Training, Anatomy and Research Centre), University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
- Department of Thoracic and Vascular Surgery, University Hospital Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium
| |
Collapse
|
16
|
Bansal S, Bechara RI, Patel JD, Mehta HJ, Ferguson JS, Witt BL, Murgu SD, Yasufuku K, Casal RF. Safety and Feasibility of Photodynamic Therapy for Ablation of Peripheral Lung Tumors. J Bronchology Interv Pulmonol 2023; 30:135-143. [PMID: 35968968 PMCID: PMC10063184 DOI: 10.1097/lbr.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Newer navigational bronchoscopy technologies render peripheral lung lesions accessible for biopsy and potential treatment. We investigated whether photodynamic therapy (PDT) delivered via navigational bronchoscopy is feasible and safe for ablation of peripheral lung tumors. METHODS Two studies evaluated PDT in patients with solid peripheral lung tumors followed by clinical follow-up (nonresection study, N=5) or lobectomy (resection study, N=10). Porfimer sodium injection was administered 40 to 50 hours before navigational bronchoscopy. Lesion location was confirmed by radial probe endobronchial ultrasonography. An optical fiber diffuser was placed within or adjacent to the tumor under fluoroscopic guidance; laser light (630 nm wavelength) was applied at 200 J/cm of diffuser length for 500 seconds. Tumor response was assessed by modified Response Evaluation Criteria in Solid Tumors at 3 and 6 months postprocedure (nonresection study) and pathologically (resection study). RESULTS There were no deaths, discontinuations for adverse events, or serious or grade ≥3 adverse events related to study treatments. Photosensitivity reactions occurred in 8 of 15 patients: 6 mild, 1 moderate, 1 severe (elevated porphyrins noted in blood after treatment). Among 5 patients with clinical follow-up, 1 had complete response, 3 had stable disease, and 1 had progressive disease at 6 months follow-up. Among 10 patients who underwent lobectomy, 1 had no evidence of tumor at resection (complete response), 3 had 40% to 50% tumor cell necrosis, 2 had 20% to 35%, and 4 had 5% to 10%. CONCLUSION PDT for nonthermal ablation of peripheral lung tumors was feasible and safe in this small study. Further study is warranted to evaluate efficacy and corroborate the safety profile.
Collapse
Affiliation(s)
- Sandeep Bansal
- Interventional Pulmonology, The Lung Center, Penn Highlands Healthcare, DuBois, PA
| | - Rabih I. Bechara
- Interventional Pulmonology, Medical College of Georgia School of Medicine, Augusta University, Augusta, GA
| | - Jiten D. Patel
- Pulmonary Medicine, Providence Sacred Heart Medical Center and Children’s Hospital, Spokane, WA
| | - Hiren J. Mehta
- Interventional Pulmonology, University of Florida, Gainesville, FL
| | - J. Scott Ferguson
- Interventional Pulmonology, School of Medicine and Public Health and the Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Benjamin L. Witt
- Association of Regional Utah Pathologists (ARUP) Laboratories, University of Utah, Salt Lake City, UT
| | - Septimiu D. Murgu
- Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Roberto F. Casal
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
17
|
Tamura K, Uchimura K, Furuse H, Imabayashi T, Matsumoto Y, Tsuchida T. Mucoepidermoid carcinoma cured by a combination of high-frequency snare and photodynamic therapy: A case report. Thorac Cancer 2023; 14:1306-1310. [PMID: 36929314 PMCID: PMC10175029 DOI: 10.1111/1759-7714.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Mucoepidermoid carcinoma (MEC) is a rare salivary gland tumor, accounting for 0.2% of all lung tumors. The standard treatment for MEC of the primary bronchus is surgery, although intraluminal bronchoscopic treatment has recently become an option. A 68-year-old man presented with an asymptomatic bronchial tumor in the right intermediate bronchus. The tumor was resected using a high-frequency snare (HFS) during bronchoscopy, and the specimen was pathologically diagnosed as low-grade MEC. A residual lesion was detected in the resected area by autofluorescence imaging. The tumor appeared to be localized within the subepithelial layer without metastases, and photodynamic therapy (PDT) was performed as a local treatment. The patient had no recurrence for 18 months. PDT is effective and safe for patients with centrally located early-stage lung cancer, but there are few reports of its use for rare tumors, such as MEC. In this case, PDT allowed for local control and avoided surgery, including bronchoplasty, for MEC. Combined treatment of tumor reduction by HFS and PDT of the residual lesion may be an optimal treatment for MEC of the bronchus.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan.,Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keigo Uchimura
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Hideaki Furuse
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Imabayashi
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Yuji Matsumoto
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan.,Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takaaki Tsuchida
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Hak A, Ali MS, Sankaranarayanan SA, Shinde VR, Rengan AK. Chlorin e6: A Promising Photosensitizer in Photo-Based Cancer Nanomedicine. ACS APPLIED BIO MATERIALS 2023; 6:349-364. [PMID: 36700563 DOI: 10.1021/acsabm.2c00891] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Conventional cancer treatment modalities are often associated with major therapeutic limitations and severe side effects. Photodynamic therapy is a localized noninvasive mode of treatment that has given a different direction to cancer research due to its effectivity against a wide range of cancers and minimal side effects. A photosensitizer is the key component of photodynamic therapy (PDT) that generates cytotoxic reactive oxygen species to eradicate cancer cells. As the therapeutic effectivity of PDT greatly depends upon the photosensitizer, great efforts have been made to search for an ideal photosensitizer. Chlorin e6 is a FDA approved second generation photosensitizer that meets the desired clinical properties for PDT. It is known for its high reactive oxygen species (ROS) generation ability and anticancer potency against many types of cancer. Hydrophobicity is a major drawback of Ce6 that leads to its poor biodistribution and rapid clearance from the circulatory system. To overcome this drawback, researchers have designed and fabricated several types of nanosystems, which can enhance Ce6 solubility and thereby enhance its bioavailability. These nanosystems also improve tumor accumulation of Ce6 by selectively targeting the cancer cells through passive and active targeting. In addition, Ce6 has been employed in many combination therapies like chemo-photodynamic therapy, photoimmunotherapy, and combined photodynamic-photothermal therapy. A combination therapy is more curative than a single therapy due to the synergistic effects of individual therapies. Ce6-based nanosystems for combination therapies have shown excellent results in various studies and provide a promising platform for cancer treatment.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | | | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana 502285, India
| |
Collapse
|
19
|
Shi J, Zeng Q, Wang P, Chang Q, Huang J, Wu M, Wang X, Wang H. A novel chlorin e6 derivative-mediated photodynamic therapy STBF-PDT reverses photoaging via the TGF-β pathway. Photodiagnosis Photodyn Ther 2023; 41:103321. [PMID: 36738905 DOI: 10.1016/j.pdpdt.2023.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Photoaging is characterized by wrinkles in the skin and the deterioration of the skin barrier function, mainly caused by long-term exposure to ultraviolet (UV) radiation. Photodynamic therapy (PDT) has been shown to treat photoaging. The novel photosensitizer ShengTaiBuFen(STBF) is a derived substance of Chlorin e6(Ce6) that can exert photodynamic effects directly. In this study, we investigated the availability and the mechanism of STBF-PDT in the treatment of photoaging. METHODS Fluorophotometer was used to determine therapeutic parameters for in vivo experiments. Camera photographs, dermoscopy, HE and Masson staining, skin pH, trans epidermal water loss (TEWL), epidermal water content, and sebum testing were used together to evaluate the results of the treatment. Dark toxicity and therapeutic parameters for in vitro experiments were determined by CCK8 analysis. Scratch assay was used to identify the cell migration of STBF-PDT on HaCaT cells. qPCR and Western blot were used to evaluate the TGF-β/Smad signaling pathway in human dermal fibroblast (HDF) cells. RESULTS We investigated the optimal STBF concentration and time of incubation in vivo and in vitro experiments. STBF-PDT improved the skin phenotype of photoaged mice. The skin of photoaged mice treated with 80 J/cm2 STBF-PDT became smooth, while skin flakes were reduced. The epidermis of STBF-PDT-treated mice was thinner, and the cells were neatly arranged, with increased dermal collagen. In vitro, STBF-PDT promoted the migration of HaCaT cells below a light dose of 0.1 J/cm2. HDF cells co-cultured with HaCaT cells treated with low-dose STBF-PDT showed activation of the TGF-β pathway. CONCLUSION As a novel photosensitizer, STBF-mediated low-dose PDT could reverse photoaging via the TGF-β pathway.
