1
|
Hattori Y, Seifert R. Pharmacological Characterization of Human Histamine Receptors and Histamine Receptor Mutants in the Sf9 Cell Expression System. Handb Exp Pharmacol 2017; 241:63-118. [PMID: 28233175 PMCID: PMC7120522 DOI: 10.1007/164_2016_124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A large problem of histamine receptor research is data heterogeneity. Various experimental approaches, the complex signaling pathways of mammalian cells, and the use of different species orthologues render it difficult to compare and interpret the published results. Thus, the four human histamine receptor subtypes were analyzed side-by-side in the Sf9 insect cell expression system, using radioligand binding assays as well as functional readouts proximal to the receptor activation event (steady-state GTPase assays and [35S]GTPγS assays). The human H1R was co-expressed with the regulators of G protein signaling RGS4 or GAIP, which unmasked a productive interaction between hH1R and insect cell Gαq. By contrast, functional expression of the hH2R required the generation of an hH2R-Gsα fusion protein to ensure close proximity of G protein and receptor. Fusion of hH2R to the long (GsαL) or short (GsαS) splice variant of Gαs resulted in comparable constitutive hH2R activity, although both G protein variants show different GDP affinities. Medicinal chemistry studies revealed profound species differences between hH1R/hH2R and their guinea pig orthologues gpH1R/gpH2R. The causes for these differences were analyzed by molecular modeling in combination with mutational studies. Co-expression of the hH3R with Gαi1, Gαi2, Gαi3, and Gαi/o in Sf9 cells revealed high constitutive activity and comparable interaction efficiency with all G protein isoforms. A comparison of various cations (Li+, Na+, K+) and anions (Cl-, Br-, I-) revealed that anions with large radii most efficiently stabilize the inactive hH3R state. Potential sodium binding sites in the hH3R protein were analyzed by expressing specific hH3R mutants in Sf9 cells. In contrast to the hH3R, the hH4R preferentially couples to co-expressed Gαi2 in Sf9 cells. Its high constitutive activity is resistant to NaCl or GTPγS. The hH4R shows structural instability and adopts a G protein-independent high-affinity state. A detailed characterization of affinity and activity of a series of hH4R antagonists/inverse agonists allowed first conclusions about structure/activity relationships for inverse agonists at hH4R. In summary, the Sf9 cell system permitted a successful side-by-side comparison of all four human histamine receptor subtypes. This chapter summarizes the results of pharmacological as well as medicinal chemistry/molecular modeling approaches and demonstrates that these data are not only important for a deeper understanding of HxR pharmacology, but also have significant implications for the molecular pharmacology of GPCRs in general.
Collapse
Affiliation(s)
- Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Hannover, Germany
| |
Collapse
|
2
|
Werner K, Neumann D, Buschauer A, Seifert R. No evidence for histamine H4 receptor in human monocytes. J Pharmacol Exp Ther 2014; 351:519-26. [PMID: 25273276 DOI: 10.1124/jpet.114.218107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The histamine H4 receptor (H4R) is a classic pertussis toxin-sensitive Gi protein-coupled receptor that mediates increases in intracellular calcium concentration ([Ca(2+)]i). The presence of H4R in human eosinophils has been rigorously documented by several independent groups. It has also been suggested that H4R is expressed in human monocytes, but this suggestion hinges in part on H4R antibodies with questionable specificity. This situation prompted us to reinvestigate H4R expression in human monocytes. As positive control, we studied human embryonic kidney 293T cells stably expressing the human H4R (hH4R). In these cells, histamine (HA) and the H4R agonist UR-PI376 (2-cyano-1-[4-(1H-imidazol-4-yl)butyl]-3-[(2-phenylthio)ethyl]guanidine) induced pertussis toxin-sensitive [Ca(2+)]i increases. However, in quantitative real-time polymerase chain reaction studies we failed to detect hH4R mRNA in human monocytes and U937 promonocytes. In human monocytes, ATP and N-formyl-l-methionyl-l-leucyl-l-phenylalanine increased [Ca(2+)]i, but HA, UR-PI376, and 5-methylhistamine (a dual H4R/H2 receptor agonist) did not. In U937 promonocytes and differentiated U937 cells, HA increased [Ca(2+)]i, but this increase was mediated via HA H1 receptor. In conclusion, there is no evidence for the presence of H4R in human monocytes.
