Whedon M, Perry NB, Bell MA. Relations between frontal EEG maturation and inhibitory control in preschool in the prediction of children's early academic skills.
Brain Cogn 2020;
146:105636. [PMID:
33197766 PMCID:
PMC7754531 DOI:
10.1016/j.bandc.2020.105636]
[Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
Abstract
Maturation of the prefrontal cortex (PFC) across the first few years of life is thought to underlie the emergence of inhibitory control (IC) abilities, which may play an important role in children's early academic success. In this growth curve modeling study (N = 364), we assessed developmental change in children's resting-state electroencephalogram (EEG) activity (6-9 Hz 'alpha' power) from 10 months to 4 years and examined whether the initial levels or amount of change in frontal alpha power were associated with children's IC at age 4 and indirectly academic skills at age 6. Results indicated that greater increases in frontal alpha power across the study period were associated with better IC, and indirectly with better performance on Woodcock-Johnson tests of reading and math achievement at age 6. Similar associations between change in EEG and age 4 vocabulary were observed but did not mediate an association with academic skills. Similar analyses with posterior alpha power showed no associations with IC. Findings underscore the significance of frontal lobe maturation from infancy to early childhood for children's intellectual development.
Collapse