1
|
Xiong Y, Cai M, Xu Y, Dong P, Chen H, He W, Zhang J. Joint together: The etiology and pathogenesis of ankylosing spondylitis. Front Immunol 2022; 13:996103. [PMID: 36325352 PMCID: PMC9619093 DOI: 10.3389/fimmu.2022.996103] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/28/2022] [Indexed: 08/16/2023] Open
Abstract
Spondyloarthritis (SpA) refers to a group of diseases with inflammation in joints and spines. In this family, ankylosing spondylitis (AS) is a rare but classic form that mainly involves the spine and sacroiliac joint, leading to the loss of flexibility and fusion of the spine. Compared to other diseases in SpA, AS has a very distinct hereditary disposition and pattern of involvement, and several hypotheses about its etiopathogenesis have been proposed. In spite of significant advances made in Th17 dynamics and AS treatment, the underlying mechanism remains concealed. To this end, we covered several topics, including the nature of the immune response, the microenvironment in the articulation that is behind the disease's progression, and the split between the hypotheses and the evidence on how the intestine affects arthritis. In this review, we describe the current findings of AS and SpA, with the aim of providing an integrated view of the initiation of inflammation and the development of the disease.
Collapse
Affiliation(s)
- Yuehan Xiong
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Menghua Cai
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Hui Chen
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Wei He
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| | - Jianmin Zhang
- Department of Immunology, Chinese Academy of Medical Sciences (CAMS) Key Laboratory of T Cell and Cancer Immunotherapy, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou, China
| |
Collapse
|
2
|
Liu J, Zhu P, Peng J, Li K, Du J, Gu J, Ou Y. Identification of disease-associated proteins by proteomic approach in ankylosing spondylitis. Biochem Biophys Res Commun 2007; 357:531-6. [PMID: 17434140 DOI: 10.1016/j.bbrc.2007.03.179] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 03/29/2007] [Indexed: 02/06/2023]
Abstract
Ankylosing spondylitis (AS) is a chronic systemic inflammatory disorder of the axial skeleton and shows significant inherited susceptibility. Auto-immune responses have been traditionally considered as a putative pathogenetic event in AS. However, no consistent self-antigen has been identified to responsible for the disorders in AS to this day. In this study, serum protein profiles of AS patients and healthy controls from a large Chinese AS family were investigated by two dimensional electrophoresis analysis. A group of four highly expressed protein spots was observed in all AS patients' profiles and subsequently identified as isoforms of haptoglobin precursor (pre-Hp) by ESI-Q-TOF MS/MS. Increased expression of haptoglobin precursor were also observed in sera of sporadic AS patients. Moreover, bioinformatics analysis revealed epitopes derived from haptoglobin precursor with high affinity binding to HLA-B( *)2705, a primary subtype associated with AS. These results indicate that pre-Hp may be involved in the pathogenesis of AS.
Collapse
Affiliation(s)
- Jing Liu
- Center of Medical Genetics, Department of Hematology, Peking University First Hospital, Peking University, No. 8, Xishiku Street, West District, Beijing 100034, China
| | | | | | | | | | | | | |
Collapse
|
3
|
Buehr M, Hjorth JP, Hansen AK, Sandøe P. Genetically modified laboratory animals--what welfare problems do they face? J APPL ANIM WELF SCI 2004; 6:319-38. [PMID: 14965786 DOI: 10.1207/s15327604jaws0604_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this article, we respond to public concern expressed about the welfare of genetically modified (GM) nonhuman animals. As a contribution to the debate on this subject, we attempt in this article to determine in what situations the practice of genetic modification in rodents may generate significant welfare problems. After a brief discussion of the principles of animal welfare, we focus on the problem of animal suffering and review some types of gene modifications likely to cause predictable welfare problems. In this article, we also consider suffering that may be involved in the process of generating GM animals. Finally, we discuss the role of GM animals in attempts to reduce, replace, and refine the use of animals in research.
Collapse
Affiliation(s)
- Mia Buehr
- Center for Bioethics and Risk Assessment, Department of Molecular Biology, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
4
|
Chernajovsky Y, Winyard PG, Kabouridis PS. Advances in understanding the genetic basis of rheumatoid arthritis and osteoarthritis: implications for therapy. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 2:223-34. [PMID: 12421093 DOI: 10.2165/00129785-200202040-00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are polygenic diseases. Polymorphisms in candidate genes have been studied for possible association with susceptibility to disease development. Aside from HLA polymorphisms, of particular interest are those in genes encoding cytokines, signaling molecules, and enzymes involved in the production and catabolism of oxygen and nitrogen radicals. Cytokines are involved in the modulation of the pathological process and have been the target for novel therapeutic interventions. Evidence for their involvement in RA and OA has been provided from genetic analyses in patient populations as well as from animal models of disease. Intracellular signaling cascades control cellular responses and thus regulate many aspects of the pathology manifested in rheumatic diseases. Deciphering the organization and activity of such signaling pathways in disease is underway. Polymorphisms have been identified in gene promoter regions regulating efficient binding of transcription factors, and in coding regions of genes whose products are involved in signal cascades relevant to RA. Among these are the NF-kappaB pathway, steroid receptors and the p53 tumor suppressor gene. Both reactive oxygen species (ROS) and reactive nitrogen species (RNS) have also been implicated in rheumatic diseases. It is thought that excess, damaging, ROS/RNS may arise from an imbalance between the production and removal of these chemical species. Polymorphisms in genes that encode enzymes involved in either generating or degrading ROS/RNS may contribute to such an imbalance. In the last few years, polymorphisms in such genes have indeed been identified as risk factors for rheumatic diseases.