Collapse
Affiliation(s)
- Jingjuan Shi
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Qihang Chang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China
| | - Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200050, China.
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
20
|
Sonokawa T, Obi N, Usuda J, Sudo Y, Hamakubo T. Development of a new minimally invasive phototherapy for lung cancer using antibody-toxin conjugate. Thorac Cancer 2023; 14:645-653. [PMID: 36655546 PMCID: PMC9981311 DOI: 10.1111/1759-7714.14776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a cancer-targeted treatment that uses a photosensitizer (PS) and laser irradiation. The effectiveness of current PDT using red light for advanced cancers is limited, because red light can only reach depths within a few millimeters. To enhance the antitumor effect for lung cancers, we developed a new phototherapy, intelligent targeted antibody phototherapy (iTAP). This treatment uses a combination of immunotoxin and a PS, mono-L-aspartyl chlorin e6 (NPe6). METHODS We examined whether cetuximab encapsulated in endosomes was released into the cytosol by PS in PDT under light irradiation. A431 cells were treated with fluorescein isothiocyanate-labeled cetuximab, NPe6, and light irradiation and were observed with fluorescence microscopy. We analyzed the cytotoxicity of saporin-conjugated cetuximab (IT-cetuximab) in A431, A549, and MCF7 cells and the antitumor effect in model A549-bearing mice in vivo using the iTAP method. RESULTS Fluorescent microscopy analysis showed that the photodynamic effect of NPe6 (20 μM) and light irradiation (37.6 J/cm2 ) caused the release of cetuximab from the endosome into the cytosol. In vitro analysis demonstrated that the iTAP method enhanced the cytotoxicity of IT-cetuximab by the photodynamic effect. In in vivo experiments, compared with IT-cetuximab alone or PDT alone, the iTAP method using a low dose of IT-cetuximab showed the greatest enhancement of the antitumor effect. CONCLUSIONS Our study is the first report of the iTAP method using NPe6 for lung cancer cells. The iTAP method may become a new, minimally invasive treatment superior to current PDT methods.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic SurgeryNippon Medical SchoolTokyoJapan
| | - Naoko Obi
- Research & Development DivisionPhotoQ3 Inc.TokyoJapan
| | - Jitsuo Usuda
- Department of Thoracic SurgeryNippon Medical SchoolTokyoJapan
| | - Yukio Sudo
- Research & Development DivisionPhotoQ3 Inc.TokyoJapan
| | | |
Collapse
|
21
|
Zhang X, Yu F, Wang Z, Jiang T, Song X, Yu F. Fluorescence probes for lung carcinoma diagnosis and clinical application. SENSORS & DIAGNOSTICS 2023; 2:1077-1096. [DOI: 10.1039/d3sd00029j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This review provides an overview of the most recent developments in fluorescence probe technology for the accurate detection and clinical therapy of lung carcinoma.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Department of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China
| | - Feifei Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Zhenkai Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Xinyu Song
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medicine University, Guangzhou 510120, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
22
|
Karshieva SS, Glinskaya EG, Dalina AA, Akhlyustina EV, Makarova EA, Khesuani YD, Chmelyuk NS, Abakumov MA, Khochenkov DA, Mironov VA, Meerovich GA, Kogan EA, Koudan EV. Antitumor activity of photodynamic therapy with tetracationic derivative of synthetic bacteriochlorin in spheroid culture of liver and colon cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103202. [PMID: 36400167 DOI: 10.1016/j.pdpdt.2022.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth. Although PS accumulated more efficiently in HCT-116 cells, characterized by more aggressive growth and high proliferative potential, they were less susceptible to the photodynamic therapy (PDT) compared to the slower growing Huh7 cells. We also showed that 3D models of spheroids were less sensitive to BC4 than conventional 2D cultures with relatively identical kinetics of drug accumulation. Our findings suggest that BC4 is a perspective agent for photodynamic therapy against cancer cells.
Collapse
Affiliation(s)
- Saida Sh Karshieva
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; N N Blokhin National Medical Research Center of Oncology, Kashirskoe shosse 24, Moscow 115478, Russia
| | - Elizaveta G Glinskaya
- I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia
| | - Alexandra A Dalina
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov st. 32, Moscow 119991, Russia
| | | | - Elena A Makarova
- Organic Intermediates and Dyes Institute, B. Sadovaya st. 1/4, Moscow 123001, Russia
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe shosse 68, Moscow 115409, Russia
| | - Nelly S Chmelyuk
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow 117997, Russia
| | - Maxim A Abakumov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow 117997, Russia
| | - Dmitriy A Khochenkov
- N N Blokhin National Medical Research Center of Oncology, Kashirskoe shosse 24, Moscow 115478, Russia; Togliatti State University, Belorusskaya st. 14, Togliatti 445667, Russia
| | - Vladimir A Mironov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia
| | - Gennady A Meerovich
- National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Vavilov st. 38, Moscow 119991, Russia
| | - Evgeniya A Kogan
- I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia.
| |
Collapse
|
23
|
Hayashi T, Okamoto K, Yamada S, Takatori H, Ninomiya I, Mizukoshi E, Yamashita T. Esophago-aortic fistula of esophageal cancer after chemotherapy, proton therapy and salvage photodynamic therapy: a rescued case. Clin J Gastroenterol 2022; 15:1029-1034. [PMID: 36070174 DOI: 10.1007/s12328-022-01694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 10/14/2022]
Abstract
We describe a case of esophageal cancer after proton therapy that resulted in an esophagoaortic fistula after photodynamic therapy (PDT). A 49-year-old woman with esophageal cancer (cT1bN0M0, cStage I) underwent chemotherapy (5-FU and cisplatin) and radiotherapy (proton therapy to the cancer lesion after X-ray radiotherapy to the regional lymph nodes). Despite a complete response of the primary tumor, local recurrence was observed 10 months after treatment. PDT was performed as a salvage treatment. She was transported to the emergency department in a state of hemorrhagic shock due to hematemesis 50 days after PDT. We diagnosed an esophagoaortic fistula caused by esophageal perforation, and resuscitative endovascular balloon occlusion of the aorta and thoracic endovascular aortic repair were performed. The patient was successfully rescued after three surgeries (esophagectomy, extraesophageal fistula, aortic vascular replacement, and gastrointestinal reconstruction). In addition to X-ray radiotherapy before photodynamic therapy, proton therapy in combination with the vascular shutdown effects of PDT may have caused ischemia of the esophagus, resulting in an esophagoaortic fistula. When performing PDT, the type of radiation therapy and the location of the lesion should be examined to assess the risk of penetration or perforation.
Collapse
Affiliation(s)
- Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Koichi Okamoto
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shinya Yamada
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
24
|
Bartusik-Aebisher D, Osuchowski M, Adamczyk M, Stopa J, Cieślar G, Kawczyk-Krupka A, Aebisher D. Advancements in photodynamic therapy of esophageal cancer. Front Oncol 2022; 12:1024576. [PMID: 36465381 PMCID: PMC9713848 DOI: 10.3389/fonc.2022.1024576] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2023] Open
Abstract
The poor prognosis of patients with esophageal cancer leads to the constant search for new ways of treatment of this disease. One of the methods used in high-grade dysplasia, superficial invasive carcinoma, and sometimes palliative care is photodynamic therapy (PDT). This method has come a long way from the first experimental studies to registration in the treatment of esophageal cancer and is constantly being improved and refined. This review describes esophageal cancer, current treatment methods, the introduction to PDT, the photosensitizers (PSs) used in esophageal carcinoma PDT, PDT in squamous cell carcinoma (SCC) of the esophagus, and PDT in invasive adenocarcinoma of the esophagus. For this review, research and review articles from PubMed and Web of Science databases were used. The keywords used were "photodynamic therapy in esophageal cancer" in the years 2000-2020. The total number of papers returned was 1,000. After the review was divided into topic blocks and the searched publications were analyzed, 117 articles were selected.
