1
|
Vujosevic S, Limoli C, Kozak I. Hallmarks of aging in age-related macular degeneration and age-related neurological disorders: novel insights into common mechanisms and clinical relevance. Eye (Lond) 2025; 39:845-859. [PMID: 39289517 PMCID: PMC11933422 DOI: 10.1038/s41433-024-03341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Age-related macular degeneration (AMD) and age-related neurological diseases (ANDs), such as Alzheimer's and Parkinson's Diseases, are increasingly prevalent conditions that significantly contribute to global morbidity, disability, and mortality. The retina, as an accessible part of the central nervous system (CNS), provides a unique window to study brain aging and neurodegeneration. By examining the associations between AMD and ANDs, this review aims to highlight novel insights into fundamental mechanisms of aging and their role in neurodegenerative disease progression. This review integrates knowledge from the emerging field of aging research, which identifies common denominators of biological aging, specifically loss of proteostasis, impaired macroautophagy, mitochondrial dysfunction, and inflammation. Finally, we emphasize the clinical relevance of these pathways and the potential for cross-disease therapies that target common aging hallmarks. Identifying these shared pathways could open avenues to develop therapeutic strategies targeting mechanisms common to multiple degenerative diseases, potentially attenuating disease progression and promoting the healthspan.
Collapse
Affiliation(s)
- Stela Vujosevic
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
- Eye Clinic, IRCCS MultiMedica, Milan, Italy.
| | - Celeste Limoli
- Eye Clinic, IRCCS MultiMedica, Milan, Italy
- University of Milan, Milan, Italy
| | - Igor Kozak
- Moorfields Eye Hospital Centre, Abu Dhabi, UAE
- Ophthalmology and Vision Science, University of Arizona, Tucson, USA
| |
Collapse
|
2
|
Song BX, Jiang G, Wong M, Gallagher D, MacIntosh BJ, Andreazza AC, Beroncal EL, Black SE, Herrmann N, Charles J, Gao F, Kiss A, Marotta G, Lanctôt KL. Neuroimaging meets neurophysiology: vascular endothelial growth factor and regional cerebral blood flow in early Alzheimer's disease. J Neurophysiol 2025; 133:924-929. [PMID: 39951673 DOI: 10.1152/jn.00604.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025] Open
Abstract
Angiogenesis may play an important role in the pathophysiology of Alzheimer's disease (AD). Previous in vitro and in vivo studies suggest a link between angiogenesis and cerebral blood flow (CBF) in AD; however, this has never been studied clinically. In this sample of study participants with early AD (n = 15), serum vascular endothelial growth factor (VEGF), an angiogenesis biomarker, was negatively associated with regional CBF (rCBF) in the angular gyrus even after bootstrapping at a repetition of 5,000 and controlling for age, sex, and diagnosis (β = -0.015, SE = 0.006, P = 0.02, f2 = 0.27, Pbootstrapped = 0.049). Sex-stratified subgroup analyses showed a strong negative correlation between rCBF in the angular gyrus and log-VEGF in males (n = 7; r = -0.78, P = 0.04), but not in females (n = 8; r = -0.16, P = 0.7). These results support an association between angiogenesis and CBF in early AD that should be further investigated in longitudinal studies and may have relevance for future therapeutic interventions in AD.NEW & NOTEWORTHY This manuscript supports the findings from previous in vitro and in vivo Alzheimer's disease (AD) studies where angiogenesis was associated with cerebral blood flow (CBF) changes. Using both neuroimaging and neurophysiology measures, this study showed the association between CBF and blood vascular endothelial growth factor (VEGF) in people with early AD, suggesting further investigation into angiogenesis and CBF as potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Bing Xin Song
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guocheng Jiang
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Melissa Wong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Damien Gallagher
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Erika L Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Fuqiang Gao
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alex Kiss
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Giovanni Marotta
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Geriatric Psychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Son KY, Choi YJ, Kim B, Han K, Hwang S, Jung W, Shin DW, Lim DH. Association between Age-Related Macular Degeneration with Visual Disability and Risk of Dementia: A Nationwide Cohort Study. J Am Med Dir Assoc 2025; 26:105392. [PMID: 39642914 DOI: 10.1016/j.jamda.2024.105392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVES To investigate the prospective association between the risk of dementia and age-related macular degeneration (AMD) in patients with related visual disability (VD). DESIGN A nationwide population-based cohort study used authorized data provided by the Korean National Health Insurance Service. SETTING AND PARTICIPANTS A total of 1,788,457 individuals aged >50 years who participated in the Korean National Health Screening Program were enrolled. METHODS From January 2009 to December 2019, participants were tracked for a diagnosis of dementia using registered diagnostic codes from claims data. Participants with VD were defined as those registered in a national disability registration established by the Korean government. The prospective association of AMD and related VD with new-onset dementia was investigated using a multivariate-adjusted Cox proportional hazard model adjusted for age, sex, body mass index, income level, systemic comorbidities, psychiatric diseases, and behavioral factors. RESULTS During the average follow-up period of 9.7 ± 2.16 years, 4260 of 21,384 participants in the AMD cohort and 137,166 of 1,662,319 participants in the control cohort were newly diagnosed with dementia, respectively. Participants diagnosed with AMD showed a higher risk of new-onset dementia than those in the control group in the fully adjusted model [hazard ratio (HR) 1.11, 95% CI 1.07-1.14]. The risk of dementia was higher in participants diagnosed with AMD and associated VD (HR 1.28, 95% CI 1.15-1.43) compared to those without VD (HR 1.09, 95% CI 1.06-1.13). CONCLUSIONS AND IMPLICATIONS A diagnosis of AMD was associated with an increased risk of all-cause dementia and its major subtypes. Close monitoring of cognitive function in patients with AMD, especially those with VD, may help in early detection of all-cause dementia, which could reduce the socioeconomic burden and improve the quality of life of patients.
Collapse
Affiliation(s)
- Ki Young Son
- Department of Ophthalmology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| | - Yong-Jun Choi
- School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Bongseong Kim
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Sungsoon Hwang
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Wonyoung Jung
- Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dong Wook Shin
- Department of Family Medicine and Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Dong Hui Lim
- School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea; Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Zimbone S, Giuffrida ML, Sciacca MFM, Carrotta R, Librizzi F, Milardi D, Grasso G. A VEGF Fragment Encompassing Residues 10-30 Inhibits Aβ1-42 Amyloid Aggregation and Exhibits Neuroprotective Properties Matching the Full-Length Protein. ACS Chem Neurosci 2024; 15:4580-4590. [PMID: 39587417 DOI: 10.1021/acschemneuro.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
The intricate relationship between brain vascular diseases and neurodegeneration has garnered increased attention in the scientific community. With an aging population, the incidence of these two conditions is likely to increase, making it imperative to understand the underlying common molecular mechanisms and unveiling novel avenues for therapy. Prompted by the observation that Aβ peptide aggregation has been implicated in the development of cerebral amyloid angiopathy (CAA) and that elevated concentrations of vascular endothelial growth factor (VEGF) in the cerebrospinal fluid (CSF) have been correlated with less cognitive decline in Alzheimer's disease (AD), we demonstrate that a small peptide (Pep9) encompassing the 10-30 sequence of VEGF exhibits significant ability to inhibit the aggregation of the Aβ1-42 peptide, as well as the formation of toxic oligomers. AFM studies confirmed this inhibitory capacity, which is also paralleled by a significant reduction of the random coil to a beta-sheet conformational transition. Further studies have shown that Pep9 protects differentiated neuroblastoma SH-SY5Y cells from Aβ toxicity, being even more effective than full-length protein in preventing amyloid-induced neuronal death. The use of a control peptide wherein two histidines are substituted with glycines (H11G and H12G) suggests a close relationship between the peptide amino acid sequence and its antiaggregating/neuroprotective activity. Overall, this study provides insight into the role of VEGF in AD and suggests that specific VEGF fragments could be beneficial in the treatment of this condition.
Collapse
Affiliation(s)
- Stefania Zimbone
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - M Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Rita Carrotta
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo 90146, Italy
| | - Fabio Librizzi
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo 90146, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| |
Collapse
|
5
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2024:10.1038/s41577-024-01104-7. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
6
|
Gao R, Luo H, Yan S, Ba L, Peng S, Bu B, Sun X, Zhang M. Retina as a potential biomarker for the early stage of Alzheimer's disease spectrum. Ann Clin Transl Neurol 2024; 11:2583-2596. [PMID: 39120694 PMCID: PMC11514924 DOI: 10.1002/acn3.52172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
OBJECTIVE To characterize the retinal microvasculature and structure in subjective cognitive decline (SCD) and identify the potential biomarker for the early stage of the Alzheimer's disease (AD) spectrum. METHODS In this study, 35 patients with SCD, 36 with cognitive impairment, and 29 with normal cognition (NC) were enrolled. Optical coherence tomography angiography was employed to assess retinal vascular density, fovea avascular zone area, and retinal thickness. The parameters reflecting retinal perfusion and structure were compared among the three groups. In addition, the association between retinal parameters, cerebral blood flow (CBF), and peripheral blood biomarkers in the SCD stage was analyzed. RESULTS The superficial vascular complex (SVC) vascular density in the macula and retinal nerve fiber layer thickness in the peripapillary were significantly reduced in individuals with SCD compared to NC. Furthermore, there was a positive correlation between macular ganglion cell complex thickness and CBF in SCD. INTERPRETATION The retinal microvasculature and structure exhibit alterations in individuals with SCD. Macular ganglion cell complex thickness demonstrates correlations with cerebral perfusion. The retina holds potential as a novel biomarker for early detection of AD.
Collapse
Affiliation(s)
- Rong Gao
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Huan Luo
- Department of Ophthalmology, Southwest Hospital/Southwest Eye HospitalThird Military Medical University (Army Medical University)Chongqing400000China
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Sirui Peng
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030000China
| |
Collapse
|
7
|
Deng H, Zhao J, Li J, Chen C, Hu Z, Wu X, Ge L. Therapeutic Efficacy of Extracellular Vesicles Derived from Stem Cell for Alzheimer's Disease: A Meta-Analysis Study. FRONT BIOSCI-LANDMRK 2024; 29:340. [PMID: 39344329 DOI: 10.31083/j.fbl2909340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) poses a significant public health challenge, increasingly affecting patients' finances, mental health, and functional abilities as the global population ages. Stem cell-derived extracellular vesicles (SC-EVs) have emerged as a promising cell-free therapeutic approach for AD, although their precise mechanisms remain unclear. This meta-analysis aims to evaluate the effectiveness of SC-EVs in treating AD. METHODS We systematically searched PubMed, EMBASE, and Web of Science databases up to December 31, 2023, identifying studies investigating SC-EVs therapy in AD rodent models. Outcome measures included Morris water maze and Y maze tests, β-amyloid pathology, and inflammatory markers. Statistical analyses utilized Stata 15.1 and R software. RESULTS This meta-analysis of 16 studies (2017-2023, 314 animals) demonstrates significant efficacy of SC-EVs therapy in AD models. Pooled analyses demonstrated that SC-EVs therapy significantly increased the learning function as measured by Morris water maze tests (MWM) by -1.83 (95% CI = -2.51 to -1.15, p < 0.0001), Y maze test by 1.66 (95% CI = 1.03 to 2.28, p < 0.0001), decreased Aβ plaques in the hippocampal by -2.10 (95% CI = -2.96 to -1.23, p < 0.0001), and proinflammatory cytokines Tumor necrosis factor alpha (TNFα) by -2.61 (95% CI = -4.87 to -0.35, p < 0.05), Interleukin-1 beta (IL-1β) by -2.37 (95% CI = -3.68 to -1.05, p < 0.001). CONCLUSIONS SC-EVs therapy shows promise in enhancing cognitive function and mitigating AD progression in preclinical models. Future research should focus on standardizing methodologies and comparing SC-EVs isolation techniques and dosing strategies to facilitate clinical translation.
