1
|
Liu J, Zhang B, Huang B, Zhang K, Guo F, Wang Z, Shang D. A stumbling block in pancreatic cancer treatment: drug resistance signaling networks. Front Cell Dev Biol 2025; 12:1462808. [PMID: 39872846 PMCID: PMC11770040 DOI: 10.3389/fcell.2024.1462808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
The primary node molecules in the cell signaling network in cancer tissues are maladjusted and mutated in comparison to normal tissues, which promotes the occurrence and progression of cancer. Pancreatic cancer (PC) is a highly fatal cancer with increasing incidence and low five-year survival rates. Currently, there are several therapies that target cell signaling networks in PC. However, PC is a "cold tumor" with a unique immunosuppressive tumor microenvironment (poor effector T cell infiltration, low antigen specificity), and targeting a single gene or pathway is basically ineffective in clinical practice. Targeted matrix therapy, targeted metabolic therapy, targeted mutant gene therapy, immunosuppressive therapy, cancer vaccines, and other emerging therapies have shown great therapeutic potential, but results have been disappointing. Therefore, we summarize the identified and potential drug-resistant cell signaling networks aimed at overcoming barriers to existing PC therapies.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fujia Guo
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhizhou Wang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Pancreas and Biliary Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Mumphrey MB, Hosseini N, Parolia A, Geng J, Zou W, Raghavan M, Chinnaiyan A, Cieslik M. Distinct mutational processes shape selection of MHC class I and class II mutations across primary and metastatic tumors. Cell Rep 2023; 42:112965. [PMID: 37597185 PMCID: PMC11847572 DOI: 10.1016/j.celrep.2023.112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
Disruption of antigen presentation via loss of major histocompatibility complex (MHC) expression is a strategy whereby cancer cells escape immune surveillance and develop resistance to immunotherapy. Here, we develop the personalized genomics algorithm Hapster and accurately call somatic mutations within the MHC genes of 10,001 primary and 2,199 metastatic tumors, creating a catalog of 1,663 non-synonymous mutations that provide key insights into MHC mutagenesis. We find that MHC class I genes are among the most frequently mutated genes in both primary and metastatic tumors, while MHC class II mutations are more restricted. Recurrent deleterious mutations are found within haplotype- and cancer-type-specific hotspots associated with distinct mutational processes. Functional classification of MHC residues reveals significant positive selection for mutations disruptive to the B2M, peptide, and T cell binding interfaces, as well as to MHC chaperones.
Collapse
Affiliation(s)
- Michael B Mumphrey
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noshad Hosseini
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Abhijit Parolia
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Geng
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Baleeiro RB, Bouwens CJ, Liu P, Di Gioia C, Dunmall LSC, Nagano A, Gangeswaran R, Chelala C, Kocher HM, Lemoine NR, Wang Y. MHC class II molecules on pancreatic cancer cells indicate a potential for neo-antigen-based immunotherapy. Oncoimmunology 2022; 11:2080329. [PMID: 35655709 PMCID: PMC9154752 DOI: 10.1080/2162402x.2022.2080329] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/05/2022] Open
Abstract
MHC class II expression is a hallmark of professional antigen-presenting cells and key to the induction of CD4+ T helper cells. We found that these molecules are ectopically expressed on tumor cells in a large proportion of patients with pancreatic ductal adenocarcinoma (PDAC) and on several PDAC cell lines. In contrast to the previous reports that tumoral expression of MHC-II in melanoma enabled tumor cells to evade immunosurveillance, the expression of MHC-II on PDAC cells neither protected cancer cells from Fas-mediated cell death nor caused T-cell suppression by engagement with its ligand LAG-3 on activated T-cells. In fact and surprisingly, the MHC-II/LAG-3 pathway contributed to CD4+ and CD8+ T-cell cytotoxicity toward MHC-II-positive PDAC cells. By combining bioinformatic tools and cell-based assays, we identified a number of immunogenic neo-antigens that can be presented by the patients' HLA class II alleles. Furthermore, CD4+ T-cells stimulated with neo-antigens were capable of recognizing and killing a human PDAC cell line expressing the mutated genes. To expand this approach to a larger number of PDAC patients, we show that co-treatment with IFN-γ and/or MEK/HDAC inhibitors induced tumoral MHC-II expression on MHC-II-negative tumors that are IFN-γ-resistant. Taken together, our data point to the possibility of harnessing MHC-II expression on PDAC cells for neo-antigen-based immunotherapy.