Collapse
Affiliation(s)
- Kristin Werner
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
| | - Detlef Neumann
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
| | - Armin Buschauer
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany (K.W., D.N., R.S.); and Department of Pharmaceutical and Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (A.B.)
| |
Collapse
|
3
|
Schneider EH, Schnell D, Papa D, Seifert R. High constitutive activity and a G-protein-independent high-affinity state of the human histamine H(4)-receptor. Biochemistry 2009; 48:1424-38. [PMID: 19166345 DOI: 10.1021/bi802050d] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human histamine H(4)-receptor (hH(4)R) is expressed in mast cells and eosinophils and mediates histamine (HA)-induced chemotaxis via G(i)-proteins. For a detailed investigation of hH(4)R/G(i)-protein interaction, we coexpressed the hH(4)R with Galpha(i2) and Gbeta(1)gamma(2) as well as an hH(4)R-Galpha(i2) fusion protein with Gbeta(1)gamma(2) in Sf9 insect cells. The agonist radioligand [(3)H]HA showed a K(D) value of approximately 10 nM at hH(4)R and hH(4)R-Galpha(i2). The high-affinity states of hH(4)R and hH(4)R-Galpha(i2) were insensitive to guanosine 5'-[gamma-thio]triphosphate (GTPgammaS). The affinity of [(3)H]HA for hH(4)R was retained in the absence of mammalian G(i)-proteins. In steady-state GTPase- and [(35)S]GTPgammaS-binding assays, hH(4)R exhibited high constitutive activity and uncommon insensitivity to Na(+). Thioperamide (THIO) was only a partial inverse agonist. Addition of HA or THIO to baculovirus-infected (hH(4)R + Galpha(i2) + Gbeta(1)gamma(2)) Sf9 cells increased the B(max) in [(3)H]HA binding, but not in immunoblots, suggesting conformational instability and ligand-induced stabilization of membrane-integrated hH(4)R. No effect was observed on hH(4)R-Galpha(i2) expression, neither in [(3)H]HA binding nor in immunoblot. However, the expression level of hH(4)R-Galpha(i2) was consistently higher compared to hH(4)R, suggesting chaperone-like or stabilizing effects of Galpha(i2) on hH(4)R. In 37 degrees C stability assays, HA stabilized hH(4)R, and THIO even restored misfolded [(3)H]HA binding sites. Inhibition of hH(4)R glycosylation by tunicamycin reduced the [(3)H]HA binding B(max) value. In conclusion, (i) hH(4)R shows high constitutive activity and structural instability; (ii) hH(4)R shows a G-protein-independent high-affinity state; (iii) hH(4)R conformation is stabilized by agonists, inverse agonists and G-proteins; (iv) hH(4)R glycosylation is essential for cell-surface expression of intact hH(4)R.
Collapse
Affiliation(s)
- Erich H Schneider
- Department of Pharmacology and Toxicology, University of Regensburg, Universitatsstrasse 31, D-93040 Regensburg, Germany.
| | | | | | | |
Collapse
|
4
|
Zemann B, Urtz N, Reuschel R, Mechtcheriakova D, Bornancin F, Badegruber R, Baumruker T, Billich A. Normal neutrophil functions in sphingosine kinase type 1 and 2 knockout mice. Immunol Lett 2007; 109:56-63. [PMID: 17292973 DOI: 10.1016/j.imlet.2007.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 12/30/2006] [Accepted: 01/10/2007] [Indexed: 01/02/2023]
Abstract
Sphingosine kinase (SPHK) has been implicated as an important element in neutrophil responses to diverse stimulatory agents. To get more insight into the role of the type 1 and 2 isoforms of SPHK in neutrophil functions, we made use of the respective SPHK knockout mice. Neutrophils isolated from the bone marrow of these mice showed normal increase of intracellular Ca(2+) when stimulated in vitro by fMLP, platelet-activating factor, the anaphylatoxin C5a, or ATP, and normal migration towards fMLP and C5a. Also, recruitment of neutrophils into the peritoneum towards the chemokines KC and MIP-2 or to LPS, and into the peripheral blood after fMLP injection was similar in SPHK knockout strains and wild-type animals. An in vivo model of bacterial lung infection revealed an accelerated progression of disease in SPHK2 (but not SPHK1) knockout mice as compared to wild-type controls. However, effector functions of SPHK-deficient neutrophils, such as superoxide production, beta-glucuronidase release and their capacity to kill bacteria were unchanged as compared to wild-type cells. To conclude, the data derived from SPHK knockout mice do not support the hypothesis that any of the two lipid kinases plays a crucial role in signalling downstream of various neutrophil stimuli; SPHKs appear not to be essential for neutrophil recruitment and effector functions.