Collapse
Affiliation(s)
- Huiyin Deng
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Jing Zhao
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Jiuyi Li
- Department of Anesthesiology, the Fouth People's Hospital of Changsha, 410006 Changsha, Hunan, China
| | - Chunli Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Xiaomei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
| | - Lite Ge
- Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, 410003 Changsha, Hunan, China
| |
Collapse
|
8
|
Magrì A, Tomasello B, Naletova I, Tabbì G, Cairns WRL, Greco V, Sciuto S, La Mendola D, Rizzarelli E. New BDNF and NT-3 Cyclic Mimetics Concur with Copper to Activate Trophic Signaling Pathways as Potential Molecular Entities to Protect Old Brains from Neurodegeneration. Biomolecules 2024; 14:1104. [PMID: 39334869 PMCID: PMC11430436 DOI: 10.3390/biom14091104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
A low level of Neurotrophins (NTs), their Tyrosine Kinase Receptors (Trks), Vascular Endothelial Growth Factors (VEGFs) and their receptors, mainly VEGFR1 and VEGFR2, characterizes AD brains. The use of NTs and VEGFs as drugs presents different issues due to their low permeability of the blood-brain barrier, the poor pharmacokinetic profile, and the relevant side effects. To overcome these issues, different functional and structural NT mimics have been employed. Being aware that the N-terminus domain as the key domain of NTs for the binding selectivity and activation of Trks and the need to avoid or delay proteolysis, we herein report on the mimicking ability of two cyclic peptide encompassing the N-terminus of Brain Derived Growth Factor (BDNF), (c-[HSDPARRGELSV-]), cBDNF(1-12) and of Neurotrophin3 (NT3), (c-[YAEHKSHRGEYSV-]), cNT3(1-13). The two cyclic peptide features were characterized by a combined thermodynamic and spectroscopic approach (potentiometry, NMR, UV-vis and CD) that was extended to their copper(II) ion complexes. SH-SY5Y cell assays show that the Cu2+ present at the sub-micromolar level in the complete culture media affects the treatments with the two peptides. cBDNF(1-12) and cNT3(1-13) act as ionophores, induce neuronal differentiation and promote Trks and CREB phosphorylation in a copper dependent manner. Consistently, both peptide and Cu2+ stimulate BDNF and VEGF expression as well as VEGF release; cBDNF(1-12) and cNT3(1-13) induce the expression of Trks and VEGFRs.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Irina Naletova
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
| | - Warren R. L. Cairns
- CNR-Institute of Polar Sciences (CNR-ISP), 155 Via Torino, 30172 Venice, Italy;
| | - Valentina Greco
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Sebastiano Sciuto
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research (CNR), P. Gaifami 18, 95126 Catania, Italy; (A.M.); (I.N.); (G.T.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (V.G.); (S.S.)
| |
Collapse
|
9
|
Bernocchi F, Bonomi CG, Assogna M, Moreschini A, Mercuri NB, Koch G, Martorana A, Motta C. Astrocytic-derived vascular remodeling factors are independently associated with blood brain barrier permeability in Alzheimer's disease. Neurobiol Aging 2024; 141:66-73. [PMID: 38823205 DOI: 10.1016/j.neurobiolaging.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Astrocytes in Alzheimer's disease (AD) exert a pivotal role in the maintenance of blood-brain barrier (BBB) integrity essentially through structural support and release of soluble factors. This study provides new insights into the vascular remodeling processes occurring in AD, and reveals, in vivo, a pathological profile of astrocytic secretion involving Vascular Endothelial Growth Factor (VEGF), Matrix Metalloproteinases (MMP)-9, MMP-2 and Endothelin-1 (ET-1). Cerebrospinal fluid (CSF) levels of VEGF, MMP-2/-9 were lower in patients belonging to the AD continuum, compared to aged-matched controls. CSF levels of VEGF and ET-1 positively correlated with MMP-9 but negatively with MMP-2, suggesting a complex vascular remodeling process occurring in AD. Only MMP-2 levels were significantly associated with CSF AD biomarkers. Conversely, higher MMP-2 (β = 0.411, p < 0.001), ET-1 levels (β = 0.344, p < 0.001) and VEGF (β = 0.221, p = 0.022), were associated with higher BBB permeability. Astrocytic-derived vascular remodeling factors are altered in AD, disclosing the failure of important protective mechanisms which proceed independently alongside AD pathology.
Collapse
Affiliation(s)
- Francesca Bernocchi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Chiara Giuseppina Bonomi
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Martina Assogna
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, via Ardeatina 306/354, Rome 00179, Italy
| | - Alessandra Moreschini
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Medicine, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, via Ardeatina 306/354, Rome 00179, Italy; Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, via Fossato di Mortara 17/19, Ferrara 44121, Italy
| | - Alessandro Martorana
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy
| | - Caterina Motta
- UOSD Centro Demenze, Policlinico Tor Vergata, University of Rome "Tor Vergata", viale Oxford 81, Rome 00133, Italy.
| |
Collapse
|
10
|
Yang HS, Yau WYW, Carlyle BC, Trombetta BA, Zhang C, Shirzadi Z, Schultz AP, Pruzin JJ, Fitzpatrick CD, Kirn DR, Rabin JS, Buckley RF, Hohman TJ, Rentz DM, Tanzi RE, Johnson KA, Sperling RA, Arnold SE, Chhatwal JP. Plasma VEGFA and PGF impact longitudinal tau and cognition in preclinical Alzheimer's disease. Brain 2024; 147:2158-2168. [PMID: 38315899 PMCID: PMC11146430 DOI: 10.1093/brain/awae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Vascular dysfunction is increasingly recognized as an important contributor to the pathogenesis of Alzheimer's disease. Alterations in vascular endothelial growth factor (VEGF) pathways have been implicated as potential mechanisms. However, the specific impact of VEGF proteins in preclinical Alzheimer's disease and their relationships with other Alzheimer's disease and vascular pathologies during this critical early period remain to be elucidated. We included 317 older adults from the Harvard Aging Brain Study, a cohort of individuals who were cognitively unimpaired at baseline and followed longitudinally for up to 12 years. Baseline VEGF family protein levels (VEGFA, VEGFC, VEGFD, PGF and FLT1) were measured in fasting plasma using high-sensitivity immunoassays. Using linear mixed effects models, we examined the interactive effects of baseline plasma VEGF proteins and amyloid PET burden (Pittsburgh Compound-B) on longitudinal cognition (Preclinical Alzheimer Cognitive Composite-5). We further investigated if effects on cognition were mediated by early neocortical tau accumulation (flortaucipir PET burden in the inferior temporal cortex) or hippocampal atrophy. Lastly, we examined the impact of adjusting for baseline cardiovascular risk score or white matter hyperintensity volume. Baseline plasma VEGFA and PGF each showed a significant interaction with amyloid burden on prospective cognitive decline. Specifically, low VEGFA and high PGF were associated with greater cognitive decline in individuals with elevated amyloid, i.e. those on the Alzheimer's disease continuum. Concordantly, low VEGFA and high PGF were associated with accelerated longitudinal tau accumulation in those with elevated amyloid. Moderated mediation analyses confirmed that accelerated tau accumulation fully mediated the effects of low VEGFA and partially mediated (31%) the effects of high PGF on faster amyloid-related cognitive decline. The effects of VEGFA and PGF on tau and cognition remained significant after adjusting for cardiovascular risk score or white matter hyperintensity volume. There were concordant but non-significant associations with longitudinal hippocampal atrophy. Together, our findings implicate low VEGFA and high PGF in accelerating early neocortical tau pathology and cognitive decline in preclinical Alzheimer's disease. Additionally, our results underscore the potential of these minimally-invasive plasma biomarkers to inform the risk of Alzheimer's disease progression in the preclinical population. Importantly, VEGFA and PGF appear to capture distinct effects from vascular risks and cerebrovascular injury. This highlights their potential as new therapeutic targets, in combination with anti-amyloid and traditional vascular risk reduction therapies, to slow the trajectory of preclinical Alzheimer's disease and delay or prevent the onset of cognitive decline.
Collapse
Affiliation(s)
- Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Wai-Ying Wendy Yau
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3PT, UK
| | - Bianca A Trombetta
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Can Zhang
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zahra Shirzadi
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jeremy J Pruzin
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, AZ 85006, USA
| | | | - Dylan R Kirn
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation and Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medicine, Rehabilitation Sciences Institute, University of Toronto, Toronto, ON M5G 1V7, Canada
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Dorene M Rentz
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Rudolph E Tanzi
- Harvard Medical School, Boston, MA 02115, USA
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Keith A Johnson
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Steven E Arnold
- Harvard Medical School, Boston, MA 02115, USA
- Alzheimer’s Clinical and Translational Research Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
13
|
Mahzarnia A, Lutz MW, Badea A. A Continuous Extension of Gene Set Enrichment Analysis Using the Likelihood Ratio Test Statistics Identifies Vascular Endothelial Growth Factor as a Candidate Pathway for Alzheimer's Disease via ITGA5. J Alzheimers Dis 2024; 97:635-648. [PMID: 38160360 PMCID: PMC10836573 DOI: 10.3233/jad-230934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) involves brain neuropathologies such as amyloid plaque and hyperphosphorylated tau tangles and is accompanied by cognitive decline. Identifying the biological mechanisms underlying disease onset and progression based on quantifiable phenotypes will help understand disease etiology and devise therapies. OBJECTIVE Our objective was to identify molecular pathways associated with hallmark AD biomarkers and cognitive status, accounting for variables such as age, sex, education, and APOE genotype. METHODS We introduce a pathway-based statistical approach, extending the gene set likelihood ratio test to continuous phenotypes. We first analyzed independently each of the three phenotypes (amyloid-β, tau, cognition) using continuous gene set likelihood ratio tests to account for covariates, including age, sex, education, and APOE genotype. The analysis involved 634 subjects with data available for all three phenotypes, allowing for the identification of common pathways. RESULTS We identified 14 pathways significantly associated with amyloid-β; 5 associated with tau; and 174 associated with cognition, which showed a larger number of pathways compared to biomarkers. A single pathway, vascular endothelial growth factor receptor binding (VEGF-RB), exhibited associations with all three phenotypes. Mediation analysis showed that among the VEGF-RB family genes, ITGA5 mediates the relationship between cognitive scores and pathological biomarkers. CONCLUSIONS We presented a new statistical approach linking continuous phenotypes, gene expression across pathways, and covariates like sex, age, and education. Our results reinforced VEGF RB2's role in AD cognition and demonstrated ITGA5's significant role in mediating the AD pathology-cognition connection.
