1
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Zarif H, Petit-Paitel A, Heurteaux C, Chabry J, Guyon A. TRH modulates glutamatergic synaptic inputs on CA1 neurons of the mouse hippocampus in a biphasic manner. Neuropharmacology 2016; 110:69-81. [PMID: 27060411 DOI: 10.1016/j.neuropharm.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/08/2016] [Accepted: 04/05/2016] [Indexed: 11/26/2022]
Abstract
Thyrotropin Releasing Hormone (TRH) is a tripeptide that induces the release of Thyroid Stimulating Hormone (TSH) in the blood. Besides its role in the thyroid system, TRH has been shown to regulate several neuronal systems in the brain however its role in hippocampus remains controversial. Using electrophysiological recordings in acute mouse brain slices, we show that TRH depresses glutamate responses at the CA3-CA1 synapse through an action on NMDA receptors, which, as a consequence, decreases the ability of the synapse to establish a long term potentiation (LTP). TRH also induces a late increase in AMPA/kainate responses. Together, these results suggest that TRH plays an important role in the modulation of hippocampal neuronal activities, and they contribute to a better understanding of the mechanisms by which TRH impacts synaptic function underlying emotional states, learning and memory processes.
Collapse
Affiliation(s)
- Hadi Zarif
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Agnès Petit-Paitel
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Catherine Heurteaux
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Joëlle Chabry
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France
| | - Alice Guyon
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, CNRS, Université de Nice-Sophia Antipolis, F-06560, Valbonne, France.
| |
Collapse
|
3
|
Gutiérrez-Mariscal M, de Gortari P, López-Rubalcava C, Martínez A, Joseph-Bravo P. Analysis of the anxiolytic-like effect of TRH and the response of amygdalar TRHergic neurons in anxiety. Psychoneuroendocrinology 2008; 33:198-213. [PMID: 18079066 DOI: 10.1016/j.psyneuen.2007.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/16/2022]
Abstract
Thyrotropin-releasing hormone (TRH) was first described for its neuroendocrine role in controlling the hypothalamus-pituitary-thyroid axis (HPT). Anatomical and pharmacological data evidence its participation as a neuromodulator in the central nervous system. Administration of TRH induces various behavioural effects including arousal, locomotion, analepsy, and in certain paradigms, it reduces fear behaviours. In this work we studied the possible involvement of TRHergic neurons in anxiety tests. We first tested whether an ICV injection of TRH had behavioural effects on anxiety in the defensive burying test (DBT). Corticosterone serum levels were quantified to evaluate the stress response and, the activity of the HPT axis to distinguish the endocrine response of TRH injection. Compared to a saline injection, TRH reduced cumulative burying, and decreased serum corticosterone levels, supporting anxiolytic-like effects of TRH administration. The response of TRH neurons was evaluated in brain regions involved in the stress circuitry of animals submitted to the DBT and to the elevated plus maze (EPM), tests that allow to correlate biochemical parameters with anxiety-like behaviour. In the DBT, the response of Wistar rats was compared with that of the stress-hypersensitive Wistar Kyoto (WKY) strain. Behavioural parameters were analysed in recorded videos. Animals were sacrificed 30 or 60min after test completion. In various limbic areas, the relative mRNA levels of TRH, its receptors TRH-R1 and -R2, and its inactivating ectoenzyme pyroglutamyl peptidase II (PPII), were determined by RT-PCR, TRH tissue content by radioimmunoassay (RIA). The extent of the stress response was evaluated by measuring the expression profile of CRH, CRH-R1 and GR mRNA in the paraventricular nucleus (PVN) of the hypothalamus and in amygdala, corticosterone levels in serum. As these tests demand increased physical activity, the response of the HPT axis was also evaluated. Both tasks increased the levels of serum corticosterone. WKY rats showed higher anxiety-like behaviour in the DBT than Wistar, as well as increased PVN mRNA levels of CRH