Collapse
Affiliation(s)
- Barbara Zemann
- Novartis Institutes for BioMedical Research, Vienna, Brunnerstrasse 59, A-1235 Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bours MJL, Swennen ELR, Di Virgilio F, Cronstein BN, Dagnelie PC. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 2006; 112:358-404. [PMID: 16784779 DOI: 10.1016/j.pharmthera.2005.04.013] [Citation(s) in RCA: 776] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/07/2023]
Abstract
Human health is under constant threat of a wide variety of dangers, both self and nonself. The immune system is occupied with protecting the host against such dangers in order to preserve human health. For that purpose, the immune system is equipped with a diverse array of both cellular and non-cellular effectors that are in continuous communication with each other. The naturally occurring nucleotide adenosine 5'-triphosphate (ATP) and its metabolite adenosine (Ado) probably constitute an intrinsic part of this extensive immunological network through purinergic signaling by their cognate receptors, which are widely expressed throughout the body. This review provides a thorough overview of the effects of ATP and Ado on major immune cell types. The overwhelming evidence indicates that ATP and Ado are important endogenous signaling molecules in immunity and inflammation. Although the role of ATP and Ado during the course of inflammatory and immune responses in vivo appears to be extremely complex, we propose that their immunological role is both interdependent and multifaceted, meaning that the nature of their effects may shift from immunostimulatory to immunoregulatory or vice versa depending on extracellular concentrations as well as on expression patterns of purinergic receptors and ecto-enzymes. Purinergic signaling thus contributes to the fine-tuning of inflammatory and immune responses in such a way that the danger to the host is eliminated efficiently with minimal damage to healthy tissues.
Collapse
Affiliation(s)
- M J L Bours
- Maastricht University, Department of Epidemiology, Nutrition and Toxicology Research Institute Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
6
|
Sak K, Boeynaems JM, Everaus H. Involvement of P2Y receptors in the differentiation of haematopoietic cells. J Leukoc Biol 2003; 73:442-7. [PMID: 12660218 DOI: 10.1189/jlb.1102561] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effects of extracellular nucleotides are mediated by multiple P2X ionotropic receptors and G protein-coupled P2Y receptors. These receptors are ubiquitous, but few physiological roles have been firmly identified. In this review article, we present a survey of the functional expression of P2Y receptors in the different haematopoietic lineages by analyzing the selectivity of these cells for the various adenine and uracil nucleotides as well as the second messenger signaling pathways involved. The pharmacological profiles of metabotropic nucleotide receptors are different among myeloid, megakaryoid, erythroid, and lymphoid cells and change during differentiation. A role of P2Y receptors in the differentiation and maturation of blood cells has been proposed: In particular the P2Y(11)receptor seems to be involved in the granulocytic differentiation of promyelocytes and in the maturation of monocyte-derived dendritic cells. It is suggested that the role of P2Y receptors in the maturation of blood cells may be more important than believed so far.
Collapse
Affiliation(s)
- Katrin Sak
- Hematology-Oncology Clinic, University of Tartu, Estonia.
| | | | | |
Collapse
|
7
|
Pooyan S, Qiu B, Chan MM, Fong D, Sinko PJ, Leibowitz MJ, Stein S. Conjugates bearing multiple formyl-methionyl peptides display enhanced binding to but not activation of phagocytic cells. Bioconjug Chem 2002; 13:216-23. [PMID: 11906258 PMCID: PMC3907943 DOI: 10.1021/bc0100657] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Formyl-methionyl peptides can specifically bind to surface receptors on phagocytic cells. A single copy of N-formyl-methionine-leucine-phenylalanine (fMLF) covalently linked to a poly(ethylene glycol)-based polymer displayed reduced binding avidity (K(d) = 190 nM) for differentiated HL-60 cells relative to free fMLF (K(d) = 28 nM). Increasing the number of fMLF residues (up to eight) attached to a single polymer results in enhanced avidity for these cells (K(d) = 0.18 nM), which appears to be independent of whether the polymer backbone is linear or branched. However, no conjugate showed enhanced ability to activate phagocytic cells, relative to the free peptide (EC(50) = 5 nM), as measured by transient stimulation of release of calcium ions from intracellular stores into the cytoplasm. A polymer bearing four fMLF and four digoxigenin residues showed specific enhancement in binding to differentiated HL-60 cells and mouse peritoneal macrophages in situ relative to a polymer lacking fMLF; no such enhancement was seen in binding to receptor-negative lymphocytic Jurkat cells. These results suggest that multiple fMLF residues linked to a drug-delivery polymer can be used to target appended drugs to phagocytic cells with relatively little toxicity due to cellular activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stanley Stein
- Address correspondence to this author at the Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854. Phone: 732-235-5319. Fax: 732-235-4850.