Collapse
Affiliation(s)
- Ali Mahzarnia
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael W. Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra Badea
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Biomedical Engineering, Duke University, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
14
|
de Gea P, Benkeder S, Bouvet P, Aimard M, Chounlamountri N, Honnorat J, Do LD, Meissirel C. VEGF controls microglial phagocytic response to amyloid-β. Front Cell Neurosci 2023; 17:1264402. [PMID: 38162003 PMCID: PMC10757340 DOI: 10.3389/fncel.2023.1264402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Microglial cells are well known to be implicated in the pathogenesis of Alzheimer's disease (AD), due to the impaired clearance of amyloid-β (Aβ) protein. In AD, Aβ accumulates in the brain parenchyma as soluble oligomers and protofibrils, and its aggregation process further give rise to amyloid plaques. Compelling evidence now indicate that Aβ oligomers (Aβo) are the most toxic forms responsible for neuronal and synaptic alterations. Recently, we showed that the Vascular Endothelial Growth Factor (VEGF) counteracts Aβo-induced synaptic alterations and that a peptide derived from VEGF is able to inhibit Aβ aggregation process. Moreover, VEGF has been reported to promote microglial chemotaxis to Aβ brain deposits. We therefore investigated whether VEGF could influence microglial phagocytic response to Aβ, using in vitro and ex vivo models of amyloid accumulation. We report here that VEGF increases Aβo phagocytosis by microglial cells and further characterized the molecular basis of the VEGF effect. VEGF is able to control α-secretase activity in microglial cells, resulting in the increased cleavage of the Triggering Receptor Expressed on Myeloid cells 2 (TREM2), a major microglial Aβ receptor. Consistently, the soluble form sTREM2 also increases Aβo phagocytosis by microglial cells. Taken together, these findings propose VEGF as a new regulator of Aβ clearance and suggest its potential role in rescuing compromised microglial function in AD.
Collapse
Affiliation(s)
- Priscille de Gea
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Sarah Benkeder
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Pauline Bouvet
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Mélanie Aimard
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Naura Chounlamountri
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| | - Jérôme Honnorat
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Le Duy Do
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
- French Reference Center for Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Claire Meissirel
- Laboratory MeLIS, Institut Neuromyogène, Synaptopathies and Autoantibodies, INSERM U1314, CNRS UMR 5284, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
15
|
Tubi MA, Wheeler K, Matsiyevskiy E, Hapenney M, Mack WJ, Chui HC, King K, Thompson PM, Braskie MN. White matter hyperintensity volume modifies the association between CSF vascular inflammatory biomarkers and regional FDG-PET along the Alzheimer's disease continuum. Neurobiol Aging 2023; 132:1-12. [PMID: 37708739 PMCID: PMC10843575 DOI: 10.1016/j.neurobiolaging.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 09/16/2023]
Abstract
In older adults with abnormal levels of Alzheimer's disease neuropathology, lower cerebrospinal fluid (CSF) vascular endothelial growth factor (VEGF) levels are associated with lower [¹⁸F]-fluorodeoxyglucose positron emission tomography (FDG-PET) signal, but whether this association is (1) specific to VEGF or broadly driven by vascular inflammation, or (2) modified by vascular risk (e.g., white matter hyperintensities [WMHs]) remains unknown. To address this and build upon our past work, we evaluated whether 5 CSF vascular inflammation biomarkers (vascular cell adhesion molecule 1, VEGF, C-reactive protein, fibrinogen, and von Willebrand factor)-previously associated with CSF amyloid levels-were related to FDG-PET signal and whether WMH volume modified these associations in 158 Alzheimer's Disease Neuroimaging Initiative participants (55-90 years old, 39 cognitively normal, 80 mild cognitive impairment, 39 Alzheimer's disease). We defined regions both by cortical boundary and by the 3 major vascular territories: anterior, middle, and posterior cerebral arteries. We found that WMH volume had interactive effects with CSF biomarkers (VEGF and C-reactive protein) on FDG-PET throughout the cortex in both vascular territories and conventionally defined regions of interest.
Collapse
Affiliation(s)
- Meral A Tubi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Koral Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Elizabeth Matsiyevskiy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Matthew Hapenney
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Wendy J Mack
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin King
- Department of Neuroradiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| |
Collapse
|
16
|
Pinky, Neha, Salman M, Kumar P, Khan MA, Jamal A, Parvez S. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia. Ageing Res Rev 2023; 90:102022. [PMID: 37490963 DOI: 10.1016/j.arr.2023.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Alzheimer's disease (AD) is characterized by an adverse cellular environment and pathological alterations in distinct brain regions. The development is triggered or facilitated by a condition such as hypoxia or ischemia, or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Increasing evidence suggests that hypoxia may affect many pathological aspects of AD, including oxidative stress, mitochondrial dysfunction, ER stress, amyloidogenic processing of APP, and Aβ accumulation, which may collectively result in neurodegeneration. Further investigation into the relationship between hypoxia and AD may provide an avenue for the effective preservation and pharmacological treatment of this neurodegenerative disease. This review summarizes the effects of normoxia and hypoxia on AD pathogenesis and discusses the underlying mechanisms. Regulation of HIF-1α and the role of its key players, including P53, VEGF, and GLUT1, are also discussed.
Collapse
Affiliation(s)
- Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohd Salman
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Pratika Kumar
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Azfar Jamal
- Department of Biology, College of Science, Al-Zulfi-, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
17
|
Mahzarnia A, Lutz MW, Badea A. A Continuous Extension of Gene Set Enrichment Analysis using the Likelihood Ratio Test Statistics Identifies VEGF as a Candidate Pathway for Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554319. [PMID: 37662249 PMCID: PMC10473614 DOI: 10.1101/2023.08.22.554319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Alzheimer's disease involves brain pathologies such as amyloid plaque depositions and hyperphosphorylated tau tangles and is accompanied by cognitive decline. Identifying the biological mechanisms underlying disease onset and progression based on quantifiable phenotypes will help understand the disease etiology and devise therapies. Objective Our objective was to identify molecular pathways associated with AD biomarkers (Amyloid-β and tau) and cognitive status (MMSE) accounting for variables such as age, sex, education, and APOE genotype. Methods We introduce a novel pathway-based statistical approach, extending the gene set likelihood ratio test to continuous phenotypes. We first analyzed independently each of the three phenotypes (Amyloid-β, tau, cognition), using continuous gene set likelihood ratio tests to account for covariates, including age, sex, education, and APOE genotype. The analysis involved a large sample size with data available for all three phenotypes, allowing for the identification of common pathways. Results We identified 14 pathways significantly associated with Amyloid-β, 5 associated with tau, and 174 associated with MMSE. Surprisingly, the MMSE outcome showed a larger number of significant pathways compared to biomarkers. A single pathway, vascular endothelial growth factor receptor binding (VEGF-RB), exhibited significant associations with all three phenotypes. Conclusions The study's findings highlight the importance of the VEGF signaling pathway in aging in AD. The complex interactions within the VEGF signaling family offer valuable insights for future therapeutic interventions.
Collapse
|
18
|
Manso-Calderón R, Cacabelos-Pérez P, Sevillano-García MD, Herrero-Prieto ME, González-Sarmiento R. Analysis of endothelial gene polymorphisms in Spanish patients with vascular dementia and Alzheimer´s disease. Sci Rep 2023; 13:13441. [PMID: 37596325 PMCID: PMC10439194 DOI: 10.1038/s41598-023-39576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/14/2020] [Indexed: 08/20/2023] Open
Abstract
There is increasing evidence for the involvement of blood-brain barrier (BBB) in vascular dementia (VaD) and Alzheimer´s disease (AD) pathogenesis. However, the role of endothelial function-related genes in these disorders remains unclear. We evaluated the association of four single-nucleotide polymorphisms (VEGF, VEGFR2 and NOS3) with diagnosis and rate of cognitive decline in AD and VaD in a Spanish case-control cohort (150 VaD, 147 AD and 150 controls). Participants carrying -604AA genotype in VEGFR2 (rs2071559) were less susceptible to VaD after multiple testing. Further analysis for VaD subtype revealed a significant difference between small-vessel VaD patients and controls, but not for large-vessel VaD patients. In addition, -2578A and -460C alleles in VEGF (rs699947 and rs833061) showed to decrease the risk of AD, whereas NOS3 (rs1799983) influenced disease progression. Our study supports previous findings of a deleterious effect of VEGFR2 reduced expression on small-vessel disease, but not on large-vessel disease; as well as a detrimental effect of down-regulating VEGF and eNOS in AD, affecting vascular permeability and neuronal survival. These data highlight the relevance of endothelial function and, therefore, BBB in both VaD and AD.
Collapse
Affiliation(s)
- Raquel Manso-Calderón
- Department of Neurology, Complejo Asistencial Universitario de Salamanca (CAUSA), Paseo de San Vicente 58-182, 37007, Salamanca, Spain.
- Division of Neurology, Department of Internal Medicine, Complejo Asistencial de Ávila, Ávila, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain.
| | - Purificación Cacabelos-Pérez
- Department of Neurology, Complejo Asistencial Universitario de Salamanca (CAUSA), Paseo de San Vicente 58-182, 37007, Salamanca, Spain
- Department of Neurology, Hospital Clínico Universitario de Santiago (CHUS), A Coruña, Spain
| | - M Dolores Sevillano-García
- Department of Neurology, Complejo Asistencial Universitario de Salamanca (CAUSA), Paseo de San Vicente 58-182, 37007, Salamanca, Spain
| | - M Elisa Herrero-Prieto
- Division of Neurology, Department of Internal Medicine, Complejo Asistencial de Ávila, Ávila, Spain
- Division of Neurology, Department of Internal Medicine, Hospital El Bierzo de Ponferrada, León, Spain
| | - Rogelio González-Sarmiento
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
19
|
Alalwany RH, Hawtrey T, Morgan K, Morris JC, Donaldson LF, Bates DO. Vascular endothelial growth factor isoforms differentially protect neurons against neurotoxic events associated with Alzheimer's disease. Front Mol Neurosci 2023; 16:1181626. [PMID: 37456522 PMCID: PMC10349181 DOI: 10.3389/fnmol.2023.1181626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, the chronic and progressive deterioration of memory and cognitive abilities. AD can be pathologically characterised by neuritic plaques and neurofibrillary tangles, formed by the aberrant aggregation of β-amyloid and tau proteins, respectively. We tested the hypothesis that VEGF isoforms VEGF-A165a and VEGF-A165b, produced by differential splice site selection in exon 8, could differentially protect neurons from neurotoxicities induced by β-amyloid and tau proteins, and that controlling expression of splicing factor kinase activity could have protective effects on AD-related neurotoxicity in vitro. Using oxidative stress, β-amyloid, and tau hyperphosphorylation models, we investigated the effect of VEGF-A splicing isoforms, previously established to be neurotrophic agents, as well as small molecule kinase inhibitors, which selectively inhibit SRPK1, the major regulator of VEGF splicing. While both VEGF-A165a and VEGF-A165b isoforms were protective against AD-related neurotoxicity, measured by increased metabolic activity and neurite outgrowth, VEGF-A165a was able to enhance neurite outgrowth but VEGF-A165b did not. In contrast, VEGF-A165b was more effective than VEGF-A165a in preventing neurite "dieback" in a tau hyperphosphorylation model. SRPK1 inhibition was found to significantly protect against neurite "dieback" through shifting AS of VEGFA towards the VEGF-A165b isoform. These results indicate that controlling the activities of the two different isoforms could have therapeutic potential in Alzheimer's disease, but their effect may depend on the predominant mechanism of the neurotoxicity-tau or β-amyloid.