Collapse
Affiliation(s)
- Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| | | | - Marta Adamczyk
- Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Stopa
- Medical College of The University of Rzeszów, Rzeszów, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
25
|
Bae I, Kim TG, Kim T, Kim D, Kim DH, Jo J, Lee YJ, Jeong YI. Phenethyl Isothiocyanate-Conjugated Chitosan Oligosaccharide Nanophotosensitizers for Photodynamic Treatment of Human Cancer Cells. Int J Mol Sci 2022; 23:13802. [PMID: 36430279 PMCID: PMC9693342 DOI: 10.3390/ijms232213802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The aim of this study is to synthesize phenethyl-conjugated chitosan oligosaccharide (COS) (abbreviated as ChitoPEITC) conjugates and then fabricate chlorin E6 (Ce6)-incorporated nanophotosensitizers for photodynamic therapy (PDT) of HCT-116 colon carcinoma cells. PEITC was conjugated with the amine group of COS. Ce6-incorporated nanophotosensitizers using ChitoPEITC (ChitoPEITC nanophotosensitizers) were fabricated by dialysis method. 1H nuclear magnetic resonance (NMR) spectra showed that specific peaks of COS and PEITC were observed at ChitoPEITC conjugates. Transmission electron microscope (TEM) confirmed that ChitoPEITC nanophotosensitizers have spherical shapes with small hydrodynamic diameters less than 200 nm. The higher PEITC contents in the ChitoPEITC copolymer resulted in a slower release rate of Ce6 from nanophotosensitizers. Furthermore, the higher Ce6 contents resulted in a slower release rate of Ce6. In cell culture study, ChitoPEITC nanophotosensitizers showed low toxicity against normal CCD986Sk human skin fibroblast cells and HCT-116 human colon carcinoma cells in the absence of light irradiation. ChitoPEITC nanophotosensitizers showed a significantly higher Ce6 uptake ratio than that of free Ce6. Under light irradiation, cellular reactive oxygen species (ROS) production of nanophotosensitizers was significantly higher than that of free Ce6. Especially, PEITC and/or ChitoPEITC themselves contributed to the production of cellular ROS regardless of light irradiation. ChitoPEITC nanophotosensitizers showed significantly higher PDT efficacy against HCT-116 cells than that of free Ce6. These results indicate that ChitoPEITC nanophotosensitizers have superior potential in Ce6 uptake, ROS production and PDT efficacy. In the HCT-116 cell-bearing mice tumor-xenograft model, ChitoPEITC nanophotosensitizers efficiently inhibited growth of tumor volume rather than free Ce6. In the animal imaging study, ChitoPEITC nanophotosensitizers were concentrated in the tumor tissue, i.e., fluorescence intensity in the tumor tissue was stronger than that of other tissues. We suggest that ChitoPEITC nanophotosensitizers are a promising candidate for the treatment of human colon cancer cells.
Collapse
Affiliation(s)
- Inho Bae
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Taeyu Grace Kim
- Tyros Biotechnology Inc., 75 Kneeland St. 14 floors, Boston, MA 02111, USA
- Brookline High School, 115 Greenough St., Brookline, MA 02445, USA
| | - Taeyeon Kim
- College of Art & Science, University of Pennsylvania, 249 S 36th St., Philadelphia, PA 19104, USA
| | - Dohoon Kim
- Tyros Biotechnology Inc., 75 Kneeland St. 14 floors, Boston, MA 02111, USA
| | - Doug-Hoon Kim
- Department of Optometry, Masan University, Changwon 51217, Korea
| | - Jaewon Jo
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Korea
| | - Young-Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Korea
| | - Young-Il Jeong
- Tyros Biotechnology Inc., 75 Kneeland St. 14 floors, Boston, MA 02111, USA
| |
Collapse
|
26
|
Hong SO, Kook MS, Jeong YIL, Park MJ, Yang SW, Kim BH. Nanophotosensitizers Composed of Phenyl Boronic Acid Pinacol Ester-Conjugated Chitosan Oligosaccharide via Thioketal Linker for Reactive Oxygen Species-Sensitive Delivery of Chlorin e6 against Oral Cancer Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7057. [PMID: 36295132 PMCID: PMC9604738 DOI: 10.3390/ma15207057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Chlorin E6 (Ce6)-incorporated nanophotosensitizers were fabricated for application in photodynamic therapy (PDT) of oral cancer cells. For this purpose, chitosan oligosaccharide (COS) was conjugated with hydrophobic and reactive oxygen species (ROS)-sensitive moieties, such as phenyl boronic acid pinacol ester (PBAP) via a thioketal linker (COSthPBAP). ThdCOOH was conjugated with PBAP to produce ThdCOOH-PBAP conjugates and then attached to amine groups of COS to produce a COSthPBAP copolymer. Ce6-incorporated nanophotosensitizers using the COSthPBAP copolymer were fabricated through the nanoprecipitation and dialysis methods. The Ce6-incorporated COSthPBAP nanophotosensitizers had a small diameter of less than 200 nm with a mono-modal distribution pattern. However, it became a multimodal and/or irregular distribution pattern when H2O2 was added. In a morphological observation using TEM, the nanophotosensitizers were disintegrated by the addition of H2O2, indicating that the COSthPBAP nanophotosensitizers had ROS sensitivity. In addition, the Ce6 release rate from the COSthPBAP nanophotosensitizers accelerated in the presence of H2O2. The SO generation was also higher in the nanophotosensitizers than in the free Ce6. Furthermore, the COSthPBAP nanophotosensitizers showed a higher intracellular Ce6 uptake ratio and ROS generation in all types of oral cancer cells. They efficiently inhibited the viability of oral cancer cells under light irradiation, but they did not significantly affect the viability of either normal cells or cancer cells in the absence of light irradiation. The COSthPBAP nanophotosensitizers showed a tumor-specific delivery capacity and fluorescence imaging of KB tumors in an in vivo animal tumor imaging study. We suggest that COSthPBAP nanophotosensitizers are promising candidates for the imaging and treatment of oral cancers.
Collapse
Affiliation(s)
- Sung-Ok Hong
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
- Department of Oral and Maxillofacial Surgery, Kyung Hee University Dental Hospital at Gangdong, Seoul 05278, Korea
| | - Min-Suk Kook
- Department of Maxillofacial Oral Surgery, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Young-IL Jeong
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Min-Ju Park
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Seong-Won Yang
- Department of Ophthalmology, College of Medicine, Chosun University, Gwangju 61453, Korea
| | - Byung-Hoon Kim
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
27
|
Miura K, Wen Y, Tsushima M, Nakamura H. Photodynamic Therapy by Glucose Transporter 1-Selective Light Inactivation. ACS OMEGA 2022; 7:34685-34692. [PMID: 36188330 PMCID: PMC9520747 DOI: 10.1021/acsomega.2c05042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Chromophore-assisted light inactivation (CALI) was applied to molecule-targeted photodynamic therapy (PDT). In order to identify organic photosensitizers suitable for CALI, the carbonic anhydrase II (CAII) ligand, 4-sulfamoylbenzoic acid 1, was conjugated with several photosensitizers to produce compounds 2-7, whose CALI ability was evaluated by measuring their effect on CAII enzymatic activity. Di-iodinated BODIPY (I2BODIPY) exhibited excellent CAII inactivation ability, similar to that of Ru(bpy)3. The glucose-I2BODIPY conjugate (8) was synthesized as an inactivation of glucose transporter 1 (GLUT1), a protein overexpressed in many cancer cells. Under light irradiation, 8 exhibited concentration-dependent cytotoxicity with half maximal inhibitory concentration (IC50) values of 5.49, 11.14, and 8.73 μM, against human cervical carcinoma (HeLa), human lung carcinoma (A549), and human hepatocellular carcinoma (HepG2) cell lines, respectively. The GLUT1 inhibitor phloretin suppressed the cytotoxicity induced by 8 under light irradiation in a concentration-dependent manner. Western blot analysis indicated that GLUT1 was not detected in cell lines treated with 10 μM 8 under light irradiation. Furthermore, 8 reduced the levels of epidermal growth factor receptor tyrosine kinase (EGFR), phospho-ERK (Y204), and GLUT1 without affecting ERK, α-tubulin, and PCNA protein levels, whereas talaporfin sodium, a clinically approved photosensitizer for PDT, nonspecifically reduced intracellular protein levels in HeLa cells, indicating that 8 has a GLUT1-specific inactivation ability and causes light-induced cytotoxicity by modulating the EGFR/MAPK signaling pathway.