| |
Collapse
|
8
|
Alemany R, Meyer zu Heringdorf D, van Koppen CJ, Jakobs KH. Formyl peptide receptor signaling in HL-60 cells through sphingosine kinase. J Biol Chem 1999; 274:3994-9. [PMID: 9933590 DOI: 10.1074/jbc.274.7.3994] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine-1-phosphate (SPP) produced from sphingosine by sphingosine kinase has recently been reported to act as intracellular second messenger for a number of plasma membrane receptors. In the present study, we investigated whether the sphingosine kinase/SPP pathway is involved in cellular signaling of the Gi protein-coupled formyl peptide receptor in myeloid differentiated human leukemia (HL-60) cells. Receptor activation resulted in rapid and transient production of SPP by sphingosine kinase, which was abolished after pertussis toxin treatment. Direct activation of heterotrimeric G proteins by AlF4- also rapidly increased SPP formation in intact HL-60 cells. In cytosolic preparations of HL-60 cells, sphingosine kinase activity was stimulated by the stable GTP analog, guanosine 5'-O-(3-thiotriphosphate). Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,N-dimethylsphingosine did not affect phospholipase C stimulation and superoxide production but markedly inhibited receptor-stimulated Ca2+ mobilization and enzyme release. We conclude that the formyl peptide receptor stimulates through Gi-type G proteins SPP production by sphingosine kinase, that the enzyme is also stimulated by direct G protein activation, and that the sphingosine kinase/SPP pathway apparently plays an important role in chemoattractant signaling in myeloid differentiated HL-60 cells.
Collapse
Affiliation(s)
- R Alemany
- Institut für Pharmakologie, Universitätsklinikum Essen, D-45122 Essen, Germany
| | | | | | | |
Collapse
|
9
|
Klinker JF, Seifert R, Damm H, Rommelspacher H. Activation by beta-carbolines of G-proteins in HL-60 membranes and the bovine retinal G-protein transducin in a receptor-independent manner. Biochem Pharmacol 1997; 53:1621-6. [PMID: 9264314 DOI: 10.1016/s0006-2952(97)00065-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Naturally occurring beta-carbolines are lipophilic compounds which show psychotropic and physiological effects in mammals. They bind to distinct high-affinity binding sites in various mammalian tissues. However, the mechanism by which the beta-carbolines affect transmembrane signal transduction processes is still unknown. Since beta-carbolines are cationic-amphiphilic substances and since such substances are known to activate heterotrimeric regulatory guanine nucleotide binding proteins (G-proteins) in a receptor-independent manner, we put forward the hypothesis that beta-carbolines act directly on G-proteins. Therefore, we investigated the ability of beta-carbolines to stimulate high-affinity GTP hydrolysis in membranes of dibutyryl-cAMP differentiated HL-60 cells and of the purified bovine G-protein, transducin (TD). The beta-carbolines norharman and harman, stimulated the GTPase in HL-60 membranes with an EC50 of 410 microM and 450 microM, respectively, and a maximum effect at 1 mM each. Norharman and harman stimulated the GTPase of TD with an EC50 of 60 microM and 300 microM, and a maximum at 1 mM for both compounds. The stimulatory effect of norharman in HL-60 membranes was pertussis toxin-sensitive. Structure/activity characteristics of the beta-carbolines showed a specificity of norharman to stimulate the GTPase of TD, because norharman activated GTP hydrolysis in HL-60 membranes approximately 7 times less potently than that of TD. Norharman was a five-fold more potent activator of TD than tetrahydronorharman. Hydroxylation of the beta-carboline molecule in position 6 led to a loss of GTPase-activating properties. Our data suggest that naturally occurring beta-carbolines are a novel class of receptor-independent G-protein activating substances. This mechanism could contribute to their diverse biological effects.