Collapse
Affiliation(s)
- Roaa H. Alalwany
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Tom Hawtrey
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Kevin Morgan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan C. Morris
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Lucy F. Donaldson
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, Centre for Cancer Sciences, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Pan African Cancer Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
21
|
Zhang X, Zhang Y, Zhang L, Qin C. Overexpression of ACE2 ameliorates Aβ-induced blood-brain barrier damage and angiogenesis by inhibiting NF-κB/VEGF/VEGFR2 pathway. Animal Model Exp Med 2023; 6:237-244. [PMID: 37183346 PMCID: PMC10272905 DOI: 10.1002/ame2.12324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Pathological angiogenesis and blood-brain barrier damage may play an important role in Alzheimer's disease (AD). ACE2 is mainly expressed on the surface of endothelial cells in brain. Recent studies have shown that the expression of ACE2 in AD is reduced, but its role in AD is still unclear. METHOD We induced AD damage in endothelial cells using Aβ25-35 and overexpressed ACE2 in bEend.3 cells through lentiviral transfection. We detected the effect of Aβ25-35 on cell viability using the CCK-8 assay and examined the effect of overexpressing ACE2 on angiogenesis using an angiogenesis assay. We used western blot and cell immunofluorescence to detect changes in the expression of the VEGF/VEGFR2 pathway, tight junction protein, and NF-κB pathway. RESULTS Aβ25-35 treatment significantly decreased the expression of ACE2 and reduced cell viability. ACE2 overexpression (1) reduced the number of branches and junctions in tube formation, (2) inhibited the activation of the VEGF/VEGFR2 pathway induced by Aβ25-35 , (3) increased the expression of TJPs, including ZO-1 and claudin-5, and (4) restored Aβ25-35 -induced activation of the NF-κB pathway. CONCLUSION Overexpression of ACE2 can improve pathological angiogenesis and blood-brain barrier damage in AD models in vitro by inhibiting NF-κB/VEGF/VEGFR2 pathway activity. ACE2 may therefore represent a therapeutic target for endothelial cell dysfunction in AD.
Collapse
Affiliation(s)
- Xueling Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
| | - Yu Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| | - Ling Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| |
Collapse
|
22
|
Zhou G, Ye Q, Xu Y, He B, Wu L, Zhu G, Xie J, Yao L, Xiao Z. Mitochondrial calcium uptake 3 mitigates cerebral amyloid angiopathy-related neuronal death and glial inflammation by reducing mitochondrial dysfunction. Int Immunopharmacol 2023; 117:109614. [PMID: 36878048 DOI: 10.1016/j.intimp.2022.109614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 03/06/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-β (Aβ) accumulation, and always accompanied by Alzheimer's disease (AD). Mitochondrial dysfunction-associated cellular events including cell death, inflammation and oxidative stress are implicated in the progression of CAA. Unfortunately, the molecular mechanisms revealing CAA pathogenesis are still obscure, thus requiring further studies. Mitochondrial calcium uptake 3 (MICU3), a regulator of the mitochondrial Ca2+ uniporter (MCU), mediates various biological functions, but its expression and influence on CAA are largely unknown. In the present study, we found that MICU3 expression was gradually declined in cortex and hippocampus of Tg-SwDI transgenic mice. Using stereotaxic operation with AAV9 encoding MICU3, we showed that AAV-MICU3 improved the behavioral performances and cerebral blood flow (CBF) in Tg-SwDI mice, along with markedly reduced Aβ deposition through mediating Aβ metabolism process. Importantly, we found that AAV-MICU3 remarkably improved neuronal death and mitigated glial activation and neuroinflammation in cortex and hippocampus of Tg-SwDI mice. Furthermore, excessive oxidative stress, mitochondrial impairment and dysfunction, decreased ATP and mitochondrial DNA (mtDNA) were detected in Tg-SwDI mice, while being considerably ameliorated upon MICU3 over-expression. More importantly, our in vitro experiments suggested that MICU3-attenuated neuronal death, activation of glial cells and oxidative stress were completely abrogated upon PTEN induced putative kinase 1 (PINK1) knockdown, indicating that PINK1 was required for MICU3 to perform its protective effects against CAA. Mechanistic experiment confirmed an interaction between MICU3 and PINK1. Together, these findings demonstrated that MICU3-PINK1 axis may serve as a key target for CAA treatment mainly through improving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Guijuan Zhou
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China; Department of Rehabilitation Medicine, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Qing Ye
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Yan Xu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Bing He
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Lin Wu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Guanghua Zhu
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Juan Xie
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Lan Yao
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China
| | - Zijian Xiao
- Department of Neurology, the First Affiliated Hospital, University of South China, 69 Chuanshan Road, Hengyang, Hunan, PR China.
| |
Collapse
|
23
|
Tsai HR, Lo RY, Liang KH, Chen TL, Huang HK, Wang JH, Lee YC. Risk of Subsequent Dementia or Alzheimer Disease Among Patients With Age-Related Macular Degeneration: A Systematic Review and Meta-analysis. Am J Ophthalmol 2023; 247:161-169. [PMID: 36375591 DOI: 10.1016/j.ajo.2022.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Alzheimer disease (AD), a common form of dementia, shares several clinical and pathologic features with age-related macular degeneration (AMD). Epidemiologic reports on the association of AMD with subsequent dementia or AD are inconsistent. DESIGN Systematic review and meta-analysis. METHODS The Meta-analysis of Observational Studies in Epidemiology reporting guidelines were applied. The Newcastle-Ottawa Scale was used to evaluate the risk of bias in the included cohort studies that examined the association of AMD with subsequent dementia or AD. We estimated the pooled hazard ratios (HRs) of dementia or AD using random effects model meta-analysis and subgroup analysis on different follow-up periods, AMD subtype, gender, age, study design, and methods to ascertain dementia or AD. RESULTS A total of 8 223 581 participants were included in 8 studies published during 2000-2021. The meta-analysis showed that AMD was significantly associated with subsequent dementia (pooled HR 1.22, 95% CI 1.01-1.47) or AD (pooled HR 1.21, 95% CI 1.03-1.43). Our secondary analysis revealed that the association was more noticeable in dry AMD than wet AMD. CONCLUSIONS Patients with AMD have higher risks of developing dementia or AD, and therefore identifying related comorbidities and retinal biomarkers is much warranted for older adults with AMD in ophthalmologic practice.
Collapse
Affiliation(s)
- Hou-Ren Tsai
- From the Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-R.T., Y.-C.L.), Hualien
| | - Raymond Y Lo
- Division of Cognitive/Geriatric Neurology, Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University (R.Y.L.), Hualien; Institute of Medical Sciences, Tzu Chi University (R.Y.L.), Hualien
| | - Kai-Hsiang Liang
- Department of Medical Education, Medical Administration Office, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
| | - Tai-Li Chen
- Center for Aging and Health, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (T.-L.C.), Hualien; Department of Dermatology, Taipei Veterans General Hospital (T.-L.C.), Taipei
| | - Huei-Kai Huang
- Department of Family medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H.), Hualien; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H., J.-H.W.), Hualien
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H., J.-H.W.), Hualien
| | - Yuan-Chieh Lee
- From the Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-R.T., Y.-C.L.), Hualien; Department of Ophthalmology and Visual Science, Tzu Chi University (Y.-C.L.), Hualien.
| |
Collapse
|
24
|
Ishihara K, Takata K, Mizutani KI. Involvement of an Aberrant Vascular System in Neurodevelopmental, Neuropsychiatric, and Neuro-Degenerative Diseases. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010221. [PMID: 36676170 PMCID: PMC9866034 DOI: 10.3390/life13010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The vascular system of the prenatal brain is crucial for the development of the central nervous system. Communication between vessels and neural cells is bidirectional, and dysfunctional communication can lead to neurodevelopmental diseases. In the present review, we introduce neurodevelopmental and neuropsychiatric diseases potentially caused by disturbances in the neurovascular system and discuss candidate genes responsible for neurovascular system impairments. In contrast to diseases that can manifest during the developing stage, we have also summarized the disturbances of the neurovascular system in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. Furthermore, we discussed the role of abnormal vascularization and dysfunctional vessels in the development of neurovascular-related diseases.
Collapse
Affiliation(s)
- Keiichi Ishihara
- Department of Pathological Biochemistry, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
- Correspondence: ; Tel.: +81-75-595-4656
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Ken-ichi Mizutani
- Laboratory of Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe 650-8586, Japan
| |
Collapse
|
25
|
Zhang X, An H, Chen Y, Shu N. Neurobiological Mechanisms of Cognitive Decline Correlated with Brain Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1419:127-146. [PMID: 37418211 DOI: 10.1007/978-981-99-1627-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Cognitive decline has emerged as one of the greatest health threats of old age. Meanwhile, aging is the primary risk factor for Alzheimer's disease (AD) and other prevalent neurodegenerative disorders. Developing therapeutic interventions for such conditions demands a greater understanding of the processes underlying normal and pathological brain aging. Despite playing an important role in the pathogenesis and incidence of disease, brain aging has not been well understood at a molecular level. Recent advances in the biology of aging in model organisms, together with molecular- and systems-level studies of the brain, are beginning to shed light on these mechanisms and their potential roles in cognitive decline. This chapter seeks to integrate the knowledge about the neurological mechanisms of age-related cognitive changes that underlie aging.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Haiting An
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
- Beijing Neurosurgical Institute, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Yuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- Beijing Aging Brain Rejuvenation Initiative (BABRI) Centre, Beijing Normal University, Beijing, China
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China.