Collapse
Affiliation(s)
- Kazuki Miura
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Yijin Wen
- School
of Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho,
Midori-ku, Yokohama 226-8501, Japan
| | - Michihiko Tsushima
- School
of Life Science and Technology, Tokyo Institute
of Technology, 4259 Nagatsuta-cho,
Midori-ku, Yokohama 226-8501, Japan
| | - Hiroyuki Nakamura
- Laboratory
for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
28
|
Zhu L, Lin S, Cui W, Xu Y, Wang L, Wang Z, Yuan S, Zhang Y, Fan Y, Geng J. A nanomedicine enables synergistic chemo/photodynamic therapy for pancreatic cancer treatment. Biomater Sci 2022; 10:3624-3636. [PMID: 35647941 DOI: 10.1039/d2bm00437b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide. Gemcitabine (Gem) has been a key chemotherapy agent for pancreatic cancer treatment by suppressing cell proliferation and inducing apoptosis. However, the overexpression of inhibitors of apoptosis (IAP) family of proteins during the carcinogenesis of pancreatic cancer can develop resistance to chemotherapy treatment and result in poor efficacy. To achieve the synergistic combinations of multiple strategies for this dismal disease, we developed a robust nanomedicine system, consisting of a photodynamic therapeutic agent (chlorine e6, Ce6) and a pro-apoptotic peptide-Gem conjugate. To have spatiotemporally controlled drug release, the pro-apoptotic peptide-Gem conjugate was designed to have a vinyldithioether linker that was sensitive to reactive oxygen species (ROS). The nanomedicine was fabricated by the direct self-assembly of the pro-apoptotic peptide-Gem conjugate with Ce6. After being delivered into tumors, the nanomedicine disassembled and rapidly released Gem, Ce6, and the pro-apoptotic peptide upon light illumination (660 nm). Both in vitro and in vivo studies in pancreatic cancer models confirmed the tumor inhibition efficacy with low systemic toxicity to animals.
Collapse
Affiliation(s)
- Liwei Zhu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Shanmeng Lin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Wenqiang Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwei Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Liang Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhaohan Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Shuguang Yuan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yichuan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yingfang Fan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jin Geng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
29
|
Arnau Del Valle C, Hirsch T, Marin M. Recent Advances in Near Infrared Upconverting Nanomaterials for Targeted Photodynamic Therapy of Cancer. Methods Appl Fluoresc 2022; 10. [PMID: 35447614 DOI: 10.1088/2050-6120/ac6937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment of cancer that uses the toxic reactive oxygen species, including singlet oxygen (1O2), generated by photosensitiser drugs following irradiation of a specific wavelength to destroy the cancerous cells and tumours. Visible light is commonly used as the excitation source in PDT, which is not ideal for cancer treatment due to its reduced tissue penetration, and thus inefficiency to treat deep-lying tumours. Additionally, these wavelengths exhibit elevated autofluorescence background from the biological tissues which hinders optical biomedical imaging. An alternative to UV-Vis irradiation is the use of near infrared (NIR) excitation for PDT. This can be achieved using upconverting nanoparticles (UCNPs) functionalised with photosensitiser (PS) drugs where UCNPs can be used as an indirect excitation source for the activation of PS drugs yielding to the production of singlet 1O2 following NIR excitation. The use of nanoparticles for PDT is also beneficial due to their tumour targeting capability, either passively via the enhanced permeability and retention (EPR) effect or actively via stimuli-responsive targeting and ligand-mediated targeting (ie. using recognition units that can bind specific receptors only present or overexpressed on tumour cells). Here, we review recent advances in NIR upconverting nanomaterials for PDT of cancer with a clear distinction between those reported nanoparticles that could potentially target the tumour due to accumulation via the EPR effect (passive targeting) and nanoparticle-based systems that contain targeting agents with the aim of actively target the tumour via a molecular recognition process.
Collapse
Affiliation(s)
- Carla Arnau Del Valle
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Thomas Hirsch
- University of Regensburg, Institute of Analytical Chemistry, Chemo- and Biosensors, Regensburg, 93040, GERMANY
| | - Maria Marin
- University of East Anglia, School of Chemistry, Norwich Research Park, Norwich, NR4 7TJ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
30
|
Yamashita H, Kadota T, Minamide T, Sunakawa H, Sato D, Takashima K, Nakajo K, Murano T, Shinmura K, Yoda Y, Ikematsu H, Yano T. Efficacy and safety of second photodynamic therapy for local failure after salvage photodynamic therapy for esophageal cancer. Dig Endosc 2022; 34:488-496. [PMID: 34185928 DOI: 10.1111/den.14072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Photodynamic therapy (PDT) is an optional salvage treatment for local failure of esophageal squamous cell carcinoma (ESCC) after chemoradiotherapy; however, local failure after PDT sometimes occurs. In such cases, second PDT is sometimes attempted, but its outcomes remain unclear. This study aimed to evaluate the efficacy and safety of second PDT. METHODS We enrolled patients who underwent PDT for local failure of ESCC after chemoradiotherapy. We retrospectively evaluated local-complete response (L-CR) rate and clinical outcomes of first and second PDT. The indications for PDT were lesions within the muscle layer, <3 cm in size, and <3/4 of the esophageal circumference; not suitable for salvage surgery; and absence of metastasis. Second PDT was avoided when lesions were apparently refractory to first PDT, e.g. persistence of submucosal tumor-like protruded component or rapid regrowth of tumor at the ulceration after first PDT. L-CR was defined as endoscopic disappearance of tumor and post-PDT ulcer and absence of cancer cells histologically. RESULTS Among 82 patients who underwent first PDT, 27 underwent second PDT. The L-CR rates with first and second PDT were 63.0% and 40.7%, respectively. The 2-year overall survival rates after second PDT in patients with L-CR and local-nonCR were 79.5% and 40.5%, respectively. Five of 11 patients with L-CR survived without any recurrence. No grade ≥3 adverse events occurred. CONCLUSIONS Second PDT demonstrated excellent safety and acceptable efficacy; therefore, it could be a useful treatment for local failure after first PDT.
Collapse
Affiliation(s)
- Hiroki Yamashita
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Tomohiro Kadota
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Tatsunori Minamide
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Hironori Sunakawa
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Daiki Sato
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Kenji Takashima
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Keiichiro Nakajo
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Tatsuro Murano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Kensuke Shinmura
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Yusuke Yoda
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Hiroaki Ikematsu
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
31
|
Kobayashi T, Nitta M, Shimizu K, Saito T, Tsuzuki S, Fukui A, Koriyama S, Kuwano A, Komori T, Masui K, Maehara T, Kawamata T, Muragaki Y. Therapeutic Options for Recurrent Glioblastoma—Efficacy of Talaporfin Sodium Mediated Photodynamic Therapy. Pharmaceutics 2022; 14:pharmaceutics14020353. [PMID: 35214085 PMCID: PMC8879869 DOI: 10.3390/pharmaceutics14020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Recurrent glioblastoma (GBM) remains one of the most challenging clinical issues, with no standard treatment and effective treatment options. To evaluate the efficacy of talaporfin sodium (TS) mediated photodynamic therapy (PDT) as a new treatment for this condition, we retrospectively analyzed 70 patients who underwent surgery with PDT (PDT group) for recurrent GBM and 38 patients who underwent surgery alone (control group). The median progression-free survival (PFS) in the PDT and control groups after second surgery was 5.7 and 2.2 months, respectively (p = 0.0043). The median overall survival (OS) after the second surgery was 16.0 and 12.8 months, respectively (p = 0.031). Both univariate and multivariate analyses indicated that surgery with PDT and a preoperative Karnofsky Performance Scale were significant independent prognostic factors for PFS and OS. In the PDT group, there was no significant difference regarding PFS and OS between patients whose previous pathology before recurrence was already GBM and those who had malignant transformation to GBM from lower grade glioma. There was also no significant difference in TS accumulation in the tumor between these two groups. According to these results, additional PDT treatment for recurrent GBM could have potential survival benefits and its efficacy is independent of the pre-recurrence pathology.