Collapse
Affiliation(s)
- J F Klinker
- Howard Hughes Medical Institute, Beckman Center for Molecular and Genetic Medicine, Stanford University Medical Center, CA 94305, USA
| | | | | | | |
Collapse
|
10
|
Burde R, Dippel E, Seifert R. Receptor-independent G protein activation may account for the stimulatory effects of first-generation H1-receptor antagonists in HL-60 cells, basophils, and mast cells. Biochem Pharmacol 1996; 51:125-31. [PMID: 8615880 DOI: 10.1016/0006-2952(95)02123-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The first-generation histamine H1-receptor antagonists, chlorpheniramine (CPHE) and diphenhydramine (DPH), may activate histamine release from basophils and mast cells. Because CPHE and DPH are cationic-amphiphilic and because several substances with such physicochemical properties activate heterotrimeric regulatory guanine nucleotide-binding proteins (G-proteins) in a receptor-independent manner, we asked the question of whether or not H1-receptor antagonists could be G-protein activators as well. In dibutyryl cAMP-differentiated HL-60 cells, CPHE and DPH increased cytosolic Ca2+ concentration and azurophilic granule release in pertussis toxin (PTX)-sensitive manners. In HL-60 membranes, PTX-sensitive stimulations of GTPase [E.C. 3.6.1.] and binding of guanosine 5'-[gamma-thio]triphosphate by H1 receptor antagonists were observed. CPHE and DPH also increased GTP hydrolysis by the purified PTX-sensitive G-protein, transducin. In all-trans-retinoic acid-differentiated HL-60 cells and rat basophilic leukemia cells (RBL 2H3 cells), H1-receptor antagonists induced, unlike in dibutyryl cAMP-differentiated HL-60 cells, Ca2+ influx without Ca2+ mobilization from intracellular stores. CPHE and DPH also induced serotonin release from RBL 2H3 cells. Our data indicate that first-generation H1-receptor antagonists are receptor-independent G-protein activators and that such a mechanism of action accounts for their stimulatory effects in HL-60 cells, basophils, and mast cells.
Collapse
Affiliation(s)
- R Burde
- Institut für Pharmakologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
11
|
Gallois A, Bueb JL, Tschirhart E. Endothelin-1 does not modulate O2.release and [Ca(2+)]i variations in resting or differentiated HL-60 cells. Fundam Clin Pharmacol 1996; 10:28-32. [PMID: 8900497 DOI: 10.1111/j.1472-8206.1996.tb00146.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endothelin-1 (ET-1) by itself was not an effective stimulus for inducing superoxide (O2.) generation in human resting or DMSO-differentiated neutrophil-like HL-60 cells. ET-1 (0.01-100 nM) was not able to modulate O2. generation stimulated by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP, EC50 = 4.24 +/- 1.63 nM in the absence and 3.16 +/- 1.95 nM in the presence of ET-1). Neither did ET-1 (0.01-100 nM) promote the mobilization of intracellular calcium ions or modulate fMLP-induced [Ca(2+)]i increase in this model of human neutrophils. Phosphoramidon, a neutral endopeptidase inhibitor, was not able to reveal any biological (O2.) or biochemical ([Ca(2+)]i response to ET-1 in the absence or in the presence of fMLP in these cells. These results indicate that DMSO-differentiated neutrophil-like HL-60 cells are not sensitive to ET-1 in terms of O2. generation or [Ca(2+)]i variations.
Collapse
Affiliation(s)
- A Gallois
- Neuroimmunologie et Inflammation, Centre de Recherche Public de la Santé, Luxembourg
| | | | | |
Collapse
|
12
|
Klinker JF, Schwaner I, Offermanns S, Hagelüken A, Seifert R. Differential activation of dibutyryl cAMP-differentiated HL-60 human leukemia cells by chemoattractants. Biochem Pharmacol 1994; 48:1857-64. [PMID: 7986196 DOI: 10.1016/0006-2952(94)90583-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dibutyryl cAMP-differentiated HL-60 human leukemia cells possess receptors for the chemoattractants N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), C5a and leukotriene B4 (LTB4). We compared the effects of these chemoattractants in HL-60 membranes and in intact HL-60 cells. fMLP, C5a and LTB4 stimulated GTP hydrolysis and guanosine 5'-O-[3-thio]triphosphate (GTP[gamma S]) binding in HL-60 membranes with similar effectiveness and in a pertussis toxin (PTX)-sensitive manner. They also stimulated photolabeling of the alpha-subunits of the guanine nucleotide-binding proteins (G-proteins), Gi2 and Gi3 with similar effectiveness. Chloride salts of monovalent cations differentially enhanced and inhibited chemoattractant-induced GTP hydrolyses. C5a was less effective than fMLP in enhancing cholera toxin-catalysed ADP-ribosylation of Gi alpha 2 and Gi alpha 3, and LTB4 was ineffective. fMLP was more effective than C5a and LTB4 in stimulating Ca2+ influx in HL-60 cells. C5a- and LTB4-induced rises in cytosolic Ca2+ concentration ([Ca2+]i) were PTX-sensitive, whereas the effect of fMLP was partially PTX-insensitive. LTB4-induced rises in [Ca2+]i were more sensitive towards homologous desensitization than those induced by C5a, and the effect of fMLP was resistant in this regard. C5a was considerably less effective than fMLP in activating superoxide anion formation and azurophilic granule release, and LTB4 was ineffective. Our data suggest that fMLP, C5a and LTB4 effectively activate the G-proteins, Gi2 and Gi3, in HL-60 cells and that fMLP may additionally activate PTX-insensitive G-proteins. fMLP, C5a and LTB4 are full, partial and incomplete secretagogues, respectively, and these differences may be due to differences in homologous receptor desensitization and qualitative Gi-protein activation.