| |
Collapse
|
26
|
Yu Y, Zhang N, Xiang B, Ding N, Liu J, Huang J, Zhao M, Zhao Y, Wang Y, Ma Z. In vivo characterization of cerebrovascular impairment induced by amyloid β peptide overload in glymphatic clearance system using swept-source optical coherence tomography. NEUROPHOTONICS 2023; 10:015005. [PMID: 36817752 PMCID: PMC9933996 DOI: 10.1117/1.nph.10.1.015005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
SIGNIFICANCE Antiamyloid β ( A β ) immunotherapy is a promising therapeutic strategy for Alzheimer's disease (AD) but generates large amounts of soluble A β peptides that could overwhelm the clearance pathway, leading to serious side effects. Direct implications of A β in glymphatic drainage transport for cerebral vasculature and tissue are not well known. Studies are needed to resolve this issue and pave the way to better monitoring abnormal vascular events that may occur in A β -modifying therapies for AD. AIM The objective is to characterize the modification of cerebral vasculature and tissue induced by soluble A β abundantly present in the glymphatic clearance system. APPROACH A β 1 - 42 peptide was injected intracerebroventricularly and swept-source optical coherence tomography (SS-OCT) was used to monitor the progression of changes in the brain microvascular network and tissue in vivo over 14 days. Parameters reflecting vascular morphology and structure as well as tissue status were quantified and compared before treatment. RESULTS Vascular perfusion density, vessel length, and branch density decreased sharply and persistently following peptide administration. In comparison, vascular average diameter and vascular tortuosity were moderately increased at the late stage of monitoring. Endpoint density gradually increased, and the global optical attenuation coefficient value decreased significantly over time. CONCLUSIONS A β burden in the glymphatic system directly contributes to cerebrovascular structural and morphological abnormalities and global brain tissue damage, suggesting severe deleterious properties of soluble cerebrospinal fluid- A β . We also show that OCT can be used as an effective tool to monitor cerebrovascular dynamics and tissue property changes in response to therapeutic treatments in drug discovery research.
Collapse
Affiliation(s)
- Yao Yu
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Ning Zhang
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
| | - Ben Xiang
- Northeastern University, College of Information Science and Engineering, Shenyang, China
| | - Ning Ding
- Northeastern University, College of Information Science and Engineering, Shenyang, China
| | - Jian Liu
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Jiangmei Huang
- First Hospital of Qinhuangdao, Department of Pathology, Qinhuangdao, China
| | - Min Zhao
- First Hospital of Qinhuangdao, Department of Pathology, Qinhuangdao, China
| | - Yuqian Zhao
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
| | - Yi Wang
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| | - Zhenhe Ma
- Northeastern University at Qinhuangdao, School of Control Engineering, Qinhuangdao, China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, China
| |
Collapse
|
27
|
Giuliani G, Sborgia G, Niro A, Castellana F, Lampignano L, Puzo P, Pascale A, Pastore V, Buonamassa R, Galati R, Bordinone M, Cassano F, Clemente A, Landini L, Scotti G, Gaudiomonte M, Guglielmi A, Semeraro R, Santoro M, Alessio G, Sardone R, Boscia F. Correlation between retinal vessel rarefaction and psychometric measures in an older Southern Italian population. Front Aging Neurosci 2022; 14:999796. [PMID: 36212041 PMCID: PMC9541429 DOI: 10.3389/fnagi.2022.999796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 12/22/2022] Open
Abstract
Objective To explore the linear association between inner retinal layers thickness and macular capillary density compared to variations of global cognition evaluated by psychometric measures in a cohort of Mediterranean subjects aged 65+ years. Materials and methods We performed a cross-sectional analysis of 574 participants aged 65 years+ drawn from a population-based Southern Italian study. All subjects underwent neurological evaluations, including global cognitive screening, the Mini-Mental State Examination (MMSE) and frontal assessment battery (FAB), together with an ophthalmic examination including optical coherence tomography (OCT) and OCT-Angiography. We assessed the average thickness of the ganglion cell complex (GCC) and the retinal nerve fiber layer (RNFL), the foveal avascular zone area, and vascular density (VD) of superficial (SVD) and deep (DVD) capillary plexi at the foveal and parafoveal area. Linear regression was applied to assess associations of ocular measurements with MMSE and FAB scores. Results In the linear regression model, foveal DVD (beta = 0.01, 95% CI:0.004–0.052), whole DVD (beta = 0.04, 95% CI:0.02–0.08), and whole SVD (beta = 0.04, 95% CI:0.02–0.07) showed a positive association with MMSE. In addition, foveal SVD (beta = 0.01, 95% CI:0.003–0.05) and whole SVD (beta = 0.03, 95% CI:0.004–0.08) were positively associated with the FAB score. We found no further significant association between the MMSE score or the FAB score and the average thickness of the GCC and RNFL, and FAZ area. Conclusion A direct linear association between the VD of the macular capillary plexi with global and frontal cognitive functions was observed in elderly subjects.
Collapse
Affiliation(s)
- Gianluigi Giuliani
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Giancarlo Sborgia
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Alfredo Niro
- Eye Clinic, Hospital “SS Annunziata,” ASL Taranto, Taranto, Italy
- *Correspondence: Alfredo Niro,
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, “Salus in Apulia Study,” National Institute of Gastroenterology “Saverio de Bellis,” Research Hospital, Bari, Italy
| | - Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, “Salus in Apulia Study,” National Institute of Gastroenterology “Saverio de Bellis,” Research Hospital, Bari, Italy
| | - Pasquale Puzo
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Angelo Pascale
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Valentina Pastore
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Rosa Buonamassa
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Roberta Galati
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Marco Bordinone
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Flavio Cassano
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Arcangelo Clemente
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Luca Landini
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Giacomo Scotti
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Marida Gaudiomonte
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Antonella Guglielmi
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Roberto Semeraro
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Michele Santoro
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Giovanni Alessio
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, “Salus in Apulia Study,” National Institute of Gastroenterology “Saverio de Bellis,” Research Hospital, Bari, Italy
| | - Francesco Boscia
- Department of Medical Science, Neuroscience and Sense Organs, Eye Clinic, University of Bari, Bari, Italy
| |
Collapse
|
28
|
Tarawneh HY, Jayakody DM, Sohrabi HR, Martins RN, Mulders WH. Understanding the Relationship Between Age-Related Hearing Loss and Alzheimer’s Disease: A Narrative Review. J Alzheimers Dis Rep 2022; 6:539-556. [PMID: 36275417 PMCID: PMC9535607 DOI: 10.3233/adr-220035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/16/2022] [Indexed: 12/02/2022] Open
Abstract
Evidence suggests that hearing loss (HL), even at mild levels, increases the long-term risk of cognitive decline and incident dementia. Hearing loss is one of the modifiable risk factors for dementia, with approximately 4 million of the 50 million cases of dementia worldwide possibly attributed to untreated HL. This paper describes four possible mechanisms that have been suggested for the relationship between age-related hearing loss (ARHL) and Alzheimer’s disease (AD), which is the most common form of dementia. The first mechanism suggests mitochondrial dysfunction and altered signal pathways due to aging as a possible link between ARHL and AD. The second mechanism proposes that sensory degradation in hearing impaired people could explain the relationship between ARHL and AD. The occupation of cognitive resource (third) mechanism indicates that the association between ARHL and AD is a result of increased cognitive processing that is required to compensate for the degraded sensory input. The fourth mechanism is an expansion of the third mechanism, i.e., the function and structure interaction involves both cognitive resource occupation (neural activity) and AD pathology as the link between ARHL and AD. Exploring the specific mechanisms that provide the link between ARHL and AD has the potential to lead to innovative ideas for the diagnosis, prevention, and/or treatment of AD. This paper also provides insight into the current evidence for the use of hearing treatments as a possible treatment/prevention for AD, and if auditory assessments could provide an avenue for early detection of cognitive impairment associated with AD.
Collapse
Affiliation(s)
- Hadeel Y. Tarawneh
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Ear Science Institute Australia, Subiaco, WA, Australia
| | - Dona M.P. Jayakody
- Ear Science Institute Australia, Subiaco, WA, Australia
- Centre of Ear Science, Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Hamid R. Sohrabi
- Centre for Healthy Ageing, College of Science, Health, Engineering and Education, Murdoch University, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Ralph N. Martins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | | |
Collapse
|
29
|
van Dinther M, Voorter PH, Jansen JF, Jones EA, van Oostenbrugge RJ, Staals J, Backes WH. Assessment of microvascular rarefaction in human brain disorders using physiological magnetic resonance imaging. J Cereb Blood Flow Metab 2022; 42:718-737. [PMID: 35078344 PMCID: PMC9014687 DOI: 10.1177/0271678x221076557] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral microvascular rarefaction, the reduction in number of functional or structural small blood vessels in the brain, is thought to play an important role in the early stages of microvascular related brain disorders. A better understanding of its underlying pathophysiological mechanisms, and methods to measure microvascular density in the human brain are needed to develop biomarkers for early diagnosis and to identify targets for disease modifying treatments. Therefore, we provide an overview of the assumed main pathophysiological processes underlying cerebral microvascular rarefaction and the evidence for rarefaction in several microvascular related brain disorders. A number of advanced physiological MRI techniques can be used to measure the pathological alterations associated with microvascular rarefaction. Although more research is needed to explore and validate these MRI techniques in microvascular rarefaction in brain disorders, they provide a set of promising future tools to assess various features relevant for rarefaction, such as cerebral blood flow and volume, vessel density and radius and blood-brain barrier leakage.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Paulien Hm Voorter
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Jacobus Fa Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | | | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, The Netherlands
| |
Collapse
|
30
|
Gallego I, Villate-Beitia I, Saenz-Del-Burgo L, Puras G, Pedraz JL. Therapeutic Opportunities and Delivery Strategies for Brain Revascularization in Stroke, Neurodegeneration, and Aging. Pharmacol Rev 2022; 74:439-461. [PMID: 35302047 DOI: 10.1124/pharmrev.121.000418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022] Open
Abstract
Central nervous system (CNS) diseases, especially acute ischemic events and neurodegenerative disorders, constitute a public health problem with no effective treatments to allow a persistent solution. Failed therapies targeting neuronal recovery have revealed the multifactorial and intricate pathophysiology underlying such CNS disorders as ischemic stroke, Alzheimeŕs disease, amyotrophic lateral sclerosis, vascular Parkisonism, vascular dementia, and aging, in which cerebral microvasculature impairment seems to play a key role. In fact, a reduction in vessel density and cerebral blood flow occurs in these scenarios, contributing to neuronal dysfunction and leading to loss of cognitive function. In this review, we provide an overview of healthy brain microvasculature structure and function in health and the effect of the aforementioned cerebral CNS diseases. We discuss the emerging new therapeutic opportunities, and their delivery approaches, aimed at recovering brain vascularization in this context. SIGNIFICANCE STATEMENT: The lack of effective treatments, mainly focused on neuron recovery, has prompted the search of other therapies to treat cerebral central nervous system diseases. The disruption and degeneration of cerebral microvasculature has been evidenced in neurodegenerative diseases, stroke, and aging, constituting a potential target for restoring vascularization, neuronal functioning, and cognitive capacities by the development of therapeutic pro-angiogenic strategies.