Collapse
Affiliation(s)
- Tatsuya Kobayashi
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
- Correspondence:
| | - Kazuhide Shimizu
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA;
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;
| | - Taiichi Saito
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Atsushi Kuwano
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu-shi, Tokyo 183-0042, Japan;
| | - Kenta Masui
- Department of Pathology, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan;
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan;
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan; (T.K.); (T.S.); (S.T.); (A.F.); (S.K.); (A.K.); (T.K.); (Y.M.)
- Faculty of Advanced Techno-Surgery, Tokyo Women’s Medical University, 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
32
|
In vitro and in vivo evaluation of a chlorin-based photosensitizer KAE® for cancer treatment. Photodiagnosis Photodyn Ther 2022; 38:102759. [DOI: 10.1016/j.pdpdt.2022.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/21/2022]
|
33
|
Huang H, Xie W, Wan Q, Mao L, Hu D, Sun H, Zhang X, Wei Y. A Self-Degradable Conjugated Polymer for Photodynamic Therapy with Reliable Postoperative Safety. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104101. [PMID: 34898054 PMCID: PMC8811814 DOI: 10.1002/advs.202104101] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
As a noninvasive therapeutic technique, photodynamic therapy (PDT) has attracted numerous research interests for cancer therapy. Nevertheless, the residual photosensitizers (PSs) still produce reactive oxygen species (ROS) and damage normal cells under sunlight after PDT, which limits their practical application in clinic. Herein, the authors propose a self-degradable type-I PS based on conjugated polymer, which is composed of aggregation-induced emission (AIE) and imidazole units. Due to the effective conjugated skeleton and unique AIE properties, thus-obtained polymers can effectively generate superoxide radical (O2-• ) through the type-I process under light irradiation, which is ideal for hypoxic tumors treatment. Intriguingly, under light irradiation, O2-• produced by the conjugated polymers can further lead to the self-degradation of the polymer to form nontoxic micro-molecules. It not only helps to resolve the potential phototoxicity problems of residual PSs, but also can accelerate the metabolism of the conjugated polymers to avoid the potential biotoxicity of drug accumulation. This work develops a self-degradable type-I PS, which can turn off the generation of ROS in time after PDT, providing a novel strategy to balance the PDT effect and postoperative safety.
Collapse
Affiliation(s)
- Hongye Huang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Qing Wan
- School of Materials Science and EngineeringNanchang Hangkong UniversityNanchang330063China
| | - Liucheng Mao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Danning Hu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Hua Sun
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| | - Xiaoyong Zhang
- Department of ChemistryNanchang UniversityNanchang330031China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)Department of ChemistryTsinghua UniversityBeijing100084China
| |
Collapse
|
34
|
Chen Z, Feng T, jinchao S, Karges J, Jin C, Zhao Y, Ji L, Chao H. A Mitochondria-Localized Iridium(III)-Chlorin E6 Conjugate for Synergistic Sonodynamic and Two-Photon Photodynamic Therapy Against Melanoma. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00635a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While melanoma in its early stages can be successfully treated, the prognosis strongly worsens with an increasing depth of the tumor. Capitalizing on this, there is an urgent need for...
Collapse
|
35
|
Santra M, Owens M, Birch G, Bradley M. Near-Infrared-Emitting Hemicyanines and Their Photodynamic Killing of Cancer Cells. ACS APPLIED BIO MATERIALS 2021; 4:8503-8508. [DOI: 10.1021/acsabm.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mithun Santra
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Matthew Owens
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Gavin Birch
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
36
|
Pham-Nguyen OV, Lee JW, Park Y, Jin S, Kim SR, Jung YM, Yoo HS. Atom transfer radical-polymerized cationic shells on gold nanoparticles for near infrared-triggered photodynamic therapy of tumor-bearing animals. J Mater Chem B 2021; 9:9700-9710. [PMID: 34779468 DOI: 10.1039/d1tb02004h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) were surface-engineered with a cationic corona to enhance the incorporation of photosensitizers for photodynamic therapy (PDT). The cationic corona composed of poly(2-(dimethylamino)ethyl methacrylate) was atom transfer radical-polymerized on the surface of the AuNPs. The cationic corona of the engineered surface was characterized by dynamic light scattering, electron microscopy, Raman spectroscopy, and mass spectroscopy. Chlorin-e6 (Ce6) incorporated onto the surface-engineered AuNPs exhibited higher cell incorporation efficiency than bare AuNPs. Ce6-incorporated AuNPs were confirmed to release singlet oxygen upon NIR irradiation. Compared to Ce6, Ce6-incorporated AuNPs exhibited higher cellular uptake and cytotoxicity against cancer cells in an irradiation time-dependent manner. Near-infrared-irradiated animals administered Ce6-incorporated AuNPs exhibited higher levels of tumor suppression without noticeable body weight loss. This result was attributed to the higher localization of Ce6 at the tumor sites to induce cancer cell apoptosis. Thus, we envision that engineered AuNPs with cationic corona can be tailored to effectively deliver photosensitizers to tumor sites for photodynamic therapy.
Collapse
Affiliation(s)
- Oanh-Vu Pham-Nguyen
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Ju Won Lee
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sila Jin
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Song Rae Kim
- Korea Basic Science Institute, Chuncheon Center, Chuncheon, 24341, Republic of Korea
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
37
|
Fabrication of photosensitizer-polyethylene glycol-conjugated gold nanostars for simultaneous photothermal and photodynamic cancer therapy under near-infrared laser irradiation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
38
|
Morisawa S, Jobu K, Ishida T, Kawada K, Fukuda H, Kawanishi Y, Nakayama T, Yamamoto S, Tamura N, Takemura M, Kagimoto N, Ohta T, Masahira N, Fukuhara H, Ogura SI, Ueba T, Inoue K, Miyamura M. Association of 5-aminolevulinic acid with intraoperative hypotension in malignant glioma surgery. Photodiagnosis Photodyn Ther 2021; 37:102657. [PMID: 34848378 DOI: 10.1016/j.pdpdt.2021.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Use of 5-aminolevulinic acid for photodynamic malignant tumor diagnosis reportedly causes intraoperative hypotension (systolic blood pressure < 70 mmHg) during urologic surgery. However, its association with intraoperative hypotension in malignant glioma surgery and underlying mechanisms has not yet been elucidated.. This study aimed to investigate whether 5-aminolevulinic acid administration is associated with intraoperative hypotension in malignant glioma surgery and explore the mechanisms of 5-aminolevulinic acid-induced hypotension in vitro. METHODS In this retrospective multicenter cohort study, we investigated intracellular nitric oxide as a candidate mediator of hypotension in response to 5-aminolevulinic acid in vitro in human umbilical vein endothelial cell cultures. RESULTS Of 142 patients, 94 underwent 5-aminolevulinic acid-guided surgery. Systolic blood pressure was significantly lower throughout surgery with 5-aminolevulinic acid administration. 5-Aminolevulinic acid administration was an independent risk factor for intraoperative hypotension according to multivariable logistic regression analysis (89% vs. 56%; odds ratio = 6.72, 95% confidence interval [2.05-22.1], P = 002). In subgroup analysis of the 5-aminolevulinic acid group, increasing age and use of renin-angiotensin system inhibitors had a synergistic effect with 5-aminolevulinic acid on decreased blood pressure. In the vascular endothelial cell culture study, 5-aminolevulinic acid induced a significant increase in intracellular nitric oxide generation. CONCLUSIONS 5-Aminolevulinic acid administration was associated with intraoperative hypotension in malignant glioma surgery, with increasing age and use of renin-angiotensin system inhibitors boosting the blood pressure-lowering effect of 5-aminolevulinic acid. According to in vitro results, the low blood pressure induced by 5-aminolevulinic acid may be mediated by a nitric oxide increase in vascular endothelial cells.