and GR. TRH mRNA levels increased in the PVN and TSH values remained unchanged in both strains although TRH content decreased in the medial basal hypothalamus of Wistar rats only. TRH content was measured in several limbic regions but only amygdala showed specific task-related changes after DBT exposure of both strains: increased TRH content. Expression of TRH mRNA decreased in the amygdala of Wistar, suggesting inhibition of TRHergic neuronal activity in this region. The participation of amygdalar TRH neurons in anxiety was confirmed in the EPM where TRH expression and release correlated with the number of entries, and the % of time spent in open arms, supporting an anxiolytic role of these TRH-neurons. These results contribute to the understanding of the involvement of TRH during emotionally charged situations and shed light on the participation of particular circuits in related behaviours.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Mariscal
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, A.P. 510-3, Cuernavaca, MOR 62210, México
| | | | | | | | | |
Collapse
|
4
|
Baraban SC, Tallent MK. Interneuron Diversity series: Interneuronal neuropeptides--endogenous regulators of neuronal excitability. Trends Neurosci 2004; 27:135-42. [PMID: 15036878 DOI: 10.1016/j.tins.2004.01.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interneurons are often classified according to neuropeptide content. However, it is becoming increasingly clear that neuropeptides are more than convenient neurochemical markers and can act as important modulators of neuronal activity. Recent advances in understanding neuropeptide release and physiological actions suggest that the interneuronal system of neuropeptides is crucial for maintaining appropriate brain function under normal and pathophysiological conditions. In particular, interneuronal neuropeptides appear to play roles in cognition and as endogenous anti-epileptic agents. This article describes current understanding of the conditions under which neuropeptides are released from interneurons, their specific effects on neuronal excitability and synaptic transmission, and the consequences of their loss of function.
Collapse
Affiliation(s)
- Scott C Baraban
- Department of Neurological Surgery and PIBS Graduate Program in Neuroscience, University of California, San Francisco, CA 94143-0520, USA
| | | |
Collapse
|
5
|
Little HJ, Clark A, Watson WP. Investigations into pharmacological antagonism of general anaesthesia. Br J Pharmacol 2000; 129:1755-63. [PMID: 10780983 PMCID: PMC1572016 DOI: 10.1038/sj.bjp.0703262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The effects of convulsant drugs, and of thyrotropin releasing hormone (TRH), were examined on the general anaesthetic actions of ketamine, ethanol, pentobarbitone and propofol in mice. The aim was to investigate the possibility of selective antagonism, which, if seen, would provide information about the mechanism of the anaesthesia. The general anaesthetic effects of ketamine were unaffected by bicuculline; antagonism was seen with 4-aminopyridine and significant potentiation with 300 mg kg(-1) NMDLA (N-methyl-DL-aspartate). The calcium agonist, Bay K 8644, potentiated the anaesthesia produced by ketamine and antagonism of such anaesthesia was seen with TRH. A small, but significant, antagonism of the general anaesthesia produced by ethanol was seen with bicuculline, and a small, significant, potentiation with 4-aminopyridine. There was an antagonist effect of TRH, but no effect of NMDLA. Potentiation of the anaesthetic effects of pentobarbitone was seen with NMDLA and with 4-aminopyridine and the lower dose of bicuculline (2.7 mg kg(-1)) also caused potentiation. There was no significant change in the ED(50) value for pentobarbitone anaesthesia with TRH. Bicuculline did not alter the anaesthetic actions of propofol, while potentiation was seen with NMDLA and 4-aminopyridine. TRH had no significant effect on propofol anaesthetic, but Bay K 8644 at 1 mg kg(-1) significantly potentiated the anaesthesia. These results suggest that potentiation of GABA(A) transmission or inhibition of NMDA receptor-mediated transmission do not appear to play a major role in the production of general anaesthesia by the agents used.