Collapse
Affiliation(s)
- J F Klinker
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
13
|
Seifert R, Grünbaum L, Schultz G. Histamine H1-receptors in HL-60 monocytes are coupled to Gi-proteins and pertussis toxin-insensitive G-proteins and mediate activation of Ca2+ influx without concomitant Ca2+ mobilization from intracellular stores. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1994; 349:355-61. [PMID: 8058107 DOI: 10.1007/bf00170880] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The results of binding studies suggest the presence of histamine H1-receptors in human monocytes, but it is not known whether these receptors are functionally active. This prompted us to study the effects of histamine (HA) on cytosolic Ca2+ concentration ([Ca2+]i) and superoxide anion (O2-) formation in HL-60 cells differentiated towards monocytes with 1 alpha,25-dihydroxycholecalciferol. In HL-60 monocytes, HA increased [Ca2+]i with a half-maximal effect at 8 microM and a maximum at 30-100 microM. Pertussis toxin (PTX) partially inhibited the stimulatory effects of HA on [Ca2+]i. Betahistine, a weak partial H1-receptor agonist, also increased [Ca2+]i, whereas H2- and H3-receptor agonists were ineffective. H1- but not H2- and H3-receptor antagonists inhibited HA-induced rises in [Ca2+]i. HA-induced rises in [Ca2+]i were desensitized in a homologous manner and were also inhibited by the activator of protein kinase C, 4 beta-phorbol 12-myristate 13-acetate. Various protein kinase C inhibitors did not interfere with homologous desensitization. The stimulatory effects of HA on [Ca2+]i were completely dependent on the presence of extracellular Ca2+ and were inhibited by the blocker of non-selective cation (NSC) channels, 1-(beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenethyl)-1 H-imidazole hydrochloride (SK & F 96365). HA was much less effective than the chemotactic peptide, N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), to induce rises in [Ca2+]i. Unlike fMLP, HA did not activate O2- formation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Seifert
- Institut für Pharmakologie, Universitätsklinikum Rudolf Virchow, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
14
|
Abstract
Hypersecretion of insulin increases the chance of the incidence of diabetes type I and II, while inhibiting insulin secretion helps prevent diabetes. Trace elements like zinc and vanadium prevent hyperinsulinemia, partly because of their own insulin activity, which is also a property of interleukin-1 (IL-1), particularly during periods of illness and stress. Like vanadium, IL-1 can replace insulin for many hours and regulate glucose metabolism. Vanadium, zinc and IL-1 ensure that insulin-producing beta-cells in the pancreas do not lose too much zinc, which leaves the beta-cells together with insulin. Zinc forms a complex with metallothionein in beta-cells that provides protection against free (oxygen) radicals, which become active during immune responses triggered by bacteria and viruses, for instance. In addition, zinc is the only non-toxic trace element in the body that regulates concentration-dependent immune responses on many levels. Avoiding deficiencies of trace elements will enable the reduction of the incidence of diabetes.