Collapse
Affiliation(s)
- Shumpei Morisawa
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Graduate School of Integrated Arts and Sciences Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan.
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Tomoaki Ishida
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Kei Kawada
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Graduate School of Integrated Arts and Sciences Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Hitoshi Fukuda
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Yu Kawanishi
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Taku Nakayama
- Center for Photodynamic Medicine, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Shinkuro Yamamoto
- Department of Urology, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Naohisa Tamura
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Graduate School of Integrated Arts and Sciences Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Mitsuhiro Takemura
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Nao Kagimoto
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Tsuyoshi Ohta
- Department of Neurosurgery, National Cerebral and Cardiovascular Center Hospital, 6-1 Kishibe Shimmachi, Suita Osaka, Japan
| | - Noritaka Masahira
- Department of Neurosurgery, Kochi Health Sciences Center, 2125-1, Ike, Kochi, Kochi, Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Department of Urology, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Shun-Ichiro Ogura
- Center for Photodynamic Medicine, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Tetsuya Ueba
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Department of Urology, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Mitsuhiko Miyamura
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Graduate School of Integrated Arts and Sciences Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| |
Collapse
|
39
|
Aroso RT, Schaberle FA, Arnaut LG, Pereira MM. Photodynamic disinfection and its role in controlling infectious diseases. Photochem Photobiol Sci 2021; 20:1497-1545. [PMID: 34705261 PMCID: PMC8548867 DOI: 10.1007/s43630-021-00102-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.
Collapse
Affiliation(s)
- Rafael T Aroso
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Fábio A Schaberle
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Luís G Arnaut
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| | - Mariette M Pereira
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
40
|
Hayashi T, Asahina Y, Nakanishi H, Terashima T, Okamoto K, Yamada S, Takatori H, Kitamura K, Mizukoshi E, Ninomiya I, Kaneko S. Evaluation of the efficacy and safety of salvage photodynamic therapy by talaporfin sodium for cervical esophageal cancers and lesions larger than 3 cm. Esophagus 2021; 18:645-654. [PMID: 33201316 DOI: 10.1007/s10388-020-00799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Salvage photodynamic therapy with talaporfin sodium has a high local control rate for esophageal cancer after definitive chemoradiotherapy. The eligibility criteria for photodynamic therapy include the absence of invasion to the cervical esophagus and a 3 cm maximum longitudinal lesion length. There is little evidence regarding the efficacy and safety of lesions outside the eligibility criteria. This retrospective cohort study evaluated the efficacy and safety of photodynamic therapy of such lesions. METHODS Patients with consecutive lesions between February 2016 and May 2020 (n = 36) were enrolled. The local complete response rates and adverse events were compared between patients with cervical and non-cervical lesions and those with lesions larger and smaller than 3 cm. RESULTS The local complete response rate was 77.8% and was significantly lower in cervical than in non-cervical lesions (20.0% vs 80.6%, p = 0.005). Esophageal stricture, laryngeal pain, and fever were significantly higher in the cervical than in the non-cervical lesion group; however, the detected adverse events were up to grade 2. Laser exposure dose was high in lesions larger than 3 cm (median, 650 vs 400 J; p < 0.001). No significant differences in local complete response rates and adverse effects were noted. One case involving a lesion larger than 3 cm needed balloon dilations for esophageal stricture. CONCLUSIONS Although salvage esophageal photodynamic therapy was effective for local control with acceptable safety after definitive chemoradiotherapy failure, photodynamic therapy toward cervical lesions had a statistically lower local complete response rate. Lesions larger than 3 cm may be considered treatable.
Collapse
Affiliation(s)
- Tomoyuki Hayashi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Yoshiro Asahina
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroyoshi Nakanishi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takeshi Terashima
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shinya Yamada
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hajime Takatori
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuya Kitamura
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastrointestinal Surgery, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
41
|
Clinical Practice of Photodynamic Therapy Using Talaporfin Sodium for Esophageal Cancer. J Clin Med 2021; 10:jcm10132785. [PMID: 34202917 PMCID: PMC8268336 DOI: 10.3390/jcm10132785] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Photodynamic therapy (PDT) using a conventional photosensitizer was approved for esophageal cancer in the early 1990s; however, it was replaced by other conventional treatment modalities in clinical practice because of the high frequency of cutaneous phototoxicity and esophageal stricture after the procedure. The second-generation photosensitizer, talaporfin sodium, which features more rapid clearance from the body, was developed to reduce skin phototoxicity, and talaporfin sodium can be excited at longer-wavelength lights comparing with a conventional photosensitizer. Endoscopic PDT using talaporfin sodium was initially developed for the curative treatment of central-type early lung cancer in Japan, and was approved in the early 2000s. After preclinical experiments, PDT using talaporfin sodium was investigated for patients with local failure after chemoradiotherapy, which was the most serious unmet need in the practice of esophageal cancer. According to the favorable results of a multi-institutional clinical trial, PDT using talaporfin sodium was approved as an endoscopic salvage treatment for patients with local failure after chemoradiotherapy for esophageal cancer. While PDT using talaporfin sodium is gradually spreading in clinical practice, further evaluation at the point of clinical benefit is necessary to determine the importance of PDT in the treatment of esophageal cancer.
Collapse
|
42
|
Sonokawa T, Matsumoto M, Takegahara K, Inoue T, Enomoto Y, Usuda J. Usefulness of simultaneous type image-enhanced endoscope system in photodynamic therapy for centrally located lung cancer. Photodiagnosis Photodyn Ther 2021; 35:102345. [PMID: 34033936 DOI: 10.1016/j.pdpdt.2021.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is established as one of the standard treatment options for centrally located early lung cancer. In order to improve the effectiveness of PDT, it is very important to accurately diagnose the extent of the tumor and focus the laser irradiation accurately. With the use of the conventional video-endoscope system, which adopts the frame-sequential (RGB-based) display method, mainly used in Japan, for PDT laser irradiation, the system only recognizes the strong white light, and color information is lost. Therefore, it is difficult to irradiate the lesion while simultaneously observing the lesion. In this study, we investigated the usefulness of a new type of video-endoscope system during PDT. METHODS We used ELUXEO 7000® (FUJIFILM, Japan), which is a simultaneous-type video-endoscope system that has been in use at Nippon Medical School Hospital since October 2018. We analyzed the clinical usefulness of the ELUXEO® system for PDT as compared to other endoscope systems, such as EVIS LUCERA ELITE® (Olympus, Japan), an autofluorescence imaging (AFI) system. RESULTS After the administration of talaporfin sodium for PDT, the tumor lesion was not visualized in magenta color with AFI, yielding false-negative results. On the other hand, no false-negative results after the administration of talaporfin sodium were obtained with the use of ELUXEO®. Using the ELUXEO® system in the blue light imaging (BLI) mode, we were able to deliver a red laser light while observing the extent of the tumor. Missed laser exposure was avoided and the accuracy of PDT was improved with the use of this system. CONCLUSIONS ELUXEO® is useful for accurate evaluation of the extent of centrally located lung cancer and therefore, for accurate laser irradiation of the tumor lesion.