Collapse
Affiliation(s)
- Renato B. Baleeiro
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Christian J. Bouwens
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Peng Liu
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Carmela Di Gioia
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Louisa S. Chard Dunmall
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ai Nagano
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Rathistevy Gangeswaran
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Claude Chelala
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Hemant M. Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nicholas R. Lemoine
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou UniversitySino-British, Zhengzhou, Henan, China
| | - Yaohe Wang
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
- Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou UniversitySino-British, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Abstract
Next-generation sequencing technologies have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes. These mutations can sometimes create so-called neoantigens, which allow the immune system to detect and eliminate tumor cells. However, efforts that stimulate the immune system to eliminate tumors based on their molecular differences have had less success than has been hoped for, and there are conflicting reports about the role of neoantigens in the success of this approach. Here we review some of the conflicting evidence in the literature and highlight key aspects of the tumor-immune interface that are emerging as major determinants of whether mutation-derived neoantigens will contribute to an immunotherapy response. Accounting for these factors is expected to improve success rates of future immunotherapy approaches.
Collapse
Affiliation(s)
- Andrea Castro
- Biomedical Informatics Program, University of California San Diego, La Jolla, California 92093, USA
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
| | - Maurizio Zanetti
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, California 92093, USA;
- The Laboratory of Immunology, Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
5
|
Castro A, Carter H. Mutagenic exposures shape immunotherapy responses. NATURE CANCER 2020; 1:1132-1133. [PMID: 35121934 DOI: 10.1038/s43018-020-00153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Andrea Castro
- Biomedical Informatics Program, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Division of Medical Genetics and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Department of Medicine, Division of Medical Genetics and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Abstract
In this chapter I describe Tumour Immune Escape mechanisms associated with MHC/HLA class I loss in human and experimental tumours. Different altered HLA class-I phenotypes can be observed that are produced by different molecular mechanisms. Experimental and histological evidences are summarized indicating that at the early stages of tumour development there is an enormous variety of tumour clones with different MHC class I expression patterns. This phase is followed by a strong T cell mediated immune-selection of MHC/HLA class-I negative tumour cells in the primary tumour lesion. This transition period results in a formation of a tumour composed only of HLA-class I negative cells. An updated description of this process observed in a large variety of human tumors is included. In the second section I focus on MHC/HLA class I alterations observed in mouse and human metastases, and describe the generation of different tumor cell clones with altered MHC class I phenotypes, which could be similar or different from the original tumor clone. The biological and immunological relevance of these observations is discussed. Finally, the interesting phenomenon of metastatic dormancy is analyzed in association with a particular MHC class I negative tumor phenotype.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
7
|
Loss of the mismatched human leukocyte antigen haplotype in two acute myelogenous leukemia relapses after haploidentical bone marrow transplantation with post-transplantation cyclophosphamide. Leukemia 2016; 30:2102-2106. [PMID: 27211264 PMCID: PMC5053847 DOI: 10.1038/leu.2016.144] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
HLA specificities are related to development and prognosis of diffuse large B-cell lymphoma. Blood 2013; 122:1448-54. [PMID: 23843497 DOI: 10.1182/blood-2013-02-483420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease influenced by genetic and environmental factors. The role of the HLA system in tumor antigen presentation could be involved in susceptibility and disease control. We analyzed the phenotypic frequencies of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 in 250 DLBCLs, comparing them with 1940 healthy individuals. We also evaluated the influence of HLA polymorphisms on survival in those patients treated with curative intention using cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP)-like regimen without (n = 64, 26%) or with (n = 153, 61%) rituximab. DLBCL patients have a higher phenotypic frequency of HLA-DRB1*01 (29% vs 19.5%, P = .0008, Pc = .0104) and a lower frequency of HLA-C*03 (6.4% vs 17.9%, P < .0005, Pc = .007) compared with healthy individuals. Irrespective of the age-adjusted International Prognostic Index, those patients receiving a CHOP-like plus rituximab regimen and carrying the HLA-B44 supertype had worse 5-year progression-free (54% vs 71%, P = .019) and 5-year overall (71% vs 92%, P = .001) survival compared with patients without this supertype. Our data suggest that some HLA polymorphisms influence the development and outcome of DLBCL, allowing the identification of an extremely good-risk prognostic subgroup. However, these results are preliminary and need to be validated in order to exclude a possible population effect.