Collapse
Affiliation(s)
- H J Little
- Drug Dependence Unit, Psychology Department, Durham University, South Road, Durham DH1 3LE
| | | | | |
Collapse
|
6
|
Oshiro Y, Sakurai Y, Sato S, Kurahashi N, Tanaka T, Kikuchi T, Tottori K, Uwahodo Y, Miwa T, Nishi T. 3,4-dihydro-2(1H)-quinolinone as a novel antidepressant drug: synthesis and pharmacology of 1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-3,4- dihydro-5-methoxy-2(1H)-quinolinone and its derivatives. J Med Chem 2000; 43:177-89. [PMID: 10649973 DOI: 10.1021/jm980333v] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop a novel antidepressant drug with central nervous system-stimulating activity, we prepared a series of 1-[omega-(4-substituted phenyl-1-piperazinyl)alkyl]-3, 4-dihydro-2(1H)-quinolinone derivatives and examined their activities by their effects at 30 and 100 mg/kg po on the sleeping time of mice anesthetized with halothane and on the time required for recovery from coma induced in mice by cerebral concussion. We examined their binding affinities for sigma receptors by evaluating their ability to inhibit [(3)H]-1,3-di(o-tolyl)guanidine ([(3)H]DTG) binding to the rat whole brain membrane in comparison with three putative sigma receptor agonists: 1,3-di(o-tolyl)guanidine (DTG, 66), (+)-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2, 6-methano-3-benzazecin-8-ol (SKF10,047, 67), and (+)-1,2,3,4,5, 6-hexahydro-6,11-dimethyl-3-(3-methyl-2-butenyl)-2, 6-methano-3-benzazecin-8-ol (pentazocine, 68). Among the series of derivatives, 1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-3, 4-dihydro-5-methoxy-2(1H)-quinolinone hydrochloride (34b) and its mesylate (34c), at a dose of 30 mg/kg po, reduced the sleeping time and the time for recovery from coma and they inhibited [(3)H]DTG binding for sigma receptors. The putative sigma receptor agonists reduced the sleeping time and the time for recovery from coma whereas two sigma receptor antagonists, alpha-(4-fluorophenyl)-4-(5-fluoro-2-pyrimidinyl)-1-piperazinebutanol hydrochloride (BMY14802, 69) and cis-9-[3-(3, 5-dimethyl-1-piperazinyl)propyl]carbazole dihydrochloride (rimcazole, 70), were inactive in the two tests. Preadministration of the putative sigma receptor antagonists 69 (3 mg/kg po) and 70 (30 mg/kg po) completely antagonized the actions of 34b and the sigma receptor agonists in the test for recovery from coma. These results suggested that 34b and 34c are sigma receptor agonists. Furthermore, a single administration of 1 and 10 mg/kg po 34b and 34c showed antidepressant-like activity by reducing the immobility time in the forced-swimming test with mice, while a tricyclic antidepressant, 10, 11-dihydro-N,N-dimethyl-5H-dibenz[b,f]azepine-5-propanamine hydrochloride (imipramine, 1) (10 and 30 mg/kg po), did not reduce the time after a single administration. 1 reduced the time after repeated administration of 30 mg/kg po once a day for 4 days. The structure-activity relationship of the series of compounds is also discussed.
Collapse
Affiliation(s)
- Y Oshiro
- Otsuka Pharmaceutical Company Ltd., Third Tokushima Institute of New Drug Research, 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Thyrotropin-releasing hormone inhibits long-term potentiation in synaptic systems of rat hippocampus. Bull Exp Biol Med 1999. [DOI: 10.1007/bf02434834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Burgunder JM, Heyberger B, Lauterburg T. Thalamic reticular nucleus parcellation delineated by VIP and TRH gene expression in the rat. J Chem Neuroanat 1999; 17:147-52. [PMID: 10609863 DOI: 10.1016/s0891-0618(99)00033-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The distribution of the mRNAs encoding VIP (vasoactive intestinal peptide) and TRH (thyrotropin releasing hormone) was examined in the thalamic reticular nucleus of the adult rat using hybridization histochemistry with S35-labeled oligoprobes. Low levels of TRH expression were found in a medial tier. High levels of VIP expression were found in neurons located in a lateral shell of the same portion. High levels of TRH expression were found in a tier located dorsally and in a tier located ventrally to the first one. In these regions no VIP expression could be detected. These data suggest a parcellation of this nucleus according to the differential expression patterns of TRH and VIP.
Collapse
Affiliation(s)
- J M Burgunder
- Department of Neurology, University of Bern, Switzerland.
| | | | | |
Collapse
|
9
|
Imamura M, Yamada M, Mori M, Prasad C. Thyrotropin releasing hormone stimulation of GABA-gated but not basal chloride ion influx in rat cerebellum. Peptides 1999; 20:1375-9. [PMID: 10612454 DOI: 10.1016/s0196-9781(99)00145-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Potential interaction between gamma-amino butyric acid (GABA) and thyrotropin-releasing hormone (TRH) in eliciting a variety of central nervous system (CNS)-related biologic activities is well known; however, the mechanism underlying this interaction is not clearly defined. To gain further insight into this interaction, we examined the effects of TRH and two of its central nervous system selective analogs, DN 1417 and TA 0910, on basal and GABA-mediated chloride ion influx into rat cerebellar neurosynaptosomes. The results of these studies show that TRH may facilitate GABA action by augmenting chloride ion influx and hyperpolarization of cerebellar neurons.