Collapse
Affiliation(s)
- Takumi Sonokawa
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Mitsuo Matsumoto
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Kyoshiro Takegahara
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Tatsuya Inoue
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Yutaka Enomoto
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan.
| |
Collapse
|
43
|
Kim S, Kim SA, Nam GH, Hong Y, Kim GB, Choi Y, Lee S, Cho Y, Kwon M, Jeong C, Kim S, Kim IS. In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis. J Immunother Cancer 2021; 9:jitc-2020-001481. [PMID: 33479026 PMCID: PMC7825261 DOI: 10.1136/jitc-2020-001481] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Uveal melanoma (UM) is the most frequent intraocular malignancy and is resistant to immunotherapy. Nearly 50% of patients with UM develop metastatic disease, and the overall survival outcome remains very poor. Therefore, a treatment regimen that simultaneously targets primary UM and prevents metastasis is needed. Here, we suggest an immunotherapeutic strategy for UM involving a combination of local photodynamic therapy (PDT), rho-kinase (ROCK) inhibitor, and PD-1/PD-L1 immune checkpoint blockade. METHODS The antitumor efficacy and immune response of monotreatment or combinational treatment were evaluated in B16F10-bearing syngeneic mouse models. Abscopal antitumor immune responses induced by triple-combinational treatment were validated in syngeneic bilateral B16F10 models. After each treatment, the immune profiles and functional examinations were assessed in tumors and tumor draining lymph nodes by flow cytometry, ELISA, and immunofluorescence assays. In orthotopic intraocular melanoma models, the location of the immune infiltrate in the tumor microenvironment (TME) was evaluated after each treatment by multiplex immunohistochemistry and metastatic nodules were monitored. RESULTS PDT with Ce6-embedded nanophotosensitizer (FIC-PDT) elicited immunogenic cell death and stimulated antigen-presenting cells. In situ immunogenic clearance induced by a combination of FIC-PDT with ripasudil, a clinically approved ROCK inhibitor, stimulated antigen-presenting cells, which in turn primed tumor-specific cytotoxic T cells. Moreover, local immunogenic clearance sensitized PD-1/PD-L1 immune checkpoint blockade responses to reconstruct the TME immune phenotypes of cold tumors into hot tumors, resulting in recruitment of robust cytotoxic CD8+ T cells in the TME, propagation of systemic antitumor immunity to mediate abscopal effects, and prolonged survival. In an immune-privileged orthotopic intraocular melanoma model, even low-dose FIC-PDT and ripasudil combined with anti-PD-L1 antibody reduced the primary tumor burden and prevented metastasis. CONCLUSIONS A combination of localized FIC-PDT and a ROCK inhibitor exerted a cancer vaccine-like function. Immunogenic clearance led to the trafficking of CD8+ T cells into the primary tumor site and sensitized the immune checkpoint blockade response to evoke systemic antitumor immunity to inhibit metastasis, one of the major challenges in UM therapy. Thus, immunogenic clearance induced by FIC-PDT and ROCK inhibitor combined with anti-PD-L1 antibody could be a potent immunotherapeutic strategy for UM.
Collapse
Affiliation(s)
- Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seong A Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Gi-Hoon Nam
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yeonsun Hong
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Gi Beom Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yoonjeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Seokyoung Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Yuri Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Minsu Kwon
- Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Korea University Hospital, Seoul, South Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea.,KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, South Korea
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea .,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea .,Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
44
|
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front Oncol 2021; 10:610472. [PMID: 33552982 PMCID: PMC7855851 DOI: 10.3389/fonc.2020.610472] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered an age-related disease that, over the next 10 years, will become the most prevalent health problem worldwide. Although cancer therapy has remarkably improved in the last few decades, novel treatment concepts are needed to defeat this disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several types of cancer. Over the past three decades, new light sources and photosensitizers (PS) have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to explain the main biochemical routes needed to trigger regulated cell death mechanisms, affecting, considerably, the scope of the PDT. Although autophagy modulation is being raised as an interesting strategy to be used in cancer therapy, the main aspects referring to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive. Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to cope with the photo-induced stress and to survive. Moreover, other underlying molecular mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the paradigm about the PDT-regulated cell death mechanisms that involve autophagic impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor cells. Thereby, this review provides insights into the mechanisms by which PDT can be used to modulate autophagy and emphasizes how this field represents a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Waleska K Martins
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Renata Belotto
- Perola Byington Hospital Gynecology - Lasertherapy Clinical Research Department, São Paulo, Brazil
| | - Maryana N Silva
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maynne D Suriani
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tayná S Lavor
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Tayana M Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
45
|
Wang Q, Suo Y, Wang X, Wang Y, Tian X, Gao Y, Liu N, Liu R. Study on the mechanism of photodynamic therapy mediated by 5-aminoketovalerate in human ovarian cancer cell line. Lasers Med Sci 2021; 36:1873-1881. [PMID: 33392781 DOI: 10.1007/s10103-020-03226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022]
Abstract
We aimed to investigate the mechanism and effect of photodynamic treatment mediated by 5-aminoketovalerate (5-ALA-PDT) on human ovarian cancer cells (OVCAR3 cells) and to provide a theoretical basis for the subsequent experimental step in vivo. Human ovarian cancer OVCAR3 cells were randomly divided into four groups: control group, laser irradiation alone group, photosensitizer alone group, and photodynamic treatment group. Alterations in cell morphology were observed with an inverted light microscope; cell viability was examined by CCK-8 assays. The ROS content and apoptosis rate were examined by flow cytometry analysis. Western blot was used to detect the expression of apoptosis-related proteins, such as caspase-3, Bax, and Bcl-2, and the expression of cleaved caspase-3 in live cells was detected by a cleaved caspase-3 assay kit. Inverted light microscopy showed alterations in cell morphology in different stages. Comparison with the three other groups indicated that tumor cell proliferation was significantly decreased in the photodynamic treatment group (P < 0.05). Flow cytometry analysis revealed that the content of ROS was higher in the photodynamic group than in the other three groups, and the apoptosis rate was higher in the photodynamic treatment group. The difference compared with the other three groups was statistically significant (P < 0.001). The western blot results indicated that the protein expression of Bcl-2 and caspase-3 was decreased in the photodynamic treatment group, and the protein expression level of Bax was increased (P < 0.05). The expression of cleaved caspase-3 was increased in the photodynamic treatment group compared with the other groups according to the data obtained with a microplate reader. Thus, our results demonstrated that the apoptosis and viability of OVCAR3 cells are altered in response to 5-ALA-PDT; however, no remarkable effects were observed in ovarian cancer cells treated with laser irradiation or photosensitizer alone. 5-ALA-PDT can significantly inhibit the growth of human ovarian cancer cells, and the mechanism of this effect is related to the tumor cell apoptosis mediated by the downregulation of Bcl-2 and caspase-3 and upregulation of Bax protein expression.
Collapse
Affiliation(s)
- Qian Wang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuping Suo
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Xiaoni Wang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Wang
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Xiaojuan Tian
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanxia Gao
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Nannan Liu
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Liu
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
46
|
Das S, Tiwari M, Mondal D, Sahoo BR, Tiwari DK. Growing tool-kit of photosensitizers for clinical and non-clinical applications. J Mater Chem B 2020; 8:10897-10940. [PMID: 33165483 DOI: 10.1039/d0tb02085k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photosensitizers are photosensitive molecules utilized in clinical and non-clinical applications by taking advantage of light-mediated reactive oxygen generation, which triggers local and systemic cellular toxicity. Photosensitizers are used for diverse biological applications such as spatio-temporal inactivation of a protein in a living system by chromophore-assisted light inactivation, localized cell photoablation, photodynamic and immuno-photodynamic therapy, and correlative light-electron microscopy imaging. Substantial efforts have been made to develop several genetically encoded, chemically synthesized, and nanotechnologically driven photosensitizers for successful implementation in redox biology applications. Genetically encoded photosensitizers (GEPS) or reactive oxygen species (ROS) generating proteins have the advantage of using them in the living system since they can be manipulated by genetic engineering with a variety of target-specific genes for the precise spatio-temporal control of ROS generation. The GEPS variety is limited but is expanding with a variety of newly emerging GEPS proteins. Apart from GEPS, a large variety of chemically- and nanotechnologically-empowered photosensitizers have been developed with a major focus on photodynamic therapy-based cancer treatment alone or in combination with pre-existing treatment methods. Recently, immuno-photodynamic therapy has emerged as an effective cancer treatment method using smartly designed photosensitizers to initiate and engage the patient's immune system so as to empower the photosensitizing effect. In this review, we have discussed various types of photosensitizers, their clinical and non-clinical applications, and implementation toward intelligent efficacy, ROS efficiency, and target specificity in biological systems.