Collapse
|
9
|
Abstract
Cancer is generally defined as uncontrollable growth of cells caused by genetic aberrations and/or environmental factors. Yet contagious cancers also occur. The recent emergence of a contagious cancer in Tasmanian devils has reignited interest in transmissible cancers. Two naturally occurring transmissible cancers are known: devil facial tumour disease and canine transmissible venereal tumour. Both cancers evolved once and have then been transmitted from one individual to another as clonal cell lines. The dog cancer is ancient; having evolved more than 6,000 years ago, while the devil disease was first seen in 1996. In this review I will compare and contrast the two diseases focusing on the life histories of the clonal cell lines, their evolutionary trajectories and the mechanisms by which they have achieved immune tolerance. A greater understanding of these contagious cancers will provide unique insights into the role of the immune system in shaping tumour evolution and may uncover novel approaches for treating human cancer.
Collapse
Affiliation(s)
- Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, Australia.
| |
Collapse
|
10
|
Verheyden S, Ferrone S, Mulder A, Claas FH, Schots R, De Moerloose B, Benoit Y, Demanet C. Role of the inhibitory KIR ligand HLA-Bw4 and HLA-C expression levels in the recognition of leukemic cells by Natural Killer cells. Cancer Immunol Immunother 2008; 58:855-65. [PMID: 18841361 DOI: 10.1007/s00262-008-0601-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 09/19/2008] [Indexed: 11/28/2022]
Abstract
Transplantation of acute myeloid leukemia (AML) patients with grafts from related haploidentical donors has been shown to result in a potent graft-versus-leukemia effect. This effect is mediated by NK cells because of the lack of activation of inhibitory killer cell immunoglobulin-like receptors (KIRs) which recognize HLA-Bw4 and HLA-C alleles. However, conflicting results have been reported about the impact of KIR ligand mismatching on the outcome of unrelated HLA-mismatched hematopoietic stem cells transplants (HSCT) to leukemic patients. The interpretation of these conflicting results is hampered by the scant information about the level of expression of HLA class I alleles on leukemic cells, although this variable may affect the activation of inhibitory KIRs. Therefore in the present study, utilizing a large panel of human monoclonal antibodies we have measured the level of expression of HLA-A, -B and -C alleles on 20 B-chronic lymphoid leukemic (B-CLL) cell preparations, on 16 B-acute lymphoid leukemic (B-ALL) cell preparations and on 19 AML cell preparations. Comparison of the level of HLA class I antigen expression on leukemic cells and autologous normal T cells identified selective downregulation of HLA-A and HLA-B alleles on 15 and 14 of the 20 B-CLL, on 2 and 5 of the 16 B-ALL and on 7 and 11 of the 19 AML patients tested, respectively. Most interestingly HLA-C alleles were markedly downregulated on all three types of leukemic cells; the downregulation was most pronounced on AML cells. The potential functional relevance of these abnormalities is suggested by the dose-dependent enhancement of NK cell activation caused by coating the HLA-HLA-Bw4 epitope with monoclonal antibodies on leukemic cells which express NK cell activating ligands. Our results suggest that besides the HLA and KIR genotype, expression levels of KIR ligands on leukemic cells should be included among the criteria used to select the donor-recipient combinations for HSCT.
