Diffusion tensor imaging abnormalities of the trigeminal nerve root in patients with classical trigeminal neuralgia: a pre- and postoperative comparative study 4 years after microvascular decompression.
Acta Neurochir (Wien) 2019;
161:1415-1425. [PMID:
31049710 DOI:
10.1007/s00701-019-03913-5]
[Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/13/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND
As diffusion tensor imaging (DTI) is able to assess tissue integrity, authors used diffusion to detect abnormalities in trigeminal nerves (TGN) in patients with trigeminal neuralgia (TN) caused by neurovascular compression (NVC) who had undergone microvascular decompression (MVD). The authors also studied anatomical TGN parameters (cross-sectional area [CSA] and volume [V]). The study compared pre- and postoperative findings.
METHODS
Using DTI sequencing on a 3-T MRI scanner, we measured the fraction of anisotropy (FA) and apparent diffusion coefficient (ADC) of the TGN in 10 patients who had undergone MVD for TN and in 6 normal subjects. We compared data between affected and unaffected nerves in patients and both nerves in normal subjects (controls). We then correlated these data with CSA and V. Data from the affected side and the unaffected side before and 4 years after MVD were compared.
RESULTS
Before MVD, the FA of the affected side (0.37 ± 0.03) was significantly lower (p < 0.05) compared to the unaffected side in patients (0.48 ± 0.03) and controls (0.52 ± 0.02), and the ADC in the affected side (5.6 ± 0.34 mm2/s) was significantly higher (p < 0.05) compared to the unaffected side in patients (4.26 ± 0.25 mm2/s) and controls (3.84 ± 0.18 mm2/s). Affected nerves had smaller V and CSA compared to unaffected nerves and controls (p < 0.05). After MVD, the FA in the affected side (0.41 ± 0.02) remained significantly lower (p < 0.05) compared to the unaffected side (0.51 ± 0.02), but the ADC in the affected side (4.24 ± 0.34 mm2/s) had become similar (p > 0.05) to the unaffected side (4.01 ± 0.33 mm2/s).
CONCLUSIONS
DTI revealed a loss of anisotropy and an increase in diffusivity in affected nerves before surgery. Diffusion alterations correlated with atrophic changes in patients with TN caused by NVC. After removal of the compression, the loss of FA remained, but ADC normalized in the affected nerves, suggesting improvement in the diffusion of the trigeminal root.
Collapse