Collapse
Affiliation(s)
- Suman Das
- Department of Biotechnology, Faculty of Life Sciences and Environment, Goa University, Taleigao Plateau, Goa 403206, India.
| | | | | | | | | |
Collapse
|
47
|
Novel Photosensitizer β-Mannose-Conjugated Chlorin e6 as a Potent Anticancer Agent for Human Glioblastoma U251 Cells. Pharmaceuticals (Basel) 2020; 13:ph13100316. [PMID: 33081106 PMCID: PMC7602738 DOI: 10.3390/ph13100316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
A photosensitizer is a molecular drug for photodynamic diagnosis and photodynamic therapy (PDT) against cancer. Many studies have developed photosensitizers, but improvements in their cost, efficacy, and side effects are needed for better PDT of patients. In the present study, we developed a novel photosensitizer β-mannose-conjugated chlorin e6 (β-M-Ce6) and investigated its PDT effects in human glioblastoma U251 cells. U251 cells were incubated with β-M-Ce6, followed by laser irradiation. Cell viability was determined using the Cell Counting Kit-8 assay. The PDT effects of β-M-Ce6 were compared with those of talaporfin sodium (TS) and our previously reported photosensitizer β-glucose-conjugated chlorin e6 (β-G-Ce6). Cellular uptake of each photosensitizer and subcellular distribution were analyzed by fluorescence microscopy. β-M-Ce6 showed 1000× more potent PDT effects than those of TS, and these were similar to those of β-G-Ce6. β-M-Ce6 accumulation in U251 cells was much faster than TS accumulation and distributed to several organelles such as the Golgi apparatus, mitochondria, and lysosomes. This rapid cellular uptake was inhibited by low temperature, which suggested that β-M-Ce6 uptake uses biological machinery. β-M-Ce6 showed potent PDT anti-cancer effects compared with clinically approved TS, which is a possible candidate as a next generation photosensitizer in cancer therapy.
Collapse
|
48
|
Jeong YI, Kim T, Hwang EJ, Kim SW, Sonntag KC, Kim DH, Koh JW. Reactive oxygen species-sensitive nanophotosensitizers of aminophenyl boronic acid pinacol ester conjugated chitosan-g-methoxy poly(ethylene glycol) copolymer for photodynamic treatment of cancer. ACTA ACUST UNITED AC 2020; 15:055034. [PMID: 32526727 DOI: 10.1088/1748-605x/ab9bb2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aim of this study is to prepare reactive oxygen species (ROS)-sensitive nanophotosensitizers for targeted delivery of chlorin e6 (Ce6) and photodynamic tumor therapy. For this purpose, thiodipropionic acid (TDPA) was conjugated with phenyl boronic acid pinacol ester (PBAP) (TDPA-PBAP conjugates) and then the TDPA-PBAP conjugates were attached to the chitosan backbone of chitosan-g-methoxy poly(ethylene glycol) (ChitoPEG) copolymer (ChitoPEG-PBAP). Ce6-incorporated ChitoPEG-PBAP nanophotosensitizers have an ROS-sensitive manner in vitro. The size of ChitoPEG-PBAP nanoparticles increased or disintegrated in a responsive manner against H2O2 concentration. The Ce6 release rate from ChitoPEG-PBAP nanophotosensitizers also increased by adding H2O2. These results indicated that nanophotosensitizers have sensitivity against ROS and showed triggered Ce6 release behavior. ChitoPEG-PBAP nanophotosensitizers can be more efficiently internalized into cancer cells compared to Ce6 alone and then produce ROS in a more efficient manner. Furthermore, ChitoPEG-PBAP nanophotosensitizers suppressed the viability of cancer cells in vitro and tumor growth in vivo with higher efficacy compared to Ce6 alone. Furthermore, ChitoPEG-PBAP nanophotosensitizers were efficiently delivered to irradiated tumor tissues, indicating that ChitoPEG-PBAP nanophotosensitizers can be delivered to the tumor with ROS-sensitive manner. We suggest that a ChitoPEG-PBAP nanophotosensitizer is a promising candidate for photodynamic therapy of cancers.
Collapse
Affiliation(s)
- Young-Il Jeong
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam 50612, Republic of Korea. These authors equally contributed to this work
| | | | | | | | | | | | | |
Collapse
|
49
|
Tanaka Y, Murayama Y, Matsumoto T, Kubo H, Harada K, Matsuo H, Kubota T, Okamoto K, Otsuji E. Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy in a mouse model of esophageal cancer. Oncol Lett 2020; 20:82. [PMID: 32863915 PMCID: PMC7436933 DOI: 10.3892/ol.2020.11943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 07/02/2020] [Indexed: 12/29/2022] Open
Abstract
5-Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is a minimally invasive therapeutic modality used in the management of various cancers, but to a lesser extent for esophageal cancer (EC). The current study investigated the antitumor effects of ALA-PDT. Human EC cells were treated with ALA, after which ALA-induced fluorescence was examined under a fluorescence microscope. The cytotoxic effects of ALA-PDT were assessed using three types of LEDs (blue, green and red) in vitro and in vivo. Subcutaneous tumor model mice was constructed with KYSE150 cells. ALA-PDT was performed once a week for 4 weeks and tumor weights were measured. A popliteal lymph node (PLN) metastasis murine model was generated using KYSE150 cells. KYSE150 cells were inoculated into the left footpad of nude mice. ALA-PDT was performed on the footpad once a week for 4 weeks. PLNs were then removed 3 weeks after the last treatment. The lymph nodes were evaluated by hematoxylin and eosin staining. Red fluorescence of protoporphyrin IX (PpIX) was observed in all EC cell lines. ALA-PDT using LEDs exerted significant antitumor effects in vitro and in vivo. The antitumor effects of ALA-PDT with blue LED were the strongest, followed by green and red LEDs. The number of metastasized PLNs was significantly smaller in the ALA-PDT group (0%) than in the control group (37.5%). The present results indicated that ALA-PDT is effective for EC.
Collapse
Affiliation(s)
- Yoshihiro Tanaka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Tatsuya Matsumoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Hidemasa Kubo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Kyoichi Harada
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Hisataka Matsuo
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 6028566, Japan
| |
Collapse
|
50
|
Clinical application of the mirror irradiation technique in photodynamic therapy for malignant glioma. Photodiagnosis Photodyn Ther 2020; 31:101956. [PMID: 32818648 DOI: 10.1016/j.pdpdt.2020.101956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Intraoperative photodynamic therapy (PDT) using talaporfin sodium for malignant glioma is effective both in the experimental and in the clinical setting. Because the irradiation unit is fixed to the objective lens of the operating microscope, blind spots for irradiation exist. To overcome this problem, we developed a mirror reflecting system using a modified dental mirror. METHODS The developed mirror is made of stainless steel, has a mirror-polished surface, and is rhodium coated on 1 side, which is the reflecting surface. The reflection rate was measured using He-Ne laser irradiation. The reflection intensity was measured using a laser power meter when the incident angle to the mirror was changed to 60°, 45°, and 30°, and the reflectance was calculated by the direct received light intensity from the laser. After confirming the safety of the fundamental experiment, PDT was performed with this developed mirror on 9 patients with malignant glioma (4 with recurrence and 5 newly diagnosed). RESULTS The energy efficiency of the mirror was approximately 70 %, and apparent irregular reflection was not observed. Even during clinical use, apparent complications, such as irregular reflection, did not occur upon using the mirror in any of the patients. In all patients, recurrence did not occur in the site where mirror irradiation was performed, but in a deep site or a distant site to which sufficient laser irradiation did not reach. CONCLUSION PDT using our newly developed mirror involves few instrumental changes compared with the conventional irradiation method, and is effective, safe, and inexpensive.
Collapse
|