Collapse
Affiliation(s)
- M Imamura
- Department of Medicine, Louisiana State University Medical Center, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
10
|
Shishido Y, Furushiro M, Tanabe S, Shibata S, Hashimoto S, Yokokura T. Effects of prolyl endopeptidase inhibitors and neuropeptides on delayed neuronal death in rats. Eur J Pharmacol 1999; 372:135-42. [PMID: 10395093 DOI: 10.1016/s0014-2999(99)00185-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigated the effects of the prolyl endopeptidase inhibitors 1-[1-(Benzyloxycarbonyl)-L-prolyl]prolinal (Z-Pro-Prolinal) and N-benzyloxycarbonyl-thioprolyl-thioprolinal-dimethylaceta l (ZTTA) on delayed neuronal death induced by four-vessel-occlusion transient ischemia in rats. We also examined the effects of [pGlu4, Cyt6, ArgS]vasopressin (vasopressin-(4-9)) and thyrotropin-releasing hormone (TRH) on the delayed neuronal death. Furthermore, we investigated the role of vasopressin receptors in the effects of vasopressin and prolyl endopeptidase inhibitors. Z-Pro-Prolinal, vasopressin-(4-9) and TRH protected pyramidal cells in the CA1 subfield of the rat hippocampus from delayed neuronal death after 10-min ischemia. The effect of vasopressin-(4-9) was abolished by vasopressin receptor antagonists. The effect of Z-Pro-Prolinal was also abrogated by the antagonists. These results suggest that the neuroprotective effect of prolyl endopeptidase inhibitors is mediated by neuropeptides such as [Arg8]vasopressin and TRH, and indicate the involvement of vasopressin receptors in the neuroprotective effect of vasopressin-(4-9) and prolyl endopeptidase inhibitors.
Collapse
Affiliation(s)
- Y Shishido
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Melnick IV, Chvanov MA, Belan PV. Rat hippocampal neurons maintain their own GABAergic synaptic transmission in culture. Neurosci Lett 1999; 262:151-4. [PMID: 10218878 DOI: 10.1016/s0304-3940(99)00079-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The whole-cell patch-clamp technique was used to record monosynaptic inhibitory postsynaptic currents (IPSCs) from pairs of hippocampal neurons cultured for 2-3 weeks. The application of fresh physiological solution for 2-3 min reversibly reduced the amplitude of evoked GABAergic IPSCs to 72.5% of control value. The amplitude and frequency of spontaneous IPSCs decreased too. The depression of evoked IPSCs was significantly smaller or absent if conditioned solution was applied (physiological solution which had been previously in contact with neurons for 30 min). Currents evoked by exogenously applied GABA were unaffected by fresh solution. These results suggest that hippocampal neurons release some endogenous substance(s), by which they up regulate presynaptically their own inhibitory synaptic transmission.
Collapse
Affiliation(s)
- I V Melnick
- Department of General Physiology of Nervous System, Bogomoletz Institute of Physiology, National Academy of Sciences, Kiev, Ukraine.
| | | | | |
Collapse
|
12
|
Pan W, Kastin AJ, Banks WA, Zadina JE. Effects of peptides: a cross-listing of peptides and their central actions published in the journal Peptides from 1994 through 1998. Peptides 1999; 20:1127-38. [PMID: 10499432 DOI: 10.1016/s0196-9781(99)00109-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effects of peptides on the central nervous system are presented in two ways so as to provide a cross-listing. In the first table, the peptides are listed alphabetically. In the second table, the central nervous system effects are arranged alphabetically. No longer can there be any doubt that peptides affect the central nervous system, sometimes in several ways.