Collapse
Affiliation(s)
- Sonja Verheyden
- Department of Hematology, HLA and Molecular Hematology Laboratory, Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Strictly Target Cell-dependent Activation of T Cells by Bispecific Single-chain Antibody Constructs of the BiTE Class. J Immunother 2007; 30:798-807. [DOI: 10.1097/cji.0b013e318156750c] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Reinders J, Rozemuller EH, Otten HG, van der Veken LTJN, Slootweg PJ, Tilanus MGJ. HLA and MICA associations with head and neck squamous cell carcinoma. Oral Oncol 2007; 43:232-40. [PMID: 16857416 DOI: 10.1016/j.oraloncology.2006.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/08/2006] [Accepted: 03/09/2006] [Indexed: 11/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a very aggressive tumour arising from the epithelial lining of the upper aerodigestive tract. The precise mechanisms involved in the pathogenesis of HNSCC have not been elucidated. Previous studies observed aberrant HLA expression patterns on HNSCC tumour cells and this study focused on the allelic polymorphism of HLA genes and the MHC class I chain related gene A (MICA) and HNSCC. We investigated whether associations with HLA and/or MIC alleles or haplotypes are involved in the pathogenesis of HNSCC and could explain the observed HLA expression patterns. Patients and controls were typed for HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 with sequence specific priming (SSP), supplemented with sequencing based typing (SBT). MICA allelic polymorphism was included and MICA allele assignment was based upon the combination of high resolution SBT of exons 2-4 in combination with repeat analysis and nucleotide polymorphism of exon 5. HLA-B *35 (p=0.014, OR=0.31) and HLA-B *40 (p=0.013, OR=2.9) were significantly associated in respectively the metastasized patients and the oral cavity patients. In addition, the HLA-B *40-DRB1 *13 haplotype (p=0.016, OR=4.1) was more often observed in the oral cavity patient group. The biological significance of the prevalence of specific HLA haplotypes in patients with oral cavity HNSCC and metastasizing HNSCC requires further investigation.
Collapse
Affiliation(s)
- Judith Reinders
- Department of Pathology, University Medical Centre Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Aptsiauri N, Cabrera T, Garcia-Lora A, Lopez-Nevot MA, Ruiz-Cabello F, Garrido F. MHC Class I Antigens and Immune Surveillance in Transformed Cells. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 256:139-89. [PMID: 17241907 DOI: 10.1016/s0074-7696(07)56005-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MHC class I antigens play a crucial role in the interaction of tumor cells with the host immune system, in particular, in the presentation of peptides as tumor-associated antigens to cytotoxic lymphocytes (CTLs) and in the regulation of cytolytic activity of natural killer (NK) cells. In this review we discuss the role of MHC class I antigens in the recognition and elimination of transformed cells and in the generation of tumor immune escape routes when MHC class I losses occur in tumors. The different altered MHC class I phenotypes and their distribution in different human tumors are the main topic of this review. In addition, molecular defects that underlie MHC alterations in transformed cells are also described in detail. Future research directions in this field are also discussed, including the laboratory analysis of tumor MHC class I-negative variants and the possible restoration of MHC class I expression.
Collapse
Affiliation(s)
- Natalia Aptsiauri
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Vacek MM, Schäffer AA, Davis J, Fischer RE, Dale JK, Adams S, Straus SE, Puck JM. HLA B44 is associated with decreased severity of autoimmune lymphoproliferative syndrome in patients with CD95 defects (ALPS type Ia). Clin Immunol 2006; 118:59-65. [PMID: 16257267 DOI: 10.1016/j.clim.2005.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 09/08/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a disorder of lymphocyte apoptosis characterized by non-malignant lymphadenopathy and splenomegaly, expansion of T cells without either CD4 or CD8 surface markers, and increased incidence of autoimmune diseases and lymphoma. Most patients with ALPS have dominant, heterozygous mutations in tumor necrosis factor receptor superfamily member 6 (TNFRSF6), which encodes CD95, also known as Fas, a mediator of apoptosis. Penetrance and range of disease manifestations in ALPS are highly variable, even among family members who share the same dominant TNFRSF6 mutation. To evaluate HLA as a candidate modifier locus, we typed HLA A, B (including subtypes), and DQB alleles in 356 individuals from 63 unrelated families with defined TNFRSF6 mutations associated with ALPS. We also developed a quantitative severity score and performed statistical analysis. Among the healthier, mutation-bearing individuals, transmission of HLA B44 was significantly overrepresented (nominal P<0.0074) as compared to transmission in patients with severe clinical features of ALPS. The B44 allele may exert a protective role in ALPS.