Collapse
Affiliation(s)
- Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Laura Saenz-Del-Burgo
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P); Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, Madrid, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.); and Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain (I.G., I.V.-B., L.S.-B., G.P., J.L.P.)
| |
Collapse
|
31
|
Le JT, Agrón E, Keenan TDL, Clemons TE, Brenowitz WD, Yaffe K, Chew EY. Assessing bidirectional associations between cognitive impairment and late age-related macular degeneration in the Age-Related Eye Disease Study 2. Alzheimers Dement 2021; 18:1296-1305. [PMID: 34758100 DOI: 10.1002/alz.12473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/06/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION We aimed to investigate bidirectional associations between cognitive impairment and late age-related macular degeneration (AMD). METHODS Participants in the Age-Related Eye Disease Study 2 (AREDS2) received annual eye examinations and cognitive function testing (e.g., Modified Telephone Interview for Cognitive Status [TICS-M]). We examined bidirectional associations between cognitive impairment (e.g., a TICS-M score < 30) and late AMD at 5 and 10 years. RESULTS Five thousand one hundred eighty-nine eyes (3157 participants; mean age 72.7 years) were analyzed and followed for a median of 10.4 years. Eyes of participants with cognitive impairment at baseline were more likely to progress to late AMD at 5 years (hazard ratio [HR], 1.24; 95% confidence interval [CI], 1.08-1.43) and 10 years (HR, 1.20; 95% CI, 1.05-1.37) than eyes of participants without cognitive impairment. Worse baseline AMD severity was not associated with developing cognitive impairment. DISCUSSION Cognitive impairment is associated with late AMD progression in AREDS2. Our finding highlights the importance of eyecare for people with cognitive impairment.
Collapse
Affiliation(s)
- Jimmy T Le
- Division of Epidemiology and Clinical Applications & Division of Extramural Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elvira Agrón
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Willa D Brenowitz
- Departments of Psychiatry and Behavioral Science, Neurology, and Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Kristine Yaffe
- Department of Neurology, University of California San Francisco, San Francisco, San Francisco, California, USA.,Departments of Psychiatry and Behavioral Science, Neurology, and Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
32
|
Tubi MA, Kothapalli D, Hapenney M, Feingold FW, Mack WJ, King KS, Thompson PM, Braskie MN. Regional relationships between CSF VEGF levels and Alzheimer's disease brain biomarkers and cognition. Neurobiol Aging 2021; 105:241-251. [PMID: 34126466 PMCID: PMC8544907 DOI: 10.1016/j.neurobiolaging.2021.04.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a complex signaling protein that supports vascular and neuronal function. Alzheimer's disease (AD) -neuropathological hallmarks interfere with VEGF signaling and modify previously detected positive associations between cerebral spinal fluid (CSF) VEGF and cognition and hippocampal volume. However, it remains unknown 1) whether regional relationships between VEGF and glucose metabolism and cortical thinning exist, and 2) whether AD-neuropathological hallmarks (CSF Aβ, t-tau, p-tau) also modify these relationships. We addressed this in 310 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants (92 cognitively normal, 149 mild cognitive impairment, 69 AD; 215 CSF Aβ+, 95 CSF Aβ-) with regional cortical thickness and cognition measurements and 158 participants with FDG-PET. In Aβ + participants (CSF Aβ42 ≤ 192 pg/mL), higher CSF VEGF levels were associated with greater FDG-PET signal in the inferior parietal, and middle and inferior temporal cortices. Abnormal CSF amyloid and tau levels strengthened the positive association between VEGF and regional FDG-PET indices. VEGF also had both direct associations with semantic memory, as well as indirect associations mediated by regional FDG-PET signal to cognition.
Collapse
Affiliation(s)
- Meral A Tubi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Deydeep Kothapalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Matthew Hapenney
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Franklin W Feingold
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA; Stanford University, Stanford, CA 94305
| | - Wendy J Mack
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kevin S King
- Huntington Medical Research Institutes, Imaging Division, Pasadena, CA, 91105 USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| |
Collapse
|
33
|
Alvarez-Vergara MI, Rosales-Nieves AE, March-Diaz R, Rodriguez-Perinan G, Lara-Ureña N, Ortega-de San Luis C, Sanchez-Garcia MA, Martin-Bornez M, Gómez-Gálvez P, Vicente-Munuera P, Fernandez-Gomez B, Marchena MA, Bullones-Bolanos AS, Davila JC, Gonzalez-Martinez R, Trillo-Contreras JL, Sanchez-Hidalgo AC, Del Toro R, Scholl FG, Herrera E, Trepel M, Körbelin J, Escudero LM, Villadiego J, Echevarria M, de Castro F, Gutierrez A, Rabano A, Vitorica J, Pascual A. Non-productive angiogenesis disassembles Aß plaque-associated blood vessels. Nat Commun 2021; 12:3098. [PMID: 34035282 PMCID: PMC8149638 DOI: 10.1038/s41467-021-23337-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.
Collapse
Affiliation(s)
- Maria I Alvarez-Vergara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rosana March-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Guiomar Rodriguez-Perinan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Nieves Lara-Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College of Dublin, D2, Dublin, Ireland
| | - Manuel A Sanchez-Garcia
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Miguel Martin-Bornez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Miguel A Marchena
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias, Biomédicas y de la Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Andrea S Bullones-Bolanos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose C Davila
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | - Rocio Gonzalez-Martinez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Jose L Trillo-Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Ana C Sanchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Raquel Del Toro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Martin Trepel
- Augsburg Medical Center, Department of Hematology and Oncology, Augsburg, Germany
| | - Jakob Körbelin
- Section of Pneumology, Department of Oncology, Hematology and Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Miriam Echevarria
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | | | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
34
|
Martin L, Bouvet P, Chounlamountri N, Watrin C, Besançon R, Pinatel D, Meyronet D, Honnorat J, Buisson A, Salin PA, Meissirel C. VEGF counteracts amyloid-β-induced synaptic dysfunction. Cell Rep 2021; 35:109121. [PMID: 33979625 DOI: 10.1016/j.celrep.2021.109121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) pathway regulates key processes in synapse function, which are disrupted in early stages of Alzheimer's disease (AD) by toxic-soluble amyloid-beta oligomers (Aβo). Here, we show that VEGF accumulates in and around Aβ plaques in postmortem brains of patients with AD and in APP/PS1 mice, an AD mouse model. We uncover specific binding domains involved in direct interaction between Aβo and VEGF and reveal that this interaction jeopardizes VEGFR2 activation in neurons. Notably, we demonstrate that VEGF gain of function rescues basal synaptic transmission, long-term potentiation (LTP), and dendritic spine alterations, and blocks long-term depression (LTD) facilitation triggered by Aβo. We further decipher underlying mechanisms and find that VEGF inhibits the caspase-3-calcineurin pathway responsible for postsynaptic glutamate receptor loss due to Aβo. These findings provide evidence for alterations of the VEGF pathway in AD models and suggest that restoring VEGF action on neurons may rescue synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Laurent Martin
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Pauline Bouvet
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Naura Chounlamountri
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Chantal Watrin
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Roger Besançon
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Delphine Pinatel
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - David Meyronet
- Université Claude Bernard Lyon 1, 69000 Lyon, France; Cancer Research Center of Lyon, Cancer Cell Plasticity, INSERM U1052, CNRS UMR5286, 69000 Lyon, France; Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon 69000 Lyon, France
| | - Jérôme Honnorat
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Alain Buisson
- GIN, INSERM U1216, Université Grenoble Alpes, 38000 Grenoble, France
| | - Paul-Antoine Salin
- Université Claude Bernard Lyon 1, 69000 Lyon, France; Lyon Neuroscience Research Center, Forgetting processes and cortical dynamics, INSERM U1028, CNRS UMR5292, 69675 Bron, France
| | - Claire Meissirel
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France.
| |
Collapse
|
35
|
Qin S, Tang H, Li W, Gong Y, Li S, Huang J, Fang Y, Yuan W, Liu Y, Wang S, Guo Y, Guo Y, Xu Z. AMPK and its Activator Berberine in the Treatment of Neurodegenerative Diseases. Curr Pharm Des 2021; 26:5054-5066. [PMID: 32445451 DOI: 10.2174/1381612826666200523172334] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Neurodegenerative disorders are heterogeneous diseases associated with either acute or progressive neurodegeneration, causing the loss of neurons and axons in the central nervous system (CNS), showing high morbidity and mortality, and there are only a few effective therapies. Here, we summarized that the energy sensor adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and its agonist berberine can combat the common underlying pathological events of neurodegeneration, including oxidative stress, neuroinflammation, mitochondrial disorder, glutamate excitotoxicity, apoptosis, autophagy disorder, and disruption of neurovascular units. The abovementioned effects of berberine may primarily depend on activating AMPK and its downstream targets, such as the mammalian target of rapamycin (mTOR), sirtuin1 (SIRT1), nuclear factor erythroid-2 related factor-2 (Nrf2), nuclear factor-κB (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), nicotinamide adenine dinucleotide (NAD+), and p38 mitogen-activated protein kinase (p38 MAPK). It is hoped that this review will provide a strong basis for further scientific exploration and development of berberine's therapeutic potential against neurodegeneration.
Collapse
Affiliation(s)
- Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjuan Yuan
- The First people’s hospital of Lanzhou city, Gansu, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
36
|
Dharshini SAP, Jemimah S, Taguchi YH, Gromiha MM. Exploring Common Therapeutic Targets for Neurodegenerative Disorders Using Transcriptome Study. Front Genet 2021; 12:639160. [PMID: 33815473 PMCID: PMC8017312 DOI: 10.3389/fgene.2021.639160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are well-known neuronal degenerative disorders that share common pathological events. Approved medications alleviate symptoms but do not address the root cause of the disease. Energy dysfunction in the neuronal population leads to various pathological events and ultimately results in neuronal death. Identifying common therapeutic targets for these disorders may help in the drug discovery process. The Brodmann area 9 (BA9) region is affected in both the disease conditions and plays an essential role in cognitive, motor, and memory-related functions. Analyzing transcriptome data of BA9 provides deep insights related to common pathological pathways involved in AD and PD. In this work, we map the preprocessed BA9 fastq files generated by RNA-seq for disease and control samples with reference hg38 genomic assembly and identify common variants and differentially expressed genes (DEG). These variants are predominantly located in the 3' UTR (non-promoter) region, affecting the conserved transcription factor (TF) binding motifs involved in the methylation and acetylation process. We have constructed BA9-specific functional interaction networks, which show the relationship between TFs and DEGs. Based on expression signature analysis, we propose that MAPK1, VEGFR1/FLT1, and FGFR1 are promising drug targets to restore blood-brain barrier functionality by reducing neuroinflammation and may save neurons.
