1
|
Bastounis E, Álvarez-González B, del Álamo JC, Lasheras JC, Firtel RA. Cooperative cell motility during tandem locomotion of amoeboid cells. Mol Biol Cell 2016; 27:1262-71. [PMID: 26912787 PMCID: PMC4831880 DOI: 10.1091/mbc.e15-12-0836] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/08/2016] [Indexed: 01/11/2023] Open
Abstract
Tandem pairs of Dictyostelium cells migrate synchronously with an ~54-s time delay between the formation of their frontal protrusions. Each cell establishes two active adhesions, with the trailing cell reusing the location of the adhesions of the leading cell. This coordinated motility is mechanically driven and aided by cell–cell adhesions. Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions.
Collapse
Affiliation(s)
- Effie Bastounis
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380
| | - Begoña Álvarez-González
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0380
| | - Juan C del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0380
| | - Juan C Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0380 Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093-0380
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380
| |
Collapse
|
2
|
McCann CP, Rericha EC, Wang C, Losert W, Parent CA. Dictyostelium cells migrate similarly on surfaces of varying chemical composition. PLoS One 2014; 9:e87981. [PMID: 24516575 PMCID: PMC3916393 DOI: 10.1371/journal.pone.0087981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/01/2014] [Indexed: 11/18/2022] Open
Abstract
During cell migration, cell-substrate binding is required for pseudopod anchoring to move the cell forward, yet the interactions with the substrate must be sufficiently weak to allow parts of the cell to de-adhere in a controlled manner during typical protrusion/retraction cycles. Mammalian cells actively control cell-substrate binding and respond to extracellular conditions with localized integrin-containing focal adhesions mediating mechanotransduction. We asked whether mechanotransduction also occurs during non-integrin mediated migration by examining the motion of the social amoeba Dictyostelium discoideum, which is thought to bind non-specifically to surfaces. We discovered that Dictyostelium cells are able to regulate forces generated by the actomyosin cortex to maintain optimal cell-surface contact area and adhesion on surfaces of various chemical composition and that individual cells migrate with similar speed and contact area on the different surfaces. In contrast, during collective migration, as observed in wound healing and metastasis, the balance between surface forces and protrusive forces is altered. We found that Dictyostelium collective migration dynamics are strongly affected when cells are plated on different surfaces. These results suggest that the presence of cell-cell contacts, which appear as Dictyostelium cells enter development, alter the mechanism cells use to migrate on surfaces of varying composition.
Collapse
Affiliation(s)
- Colin P. McCann
- Department of Physics, University of Maryland College Park, College Park, Maryland, United States of America
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Erin C. Rericha
- Department of Physics, University of Maryland College Park, College Park, Maryland, United States of America
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Chenlu Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
- Biophysics Graduate Program, University of Maryland, College Park, Maryland, United States of America
| | - Wolfgang Losert
- Department of Physics, University of Maryland College Park, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
3
|
Kriebel PW, Barr VA, Rericha EC, Zhang G, Parent CA. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. ACTA ACUST UNITED AC 2008; 183:949-61. [PMID: 19047467 PMCID: PMC2592838 DOI: 10.1083/jcb.200808105] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemoattractant signaling induces the polarization and directed movement of cells secondary to the activation of multiple effector pathways. In addition, chemotactic signals can be amplified and relayed to proximal cells via the synthesis and secretion of additional chemoattractant. The mechanisms underlying such remarkable features remain ill defined. We show that the asymmetrical distribution of adenylyl cyclase (ACA) at the back of Dictyostelium discoideum cells, an essential determinant of their ability to migrate in a head-to-tail fashion, requires vesicular trafficking. This trafficking results in a local accumulation of ACA-containing intracellular vesicles and involves intact actin, microtubule networks, and de novo protein synthesis. We also show that migrating cells leave behind ACA-containing vesicles, likely secreted as multivesicular bodies and presumably involved in the formation of head-to-tail arrays of migrating cells. We propose that similar compartmentalization and shedding mechanisms exist in mammalian cells during embryogenesis, wound healing, neuron growth, and metastasis.
Collapse
Affiliation(s)
- Paul W Kriebel
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
4
|
Uchida KSK, Yumura S. Dynamics of novel feet of Dictyostelium cells during migration. J Cell Sci 2004; 117:1443-55. [PMID: 15020673 DOI: 10.1242/jcs.01015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We observed the dynamics of actin foci in live Dictyostelium cells expressing GFP-actin. Actin foci were dynamic structures, but they were fixed on the substratum during cell migration. Interference reflection microscopy revealed that the ventral cell membrane was closer to the substratum at sites of actin foci. Furthermore, some actin foci were incorporated into the retraction fibers, ripped off from the cells and eventually shed on the substratum after the cells moved away. The velocity of the cells was inversely proportional to the number of actin foci. Measurement of traction force using a silicone substratum demonstrated that the traction force was transmitted to the substratum through actin foci. Taken together, several lines of evidence strongly suggest that actin foci function as the active `feet' of Dictyostelium cells. We also found evidence suggesting that changing step is regulated in a coordinated manner during cell migration. Possible mechanisms by which these cells migrate across substrata are discussed in this context.
Collapse
Affiliation(s)
- Kazuhiko S K Uchida
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | |
Collapse
|
5
|
Uchida KSK, Kitanishi-Yumura T, Yumura S. Myosin II contributes to the posterior contraction and the anterior extension during the retraction phase in migrating Dictyostelium cells. J Cell Sci 2003; 116:51-60. [PMID: 12456715 DOI: 10.1242/jcs.00195] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cells must exert force against the substrate to migrate. We examined the vectors (both the direction and the magnitude) of the traction force generated by Dictyostelium cells using an improved non-wrinkling silicone substrate. During migration, the cells showed two 'alternate' phases of locomotory behavior, an extension phase and a retraction phase. In accordance with these phases, two alternate patterns were identified in the traction force. During the extension phase, the cell exerted a 'pulling force' toward the cell body in the anterior and the posterior regions and a 'pushing force' in the side of the cell (pattern 1). During the retraction phase, the cell exerted a 'pushing force' in the anterior region, although the force disappeared in the side and the posterior regions of the cell (pattern 2). Myosin II heavy chain null cells showed a single pattern in their traction force comparable to 'pattern 1', although they still had the alternate biphasic locomotory behavior similar to the wild-type cells. Therefore, the generation of 'pushing force' in the anterior and the cancellation of the traction force in the side and the posterior during the retraction phase were deficient in myosin knock-out mutant cells, suggesting that these activities depend on myosin II via the posterior contraction. Considering all these results, we hypothesized that there is a highly coordinated, biphasic mechanism of cell migration in Dictyostelium.
Collapse
Affiliation(s)
- Kazuhiko S K Uchida
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | | | |
Collapse
|