Collapse
|
15
|
Krautwurst D, Seifert R, Hescheler J, Schultz G. Formyl peptides and ATP stimulate Ca2+ and Na+ inward currents through non-selective cation channels via G-proteins in dibutyryl cyclic AMP-differentiated HL-60 cells. Involvement of Ca2+ and Na+ in the activation of beta-glucuronidase release and superoxide production. Biochem J 1992; 288 ( Pt 3):1025-35. [PMID: 1281979 PMCID: PMC1131990 DOI: 10.1042/bj2881025] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In human neutrophils, the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) induces increases in the intracellular free Ca2+ concentration ([Ca2+]i) with subsequent activation of beta-glucuronidase release and superoxide (O2-) production. Results from several laboratories suggest that the increase in [Ca2+]i is due to activation of non-selective cation (NSC) channels. We studied the biophysical characteristics, pharmacological modulation and functional role of NSC channels in dibutyryl cyclic AMP (Bt2cAMP)-differentiated HL-60 cells. fMLP increased [Ca2+]i by release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. fMLP also induced Mn2+ influx. Ca2+ and Mn2+ influxes were inhibited by 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SK&F 96365). Under whole-cell voltage-clamp conditions, fMLP and ATP (a purinoceptor agonist) activated inward currents characterized by a linear current-voltage relationship and a reversal potential near 0 mV. NSC channels were substantially more permeable to Na+ than to Ca2+. SK&F 96365 inhibited fMLP- and ATP-stimulated currents with a half-maximal effect at about 3 microM. Pertussis toxin prevented stimulation by fMLP of NSC currents and reduced ATP-stimulated currents by about 80%. Intracellular application of the stable GDP analogue, guanosine 5'-O-[2-thio]diphosphate, completely blocked stimulation by agonists of NSC currents. In excised inside-out patches, single channel openings with an amplitude of 0.24 pA were observed in the presence of fMLP and the GTP analogue, guanosine 5'-O-[3-thio]triphosphate. The bath solution contained neither Ca2+ nor ATP. The current/voltage relationship was linear with a conductance of 4-5 pS and reversed at about 0 mV. fMLP-induced beta-glucuronidase release and O2- production were substantially reduced by replacement of extracellular CaCl2 or NaCl by ethylenebis(oxyethylenenitrilo)tetra-acetic acid and choline chloride respectively. In the absence of Ca2+ and Na+, fMLP was ineffective. SK&F 96365 inhibited fMLP-induced beta-glucuronidase release and O2- production in the presence of both Ca2+ and Na+, and in the presence of Ca2+ or Na+ alone. NaCl (25-50 mM) enhanced the basal and absolute extent of fMLP-stimulated GTP hydrolysis of heterotrimeric regulatory G-proteins in HL-60 membranes. The order of effectiveness of salts in enhancing GTP hydrolysis was LiCl > KCl > NaCl > choline chloride.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D Krautwurst
- Institut für Pharmakologie, Freie Universität Berlin, Federal Republic of Germany
| | | | | | | |
Collapse
|
16
|
Seifert R, Serke S, Huhn D, Bessler WG, Hauschildt S, Metzger J, Wismüller KH, Jung G. Incomplete functional differentiation of HL-60 leukemic cells by synthetic lipopeptides. Partial inhibition by pertussis toxin of enhanced superoxide formation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 203:143-51. [PMID: 1309696 DOI: 10.1111/j.1432-1033.1992.tb19839.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In human neutrophils, the synthetic lipopeptide, N-palmitoyl-S-[2,3- bis(palmitoyloxy-(2RS)-propyl]-(R)-cysteinyl-(S)-seryl-(S)-lysyl-( S)-lysyl-(S) -lysyl-(S)-lysine [Pam3CysSer(Lys)4], activates NADPH-oxidase catalyzed superoxide (O2-) formation through pertussis-toxin-sensitive and pertussis-toxin-insensitive mechanisms (Seifert, R., Schultz, G., Richter-Freund, M., Metzger, J., Wiesmüller, K.-H., Jung, G., Bessler, W. G. & Hauschildt, S. (1990) Biochem. J. 267, 795-802). We studied the effects of lipopeptides on differentiation of HL-60 leukemic cells. Pam3CysSer(Lys)4 enhanced phorbol-12-myristate-13-acetate-induced O2- formation (presumably through the expression of components of NADPH oxidase) in a concentration-dependent manner with a half-maximal effect at 100 ng/ml and a maximum at 1 microgram/ml. The effect of the lipopeptide was evident after 24 h and reached a plateau after 48 h. (2S,6S)-2-Palmitoylamino-6,7- bis(palmitoyloxy)heptanoyl-(S)-seryl-(S)-lysyl-(S)-lysyl-(S) -lysyl-(S)-lysine enhanced O2- formation as well. The effects of Pam3CysSer(Lys)4 were potentiated by dibutyryl cAMP, dimethyl sulfoxide, retinoic acid, 1,25-dihydroxyvitamin D3, interferon-gamma and tumor-necrosis-factor-alpha. Pertussis toxin, but