Collapse
Affiliation(s)
- S Akila Parvathy Dharshini
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Sherlyn Jemimah
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Y H Taguchi
- Department of Physics, Chuo University, Hachioji, Japan
| | - M Michael Gromiha
- Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
37
|
Wang P, Sui HJ, Li XJ, Bai LN, Bi J, Lai H. Melatonin ameliorates microvessel abnormalities in the cerebral cortex and hippocampus in a rat model of Alzheimer's disease. Neural Regen Res 2021; 16:757-764. [PMID: 33063739 PMCID: PMC8067916 DOI: 10.4103/1673-5374.295349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Melatonin can attenuate cardiac microvascular ischemia/reperfusion injury, but it remains unclear whether melatonin can also ameliorate cerebral microvascular abnormalities. Rat models of Alzheimer’s disease were established by six intracerebroventricular injections of amyloid-beta 1–42, administered once every other day. Melatonin (30 mg/kg) was intraperitoneally administered for 13 successive days, with the first dose given 24 hours prior to the first administration of amyloid-beta 1–42. Melatonin ameliorated learning and memory impairments in the Morris water maze test, improved the morphology of microvessels in the cerebral cortex and hippocampus, increased microvessel density, alleviated pathological injuries of cerebral neurons, and decreased the expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2. These findings suggest that melatonin can improve microvessel abnormalities in the cerebral cortex and hippocampus by lowering the expression of vascular endothelial growth factor and its receptors, thereby improving the cognitive function of patients with Alzheimer’s disease. This study was approved by the Animal Care and Use Committee of Jinzhou Medical University, China (approval No. 2019015) on December 6, 2018.
Collapse
Affiliation(s)
- Pan Wang
- Department of Anatomy, China Medical University, Shenyang; Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University; Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hai-Juan Sui
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province; Department of Pharmacology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Xiao-Jia Li
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province; Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Li-Na Bai
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province; Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jing Bi
- Department of Neurobiology and Key Laboratory of Neurodegenerative Diseases of Liaoning Province; Department of Neurobiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Hong Lai
- Department of Anatomy, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
38
|
Qin C, Lu Y, Wang K, Bai L, Shi G, Huang Y, Li Y. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer's disease: a meta-analytic review on potential mechanisms. Transl Neurodegener 2020; 9:20. [PMID: 32460886 PMCID: PMC7251864 DOI: 10.1186/s40035-020-00199-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/10/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disorder. Therapeutically, a transplantation of bone marrow mesenchymal stem cells (BMMSCs) can play a beneficial role in animal models of Alzheimer's disease. However, the relevant mechanism remains to be fully elucidated. MAIN BODY Subsequent to the transplantation of BMMSCs, memory loss and cognitive impairment were significantly improved in animal models with Alzheimer's disease (AD). Potential mechanisms involved neurogenesis, apoptosis, angiogenesis, inflammation, immunomodulation, etc. The above mechanisms might play different roles at certain stages. It was revealed that the transplantation of BMMSCs could alter some gene levels. Moreover, the differential expression of representative genes was responsible for neuropathological phenotypes in Alzheimer's disease, which could be used to construct gene-specific patterns. CONCLUSIONS Multiple signal pathways involve therapeutic mechanisms by which the transplantation of BMMSCs improves cognitive and behavioral deficits in AD models. Gene expression profile can be utilized to establish statistical regression model for the evaluation of therapeutic effect. The transplantation of autologous BMMSCs maybe a prospective therapy for patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China.
| | - Yalan Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Kewei Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Lin Bai
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Guiying Shi
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Yiying Huang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, 5 Panjiayuan Nanli St, Beijing, 100021, China
| | - Yongning Li
- Department of International Medical Service & Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan 1, Dong Cheng District, Beijing, 100730, China
| |
Collapse
|
39
|
Kim SB, Heo JI, Kim H, Kim KS. Acetylation of PGC1α by Histone Deacetylase 1 Downregulation Is Implicated in Radiation-Induced Senescence of Brain Endothelial Cells. J Gerontol A Biol Sci Med Sci 2020; 74:787-793. [PMID: 30016403 DOI: 10.1093/gerona/gly167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α) is a potent transcription factor for mitochondrial function, lipid metabolism, and detoxification in a variety of tissues. PGC1α also promotes brain cell proliferation and memory. However, how PGC1α is involved in aging is not well known. In brain endothelial cells, we found that PGC1α knockdown accelerated DNA damage-induced senescence, evidenced by an increase in senescence-associated β-galactosidase-positive cells and a decrease in cell proliferation and adenosine triphosphate production. PGC1α knockdown delayed DNA damage repair mechanisms compared with the wild-type condition as shown by γ-H2AX foci staining assay. Overexpression of PGC1α reduced senescence-associated β-galactosidase-positive cells and increased the proliferation of senescent cells. Although PGC1α protein levels were not decreased, PGC1 acetylation was increased by ionizing radiation treatment and aging. Histone deacetylase 1 (HDAC1) expression was decreased by ionizing radiation treatment and aging, and downregulation of HDAC1 induced acetylation of PGC1α. HDAC1 knockdown affected sirtuin 1 expression and decreased its deacetylation of PGC1α. In the mouse brain cortex, acetylation of PGC1α was increased by ionizing radiation treatment. These results suggest that acetylation of PGC1α is induced by DNA damage agents such as ionizing radiation, which deregulates mitochondrial mechanisms and metabolism, resulting in acceleration of radiation-induced senescence. Therefore, acetylation of PGC1α may be a cause of brain disorders and has the potential to serve as a therapeutic target for radiation-induced senescence after radiation cancer therapy.
Collapse
Affiliation(s)
- Su-Bin Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong-Ik Heo
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul
| | - Hyunggee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Kwang Seok Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul
| |
Collapse
|
40
|
Tang KS. The cellular and molecular processes associated with scopolamine-induced memory deficit: A model of Alzheimer's biomarkers. Life Sci 2019; 233:116695. [DOI: 10.1016/j.lfs.2019.116695] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
|
41
|
Alvarez XA, Alvarez I, Aleixandre M, Linares C, Muresanu D, Winter S, Moessler H. Severity-Related Increase and Cognitive Correlates of Serum VEGF Levels in Alzheimer's Disease ApoE4 Carriers. J Alzheimers Dis 2019; 63:1003-1013. [PMID: 29710700 DOI: 10.3233/jad-160477] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vascular endothelial growth factor (VEGF) is an angioneurin involved in the regulation of vascular and neural functions relevant for the pathophysiology of Alzheimer's disease (AD), but the influence of AD severity and ApoE4 status on circulating VEGF and its relationship with cognition has not been investigated. We assessed serum VEGF levels and cognitive performance in AD, amnestic mild cognitive impairment (MCI), and control subjects. VEGF levels were higher in AD patients than in MCI cases and controls (p < 0.05) and showed a progressive increase with clinical severity in the whole study population (p < 0.01). Among AD patients, severity-related VEGF elevations were significant in ApoE4 carriers (p < 0.05), but not in non-carriers. Increased VEGF levels were associated with disease severity and showed mild correlations with cognitive impairment that were only consistent for the ADAS-cog+ items remembering test instructions (memory) and maze task (executive functions) in the group of AD patients (p < 0.05). On the other hand, higher VEGF values were related to better memory and language performance in ApoE4 carriers with moderately-severe AD. According to these results showing severity- and ApoE4-related differences in serum VEGF and its cognitive correlates, it is suggested that increases in VEGF levels might represent an endogenous response driven by pathological factors and could entail cognitive benefits in AD patients, particularly in ApoE4 carriers. Our findings support the notion that VEGF constitutes a relevant molecular target to be further explored in AD pathology and therapy.
Collapse
Affiliation(s)
- X Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, A Coruña, Spain.,Clinical Research Department, QPS Holdings, A Coruña, Spain
| | - Irene Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, A Coruña, Spain.,Clinical Research Department, QPS Holdings, A Coruña, Spain
| | | | | | - Dafin Muresanu
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania.,Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj-Napoca, Romania
| | | | | |
Collapse
|
42
|
Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, Kwakowsky A. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med 2019; 8:E651. [PMID: 31083442 PMCID: PMC6571853 DOI: 10.3390/jcm8050651] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. Despite decades of research following several theoretical and clinical lines, all existing treatments for the disorder are purely symptomatic. AD research has traditionally been focused on neuronal and glial dysfunction. Although there is a wealth of evidence pointing to a significant vascular component in the disease, this angle has been relatively poorly explored. In this review, we consider the various aspects of vascular dysfunction in AD, which has a significant impact on brain metabolism and homeostasis and the clearance of β-amyloid and other toxic metabolites. This may potentially precede the onset of the hallmark pathophysiological and cognitive symptoms of the disease. Pathological changes in vessel haemodynamics, angiogenesis, vascular cell function, vascular coverage, blood-brain barrier permeability and immune cell migration may be related to amyloid toxicity, oxidative stress and apolipoprotein E (APOE) genotype. These vascular deficits may in turn contribute to parenchymal amyloid deposition, neurotoxicity, glial activation and metabolic dysfunction in multiple cell types. A vicious feedback cycle ensues, with progressively worsening neuronal and vascular pathology through the course of the disease. Thus, a better appreciation for the importance of vascular dysfunction in AD may open new avenues for research and therapy.
Collapse
Affiliation(s)
- Karan Govindpani
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Laura G McNamara
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Nicholas R Smith
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Henry J Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard Lm Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
43
|
Ek Olofsson H, Englund E. A cortical microvascular structure in vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls: a sign of angiogenesis due to brain ischaemia? Neuropathol Appl Neurobiol 2019; 45:557-569. [PMID: 30957900 PMCID: PMC6850314 DOI: 10.1111/nan.12552] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/02/2019] [Indexed: 12/30/2022]
Abstract
Aims We observed a microvascular structure in the cerebral cortex that has not, to our knowledge, been previously described. We have termed the structure a ‘raspberry’, referring to its appearance under a bright‐field microscope. We hypothesized that raspberries form through angiogenesis due to some form of brain ischaemia or hypoperfusion. The aims of this study were to quantify raspberry frequency within the cerebral cortex according to diagnosis (vascular dementia, Alzheimer's disease, frontotemporal lobar degeneration and nondemented controls) and brain regions (frontal, temporal, parietal and occipital cortices, regardless of diagnosis). Materials and methods In each of 10 age‐matched subjects per group, a 20‐mm section of the cerebral cortex was examined in haematoxylin‐and‐eosin‐stained sections of the frontal, temporal and parietal, and/or occipital lobes. Tests were performed to validate the haematoxylin‐and‐eosin‐based identification of relative differences between the groups, and to investigate inter‐rater variability. Results Raspberry frequency was highest in subjects with vascular dementia, followed by those with frontotemporal lobar degeneration, Alzheimer's disease and last, nondemented controls. The frequency of raspberries in subjects with vascular dementia differed from that of all other groups at a statistically significant level. In the cerebral lobes, there was a statistically significant difference between the frontal and occipital cortices. Conclusions We believe the results support the hypothesis that raspberries are a sign of angiogenesis in the adult brain. It is pertinent to discuss possible proangiogenic stimuli, including brain ischaemia (such as mild hypoperfusion due to a combination of small vessel disease and transient hypotension), neuroinflammation and protein pathology.