Collapse
Affiliation(s)
- Marla M Vacek
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, 49 Convent Drive, Building 49, Room 4A14, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xi L, Lyons-Weiler J, Coello MC, Huang X, Gooding WE, Luketich JD, Godfrey TE. Prediction of lymph node metastasis by analysis of gene expression profiles in primary lung adenocarcinomas. Clin Cancer Res 2005; 11:4128-35. [PMID: 15930348 PMCID: PMC2211271 DOI: 10.1158/1078-0432.ccr-04-2525] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Lymph node status is a strong predictor of outcome for lung cancer patients. Recently, several reports have hinted that gene expression profiles of primary tumor may be able to predict node status. The goals of this study were to determine if microarray data could be used to accurately classify patients with regard to pathologic lymph node status, and to determine if this analysis could identify patients at risk for occult disease and worse survival. EXPERIMENTAL DESIGN Two previously published lung adenocarcinoma microarray data sets were reanalyzed. Patients were separated into two groups based on pathologic lymph node positive (pN+) or negative (pN0) status, and prediction analysis of microarray (PAM) was used for training and validation to classify nodal status. Overall survival analysis was performed based on PAM classifications. RESULTS In the training phase, a 318-gene set gave classification accuracy of 88.4% when compared with pathology. Survival was significantly worse in PAM-positive compared with PAM-negative patients overall (P < 0.0001) and also when confined to pN0 patients only (P = 0.0037). In the validation set, classification accuracy was again 94.1% in the pN+ patients but only 21.2% in the pN0 patients. However, among the pN0 patients, recurrence rates and overall survival were significantly worse in the PAM-positive compared with PAM-negative patients (P = 0.0258 and 0.0507). CONCLUSIONS Analysis of gene expression profiles from primary tumor may predict lymph node status but frequently misclassifies pN0 patients as node positive. Recurrence rates and overall survival are worse in these "misclassified" patients, implying that they may in fact have occult disease spread.
Collapse
Affiliation(s)
- Liqiang Xi
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James Lyons-Weiler
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Biomedical Informatics, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael C. Coello
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xin Huang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William E. Gooding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James D. Luketich
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tony E. Godfrey
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Marsman M, Jordens I, Griekspoor A, Neefjes J. Chaperoning antigen presentation by MHC class II molecules and their role in oncogenesis. Adv Cancer Res 2005; 93:129-58. [PMID: 15797446 DOI: 10.1016/s0065-230x(05)93004-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tumor vaccine development aimed at stimulating the cellular immune response focuses mainly on MHC class I molecules. This is not surprising since most tumors do not express MHC class II or CD1 molecules. Nevertheless, the most successful targets for cancer immunotherapy, leukemia and melanoma, often do express MHC class II molecules, which leaves no obvious reason to ignore MHC class II molecules as a mediator in anticancer immune therapy. We review the current state of knowledge on the process of MHC class II-restricted antigen presentation and subsequently discuss the consequences of MHC class II expression on tumor surveillance and the induction of an efficient MHC class II mediated antitumor response in vivo and after vaccination.
Collapse
Affiliation(s)
- Marije Marsman
- Division of Tumor Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
17
|
Cabrera CM, López-Nevot MA, Jiménez P, Garrido F. Involvement of the chaperone tapasin in HLA-B44 allelic losses in colorectal tumors. Int J Cancer 2005; 113:611-8. [PMID: 15455354 DOI: 10.1002/ijc.20526] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tumors can exhibit selective allelic losses of HLA class I antigens as part of altered HLA phenotypes. In colorectal tumors, the HLA class I allele most frequently lost is HLA-B44, although the precise mechanism responsible for this loss has not been described to date. From a total of 95 colorectal cryopreserved tumor samples, we selected (by immunohistochemical staining) 13 tumors with HLA-B44-negative expression. Loss of heterozygosity at 6p21.3 was demonstrated to be the cause of the negative expression in 4 cases. In the remaining 9 cases, structural analyses of microdissected tissue samples of the 3 subtypes of HLA-B44 loss in these tumors (B*4402, B*4403 and B*4405) did not reveal any mutations. However, all 3 subtypes of HLA-B44 presented in this study shared a common characteristic: the presence of an aspartic amino acid residue at position 114 in the HLA class I heavy chain. This residue has been described as determining tapasin dependence for the surface expression of these alleles and therefore for antigen presentation. We studied tapasin transcription by RT-PCR in these tumors and found tapasin downregulation in all 9 tumors samples with the HLA-B44-negative phenotype. In contrast, tapasin was normally transcribed in HLA-B44-positive colorectal tumors samples, as well as in 3 HLA-B44-negative laryngeal carcinomas and 1 bladder tumor. Defective tapasin transcription seems to be an alteration responsible for the absence of HLA-B44 expression in colorectal tumors, thus contributing to the generation of tumor immune escape phenotypes.
Collapse
Affiliation(s)
- Carmen M Cabrera
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Avda. Fuerzas Armadas 2, 18014 Granada, Spain
| | | | | | | |
Collapse
|