not its B-oligomer, partially inhibited enhanced O2- formation induced by Pam3CysSer(Lys)4. O2- formation induced by arachidonic acid and gamma-hexachlorocyclohexane were more sensitive to inhibition by pertussis toxin than O2- formation induced by phorbol 12-myristate 13-acetate. Enhanced O2- formation induced by dibutyryl cAMP was not affected by pertussis toxin. Unlike ATP, histamine, prostaglandin E1 and the beta-adrenergic agonist, isoproterenol, Pam3CysSer(Lys)4 did not increase cytosolic Ca2+ [( Ca2+]i) in undifferentiated HL-60 cells. Histamine but not lipopeptides stimulated high-affinity GTPase of guanine-nucleotide-binding proteins in membranes of undifferentiated HL-60 cells. In Pam3CysSer(Lys)4-differentiated HL-60 cells, the responsiveness to the [Ca2+]i-increasing agonists, N-formyl-L-methionyl-L-leucyl-L-phenylalanine, C5a and leukotriene B4, was increased, whilst the responsiveness to prostaglandin E1 and isoproterenol was decreased. Pam3CysSer(Lys)4 did not inhibit proliferation of HL-60 cells but decreased transferrin receptor expression and increased C3bi receptor expression. Pertussis toxin did not affect proliferation and expression of transferrin and C3bi receptors. Dibutyryl cAMP was considerably more effective than Pam3CysSer(Lys)4 at inducing alterations in the above parameters. Our results suggest that (a) Pam3CysSer(Lys)4 induces incomplete functional differentiation of HL-60 cells through a mechanism which does not depend on a rise in [Ca2+]i and is different from that of other differentiation-inducing substances and (b) the mechanism by which Pam3CysSer(Lys)4 induces differentiation involves pertussis-toxin-sensitive and pertussis-toxin-insensitive mechanisms.
Collapse
Affiliation(s)
- R Seifert
- Institut für Pharmakologie, Universitätsklinikum Rudolf Virchow, Freie Universität Berlin, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Schwaner I, Seifert R, Schultz G. Receptor-mediated increases in cytosolic Ca2+ in the human erythroleukaemia cell line involve pertussis toxin-sensitive and -insensitive pathways. Biochem J 1992; 281 ( Pt 2):301-7. [PMID: 1310589 PMCID: PMC1130683 DOI: 10.1042/bj2810301] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The pluripotent human erythroleukaemia cell line, HEL, possesses erythrocytic, megakaryocytic and macrophage-like properties. With respect to signal transduction, HEL cells have been used as a model system for platelets, but little attention has been paid to their phagocytic properties. We studied the effects of various receptor agonists on the intracellular free Ca2+ concentration ([Ca2+]i) in HEL cells. Thrombin, platelet-activating factor (PAF), ATP, UTP, prostaglandins E1 and E2 (PGE1 and PGE2), the PGE2 analogue sulprostone and the stable PGI2 analogues iloprost and cicaprost increased [Ca2+]i. ADP was less effective than ATP, and UDP was unable to increase [Ca2+]i. The increases in [Ca2+]i induced by thrombin, PAF, ATP, UTP, iloprost and cicaprost were pertussis toxin-insensitive, whereas the increases induced by PGE2 and sulprostone were completely inhibited by the toxin. The increase in [Ca2+]i induced by PGE1 was partially inhibited by pertussis toxin. PGE2 did not desensitize the increase in [Ca2+]i induced by iloprost, and vice versa. PGE1 desensitized the response to PGE2 and iloprost but not vice versa. Adrenaline potentiated the iloprost- but not the PGE2-induced rise in [Ca2+]i. The phorbol ester phorbol 12-myristate 13-acetate completely blocked the rise in [Ca2+]i induced by ATP and PGE1, whereas the increases induced by thrombin and PAF were only partially inhibited. Agonists increased [Ca2+]i through release from internal stores and sustained Ca2+ influx. Thrombin stimulated Mn2+ influx, which was blocked by Ni2+. Diltiazem, isradipine, gramicidin and 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SK&F 96365) did not affect agonist-induced rises in [Ca2+]i. HEL cells contained substantial amounts of beta-glucuronidase which, however, could not be released, and they did not aggregate or generate superoxide. Our data suggest that: (1) HEL cells possess nucleotide receptors with properties similar to those of phagocytes; (2) they possess receptors for PGE2 and PGI2, and PGE1 is an agonist at both receptors; (3) agonist-induced increases in [Ca2+]i are mediated through pertussis toxin-sensitive as well as -insensitive signal transduction pathways; and (4) agonists increase [Ca2+]i by mobilization from internal stores and influx from the extracellular space through cation channels with properties similar to those of phagocytes and platelets.
Collapse
Affiliation(s)
- I Schwaner
- Institut für Pharmakologie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|