Collapse
Affiliation(s)
- W Pan
- VA Medical Center and Tulane University School of Medicine, Neuroscience Training Program and Department of Medicine, New Orleans, LA 70112-1262, USA.
| | | | | | | |
Collapse
|
13
|
Kouznetsova M, Nistri A. Modulation by substance P of synaptic transmission in the mouse hippocampal slice. Eur J Neurosci 1998; 10:3076-84. [PMID: 9786202 DOI: 10.1046/j.1460-9568.1998.00318.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The modulatory action of substance P on synaptic transmission of CA1 neurons was studied using intra- or extracellular recording from the mouse hippocampal slice preparation. Bath-applied substance P (2-4 microM) or the selective NK1 receptor agonist substance P methylester (SPME, 10 nM-5 microM) depressed field potentials (recorded from stratum pyramidale) evoked by focal stimulation of Schaffer collaterals. This effect was apparently mediated via NK1 receptors since it was completely blocked by the selective NK1 antagonist SR 140333. The field potential depression by SPME was significantly reduced in the presence of bicuculline. Intracellular recording from CA1 pyramidal neurons showed that evoked excitatory postsynaptic potentials (EPSPs) and evoked inhibitory postsynaptic potentials (IPSPs) were similarly depressed by SPME, which at the same time increased the frequency of spontaneous GABAergic events and reduced that of spontaneous glutamatergic events. The effects of SPME on spontaneous and evoked IPSPs were prevented by the ionotropic glutamate receptor blocker kynurenic acid. In tetrodotoxin (TTX) solution, no change in either the frequency of spontaneous GABAergic and glutamatergic events or in the amplitude of responses of pyramidal neurons to 4 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or 10 microM N-methyl-D-aspartate (NMDA) was observed. On the same cells, SPME produced minimal changes in passive membrane properties unable to account for the main effects on synaptic transmission. The present data indicate that SPME exerted its action on CA1 pyramidal neurons via a complex network mechanism, which is hypothesized to involve facilitation of a subset of GABAergic neurons with widely distributed connections to excitatory and inhibitory cells in the CA1 area.
Collapse
Affiliation(s)
- M Kouznetsova
- Biophysics Sector and INFM Unit, International School for Advanced Studies (SISSA), Trieste, Italy
| | | |
Collapse
|
14
|
Abstract
This brief review will discuss the recent literature on several of the central actions of TRH and its analogs. The most prominent of these actions include: (1) the arousal or analeptic effect in drug narcotized animals or in concussion models; (2) the reversal of cognitive deficits produced by various drugs or procedures, and (3) the improvement of several neurological deficits produced in animal models of spinal and/or cerebellar injury. The mediation of these TRH effects by neurotransmitters is discussed. While little has been published on the human neuropsychopharmacology of TRH, and especially of its analogs, the future holds considerable therapeutic promise for these interesting drugs.
Collapse
Affiliation(s)
- A Horita
- Department of Pharmacology, University of Washington School of Medicine, Seattle 98195, USA
| |
Collapse
|
15
|
Barbieri M, Nistri A. Effects of the neuropeptide thyrotropin-releasing hormone on GABAergic synaptic transmission of CA1 neurons of the rat hippocampal slice during hypoxia. Peptides 1997; 18:585-91. [PMID: 9210179 DOI: 10.1016/s0196-9781(96)00330-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Because thyrotropin-releasing hormone (TRH) has been suggested to improve recovery of brain neurons from hypoxia, which strongly impairs GABAergic synaptic transmission, the present electrophysiological study used intracellular recording from CA1 neurons of the rat hippocampal slice to examine the cellular mechanisms underlying this phenomenon. Hypoxia induced by superfusion with a medium devoid of oxygen evoked typical membrane hyperpolarization, fall in input resistance, and strong depression of monosynaptic, GABAA receptor-mediated fast inhibitory postsynaptic potentials (IPSPs). The depression of fast IPSPs during hypoxia was found to be due to a combination of factors such as shift in the IPSP reversal potential and membrane hyperpolarization. GABAB receptor-mediated slow IPSPs were comparatively less sensitive to hypoxia. TRH (10 microM), applied 1 min prior to hypoxia, selectively accelerated recovery of membrane potential and delayed return of fast IPSPs to control amplitude without changing the mechanisms responsible for depression of GABAergic transmission. In conclusion, despite a slower recovery of IPSPs, TRH facilitated earlier return of neuronal excitability after the hypoxic period.
Collapse
Affiliation(s)
- M Barbieri
- Biophysics Sector, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
| | | |
Collapse
|