Collapse
Affiliation(s)
- Yuti Chernajovsky
- Bone and Joint Research Unit, Queen Mary's School of Medicine and Dentistry, Barts and The London, University of London, London, UK.
| | | | | |
Collapse
|
5
|
Waksman BH. Immune regulation in adjuvant disease and other arthritis models: relevance to pathogenesis of chronic arthritis. Scand J Immunol 2002; 56:12-34. [PMID: 12100468 DOI: 10.1046/j.1365-3083.2002.01106.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experimental models of arthritis and their human counterparts fall into three distinct classes: (a) responses of T cells to disseminated microbial antigens (Ags) as such; (b) responses of T cells to cartilage autoAgs; and (c) responses of T cells to major histocompatibility complex (HLA-B27, DRB1) or other membrane components (LFA-1) expressed on bone marrow-derived cells. The primary immune response is driven, in naturally occurring disease, by microbial infection, e.g. with streptococci, enteric gram-negative rods or spirochetes, or is experimentally induced with mycobacterial and other adjuvants. The response to cartilage components, such as collagen type-II and various proteoglycans, may be driven by cross-reactive microbial Ags, heat shock proteins (HSPs) in particular, or the adjuvant effect of intense primary joint inflammation, as in rheumatoid arthritis and the spondyloarthropathies. Adjuvant disease appears to be purely T-cell-mediated, whereas both T cells and antibody play a role in collagen and many other forms of arthritis. Experimental evidence suggests a pathogenetic role for T-cell receptor gammadelta T cells in some lesions. Arthritis may be regulated by microbial and tissue HSPs, when these are administered by a nonimmunizing route or as altered peptide ligands, by anti-idiotypic responses that block the action of effector T cells, and by competing Ags. Immune regulation involving natural killer (NK), NK T and certain subsets of gammadelta and alphabeta T cells, which may affect the occurrence, localization and character of this group of diseases, presents a challenge for further investigation.
Collapse
Affiliation(s)
- B H Waksman
- Department of Pathology, NYU School of Medicine, New York 10016, USA.
| |
Collapse
|
6
|
Hsu HC, Zhang HG, Song GG, Xie J, Liu D, Yang PA, Fleck M, Wintersberger W, Zhou T, Edwards CK, Mountz JD. Defective Fas ligand-mediated apoptosis predisposes to development of a chronic erosive arthritis subsequent to Mycoplasma pulmonis infection. ARTHRITIS AND RHEUMATISM 2001; 44:2146-59. [PMID: 11592380 DOI: 10.1002/1529-0131(200109)44:9<2146::aid-art368>3.0.co;2-o] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE To determine whether defective T cell apoptosis is associated with the development of a chronic arthritis subsequent to mycoplasma infection, and to determine whether deletion of T cells can prevent the development of this arthritis. METHODS B6 wild-type (B6-+/+), B6-lpr/lpr, and B6-gld/gld mice were infected with Mycoplasma pulmonis. The severity of lymphocytic infiltration and joint damage was evaluated, and the degree of recovery of viable mycoplasma from the spleen and joints was determined. Antigen-presenting cells derived from Fas mutant lpr mice (lpr-APC) were transfected ex vivo with an adenovirus (Ad) vector to yield lpr-APC expressing high levels of Fas ligand (lpr-APC-AdFasL), which in turn were transferred intraperitoneally into M pulmonis-infected B6-gld/gld mice. The development of arthritis subsequent to M pulmonis infection and the induction of apoptosis of cells within the synovial tissue and lymph nodes of lpr-APC-AdFasL-treated B6-gld/gld mice were determined. RESULTS Infection of B6-lpr/lpr and B6-gld/gld mice with M pulmonis resulted in an acute-phase inflammation of the synovium that later developed into a chronic erosive arthritis. Similar infection of B6-+/+ mice resulted only in an acute joint inflammatory response that resolved. Chronic arthritis in B6-gld/gld mice and B6-lpr/lpr was not due to persistent infection, since there were no differences in the rates of clearance of M pulmonis from the joints of B6-gld/gld or B6-lpr/lpr mice compared with B6-+/+ mice. Treatment of infected B6-gld/gld mice with lpr-APC-AdFasL resulted in a significantly decreased incidence of chronic arthritis that was associated with a decrease in lymph node T cells, but not with apoptosis of synovial T cells or fibroblasts. CONCLUSION Defective Fas/FasL-mediated apoptosis of T cells is an important factor that rendered arthritis-resistant B6 mice susceptible to the development of a chronic erosive arthritis subsequent to mycoplasma infection. In vivo lpr-APC-AdFasL cell-gene therapy is a safe and effective method for inhibiting the development of this arthritis.
Collapse
Affiliation(s)
- H C Hsu
- The University of Alabama at Birmingham, 35294-0007, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|