Collapse
Affiliation(s)
- H Ek Olofsson
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - E Englund
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| |
Collapse
|
44
|
Solé M, Esteban-Lopez M, Taltavull B, Fábregas C, Fadó R, Casals N, Rodríguez-Álvarez J, Miñano-Molina AJ, Unzeta M. Blood-brain barrier dysfunction underlying Alzheimer's disease is induced by an SSAO/VAP-1-dependent cerebrovascular activation with enhanced Aβ deposition. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2189-2202. [PMID: 31047972 DOI: 10.1016/j.bbadis.2019.04.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022]
Abstract
Dysfunctions of the vascular system directly contribute to the onset and progression of Alzheimer's disease (AD). The blood-brain barrier (BBB) shows signs of malfunction at early stages of the disease. When Abeta peptide (Aβ) is deposited on brain vessels, it induces vascular degeneration by producing reactive oxygen species and promoting inflammation. These molecular processes are also related to an excessive SSAO/VAP-1 (semicarbazide-sensitive amine oxidase) enzymatic activity, observed in plasma and in cerebrovascular tissue of AD patients. We studied the contribution of vascular SSAO/VAP-1 to the BBB dysfunction in AD using in vitro BBB models. Our results show that SSAO/VAP-1 expression is associated to endothelial activation by altering the release of pro-inflammatory and pro-angiogenic angioneurins, most highly IL-6, IL-8 and VEGF. It is also related to a BBB structure alteration, with a decrease in tight-junction proteins such as zona occludens or claudin-5. Moreover, the BBB function reveals increased permeability and leukocyte adhesion in cells expressing SSAO/VAP-1, as well as an enhancement of the vascular Aβ deposition induced by mechanisms both dependent and independent of the enzymatic activity of SSAO/VAP-1. These results reveal an interesting role of vascular SSAO/VAP-1 in BBB dysfunction related to AD progression, opening a new window in the search of alternative therapeutic targets for fighting AD.
Collapse
Affiliation(s)
- Montse Solé
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| | - María Esteban-Lopez
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Biel Taltavull
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Cristina Fábregas
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
| | - Rut Fadó
- Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Santiago de Compostela, Spain
| | - Jose Rodríguez-Álvarez
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Alfredo J Miñano-Molina
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mercedes Unzeta
- Biochemistry and Molecular Biology Department, Institute of Neurosciences (INc), Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain.
| |
Collapse
|
45
|
Marston KJ, Brown BM, Rainey-Smith SR, Peiffer JJ. Resistance Exercise-Induced Responses in Physiological Factors Linked with Cognitive Health. J Alzheimers Dis 2019; 68:39-64. [DOI: 10.3233/jad-181079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kieran J. Marston
- Department of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
- Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia
| | - Belinda M. Brown
- Department of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
- Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Australian Alzheimer’s Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Stephanie R. Rainey-Smith
- Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Australian Alzheimer’s Research Foundation, Sarich Neuroscience Research Institute, Nedlands, Western Australia, Australia
| | - Jeremiah J. Peiffer
- Department of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia
- Ageing, Cognition and Exercise (ACE) Research Group, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
46
|
Colín-Castelán D, Zaina S. Associations between atherosclerosis and neurological diseases, beyond ischemia-induced cerebral damage. Rev Endocr Metab Disord 2019; 20:15-25. [PMID: 30891682 DOI: 10.1007/s11154-019-09486-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurodegeneration is traditionally viewed as a consequence of peptide accumulation in the brain, stroke and/or cerebral ischemia. Nonetheless, a number of scattered observations suggest that neurological disease and atherosclerosis may be linked by more complex mechanisms. Understanding the intricate link between atherosclerosis and neurological conditions may have a significant impact on the quality of life of the growing ageing population and of high cardiovascular risk groups in general. Epidemiological data support the notion that neurological dysfunction and atherosclerosis coexist long before any evident clinical complications of cardiovascular disease appear and may be causally linked. Baffling, often overlooked, molecular data suggest that nervous tissue-specific gene expression is relaxed specifically in the atheromatous vascular wall, and/or that a systemic dysregulation of genes involved in nervous system biology dictates a concomitant progression of neurological disease and atherosclerosis. Further epidemiological and experimental work is needed to clarify the details and clinical relevance of those complex links.
Collapse
Affiliation(s)
- Dannia Colín-Castelán
- Department of Medical Sciences, Division of Health Sciences, Campus León, University of Guanajuato, León, Guanajuato, Mexico.
| | - Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, Campus León, University of Guanajuato, León, Guanajuato, Mexico
| |
Collapse
|
47
|
Nagib MM, Tadros MG, Rahmo RM, Sabri NA, Khalifa AE, Masoud SI. Ameliorative Effects of α-Tocopherol and/or Coenzyme Q10 on Phenytoin-Induced Cognitive Impairment in Rats: Role of VEGF and BDNF-TrkB-CREB Pathway. Neurotox Res 2019; 35:451-462. [PMID: 30374909 DOI: 10.1007/s12640-018-9971-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
Phenytoin is one of the most well-known antiepileptic drugs that cause cognitive impairment which is closely related to cAMP response element-binding protein (CREB) brain-derived neurotrophic factor (BDNF) signaling pathway. Moreover, vascular endothelial growth factor (VEGF), an endothelial growth factor, has a documented role in neurogenesis and neuronal survival and cognitive impairment. Therefore, this study aimed to investigate the influence of powerful antioxidants: α-Toc and CoQ10 alone or combined in the preservation of brain tissues and the maintenance of memory formation in phenytoin-induced cognitive impairment in rats. The following behavioral test novel object recognition and elevated plus maze were assessed after 14 days of treatment. Moreover, VEGF, BDNF, TrkB, and CREB gene expression levels in the hippocampus and prefrontal cortex were estimated using RT-PCR. Both α-Toc and CoQ10 alone or combined with phenytoin showed improvement in behavioral tests compared to phenytoin. Mechanistically, α-Toc and/or CoQ10 decreases the VEGF mRNA expression, while increases BDNF-TrKB-CREB mRNA levels in hippocampus and cortex of phenytoin-treated rats. Collectively, α-Toc and/or CoQ10 alleviated the phenytoin-induced cognitive impairment through suppressing oxidative damage. The underlying molecular mechanism of the treating compounds is related to the VEGF and enhancing BDNF-TrkB-CREB signaling pathway. Our study indicated the usefulness α-Toc or CoQ10 as an adjuvant to antiepileptic drugs with an advantage of preventing cognitive impairment and oxidative stress.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Rahmo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University seconded to 57357 Children Cancer Hospital, Cairo, Egypt
| | - Somaia I Masoud
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
48
|
Mouse models of Alzheimer's disease cause rarefaction of pial collaterals and increased severity of ischemic stroke. Angiogenesis 2019; 22:263-279. [PMID: 30519973 PMCID: PMC6475514 DOI: 10.1007/s10456-018-9655-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/20/2018] [Indexed: 01/26/2023]
Abstract
Vascular dysfunction contributes to the progression and severity of Alzheimer's disease (AD). Patients with AD also sustain larger infarctions after ischemic stroke; however, the responsible mechanisms are unknown. Pial collaterals are the primary source of protection in stroke. Unfortunately, natural aging and other vascular risk factors cause a decline in collateral number and diameter (rarefaction) and an increase in stroke severity. Herein, we tested the hypothesis that AD accelerates age-induced collateral rarefaction and examined potential underlying mechanisms. Triple and double transgenic mouse models of AD both sustained collateral rarefaction by 8 months of age, well before the onset of rarefaction caused by aging alone (16 months of age). Rarefaction, which did not progress further at 18 months of age, was accompanied by a twofold increase in infarct volume after MCA occlusion. AD did not induce rarefaction of similarly sized pial arterioles or penetrating arterioles. Rarefaction was minimal and occurred only at 18 months of age in a parenchymal vascular amyloid-beta model of AD. Rarefaction was not associated with amyloid-beta deposition on collaterals or pial arteries, nor was plaque burden or CD11b+ cell density greater in brain underlying the collateral zones versus elsewhere. However, rarefaction was accompanied by increased markers of oxidative stress, inflammation, and aging of collateral endothelial and mural cells. Moreover, rarefaction was lessened by deletion of CX3CR1 and prevented by overexpression of eNOS. These findings demonstrate that mouse models of AD promote rarefaction of pial collaterals and implicate inflammation-induced accelerated aging of collateral wall cells. Strategies that reduce vascular inflammation and/or increase nitric oxide may preserve collateral function.
Collapse
|
49
|
Chakraborty A, Kamermans A, van het Hof B, Castricum K, Aanhane E, van Horssen J, Thijssen VL, Scheltens P, Teunissen CE, Fontijn RD, van der Flier WM, de Vries HE. Angiopoietin like-4 as a novel vascular mediator in capillary cerebral amyloid angiopathy. Brain 2018; 141:3377-3388. [DOI: 10.1093/brain/awy274] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ananya Chakraborty
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, The Netherlands
| | - Alwin Kamermans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, The Netherlands
| | - Bert van het Hof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, The Netherlands
| | - Kitty Castricum
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiation Oncology, The Netherlands
| | - Ed Aanhane
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiation Oncology, The Netherlands
| | - Jack van Horssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, The Netherlands
| | - Victor L Thijssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiation Oncology, The Netherlands
| | - Philip Scheltens
- Amsterdam UMC, Vrije Universiteit Amsterdam, Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, The Netherlands
| | - Charlotte E Teunissen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Neurochemistry Lab and Biobank, Department of Clinical Chemistry, The Netherlands
| | - Ruud D Fontijn
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, The Netherlands
| | - Wiesje M van der Flier
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiation Oncology, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, The Netherlands
| | - Helga E de Vries
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, The Netherlands
| |
Collapse
|
50
|
Rangachari V, Dean DN, Rana P, Vaidya A, Ghosh P. Cause and consequence of Aβ - Lipid interactions in Alzheimer disease pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1652-1662. [PMID: 29526709 PMCID: PMC6133763 DOI: 10.1016/j.bbamem.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction. The aggregation process is highly stochastic involving both homotypic (Aβ-Aβ) and heterotypic (Aβ with interacting partners) interactions. Two of the important members of interacting partners are membrane lipids and surfactants, to which Aβ shows a perpetual association. Aβ-membrane interactions have been widely investigated for more than two decades, and this research has provided a wealth of information. Although this has greatly enriched our understanding, the objective of this review is to consolidate the information from the literature that collectively showcases the unique phenomenon of lipid-mediated Aβ oligomer generation, which has largely remained inconspicuous. This is especially important because Aβ aggregate "strains" are increasingly becoming relevant in light of the correlations between the structure of aggregates and AD phenotypes. Here, we will focus on aspects of Aβ-lipid interactions specifically from the context of how lipid modulation generates a wide variety of biophysically and biochemically distinct oligomer sub-types. This, we believe, will refocus our thinking on the influence of lipids and open new approaches in delineating the mechanisms of AD pathogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Vijayaraghavan Rangachari
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Dexter N Dean
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ashwin Vaidya
- Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|