1
|
Matos IDA, Goes Pinto AC, Ferraz MVF, Adan WCS, Rodrigues RP, Dos Santos JX, Kitagawa RR, Lins RD, Oliveira TB, Costa Junior NBD. Identification of potential Staphylococcus aureus dihydrofolate reductase inhibitors using QSAR, molecular docking, dynamics simulations and free energy calculation. J Biomol Struct Dyn 2023; 41:3835-3846. [PMID: 35356863 DOI: 10.1080/07391102.2022.2057361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
Herein we describe the use of molecular docking simulations, quantitative structure-activity relationships studies and ADMETox predictions to analyse the molecular recognition of a series of 7-aryl-2,4-diaminoquinazoline derivatives on the inhibition of Staphylococcus aureus dihydrofolate reductase and conducted a virtual screening to discover new potential inhibitors. A quantitative structure-activity relationship model was developed using 40 compounds and two selected descriptors. These descriptors indicated the importance of pKa and molar refractivity for the inhibitory activity against SaDHFR. The values of R2train, CVLOO and R2test generated by the model were 0.808, 0.766, and 0.785, respectively. The integration between QSAR, molecular docking, ADMETox analysis and molecular dynamics simulations with binding free energies calculation, yielded the compounds PC-124127620, PC-124127795 and PC-124127805 as promising candidates to SaDHFR inhibitors. These compounds presented high potency, good pharmacokinetics and toxicological profile. Thus, these molecules are good potential antimicrobial agent to treatment of infect disease caused by S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Isaac de Araujo Matos
- Department of Chemistry, Graduate Program in Chemistry, Federal University of Sergipe-UFS, São Cristóvão-SE, Brazil
| | - Ana Carolina Goes Pinto
- Department of Chemistry, Graduate Program in Chemistry, Federal University of Sergipe-UFS, São Cristóvão-SE, Brazil
| | | | - Wenny Camilla Santos Adan
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, Federal University of Espírito Santo-UFES, Vitória-ES, Brazil
| | - Ricardo Pereira Rodrigues
- Department of Pharmacy, Graduate Program in Chemistry, Federal University of Sergipe-UFS, São Cristóvão-SE, Brazil
| | - Juliane Xavier Dos Santos
- Department of Chemistry, Graduate Program in Chemistry, Federal University of Sergipe-UFS, São Cristóvão-SE, Brazil
| | - Rodrigo Rezende Kitagawa
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, Federal University of Espírito Santo-UFES, Vitória-ES, Brazil
| | | | - Tiago Branquinho Oliveira
- Department of Pharmacy, Graduate Program in Chemistry, Federal University of Sergipe-UFS, São Cristóvão-SE, Brazil
| | | |
Collapse
|
2
|
Xue J, Michael Davidson P, Zhong Q. Antimicrobial activity of thyme oil co-nanoemulsified with sodium caseinate and lecithin. Int J Food Microbiol 2015; 210:1-8. [PMID: 26082324 DOI: 10.1016/j.ijfoodmicro.2015.06.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/02/2015] [Accepted: 06/07/2015] [Indexed: 11/26/2022]
Abstract
Emulsions of essential oils are investigated as potential intervention strategies to improve food safety and are preferably prepared from generally-recognized-as-safe emulsifiers. Stable thyme oil nanoemulsions can be prepared using combinations of sodium caseinate (NaCas) and soy lecithin. The objective of the present research was to study the antimicrobial activity of these nanoemulsions and understand the impacts of emulsifier concentrations. 10 g/L thyme oil was emulsified using combinations of (A) 4% w/v NaCas and 0.5% w/v lecithin or (B) 2% w/v NaCas and 0.25% w/v lecithin by high shear homogenization. Combination A resulted in a transparent emulsion with a mean droplet diameter of 82.5 nm, while it was turbid for the Combination B with an average diameter of 125.5 nm. Nanoemulsified thyme oil exhibited quicker initial reductions of bacteria than free thyme oil in tryptic soy broth (TSB) and 2% reduced fat milk at 21 °C, due to the improved dispersibility of thyme oil. In TSB with 0.3 g/L thyme oil, it took less than 4 and 8 h for two nanoemulsions and free oil, respectively, to reduce Escherichia coli O157:H7 and Listeria monocytogenes to be below the detection limit. The emulsified thyme oil also demonstrated more significant reductions of bacteria initially (4 and 8 h) in 2% reduced fat milk than free thyme oil. Especially, with 4 g/L thyme oil, the nanoemulsion prepared with Combination A reduced L. monocytogenes to be below the detection limit after 72 h, while the free thyme oil treatment was only bacteriostatic and the turbid nanoemulsion treatment with Combination B resulted in about 1 log CFU/mL reduction. However, E. coli O157:H7 treated with 3 g/L emulsified thyme oil and Salmonella Enteritidis treated with 4 g/L emulsified thyme oil recovered to a higher extent in milk than free thyme oil treatments. The increased concentration of emulsifiers in Combination A apparently reduced the antimicrobials available to alter bacteria membrane permeability as tested by the crystal violet assay at low antimicrobial concentrations and short time (1 h). The findings suggest that nanoemulsions can be potentially used to incorporate thyme oil for use as antimicrobial preservatives in foods.
Collapse
Affiliation(s)
- Jia Xue
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, United States
| | - P Michael Davidson
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, United States
| | - Qixin Zhong
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
3
|
Li N, Tan SN, Cui J, Guo N, Wang W, Zu YG, Jin S, Xu XX, Liu Q, Fu YJ. PA-1, a novel synthesized pyrrolizidine alkaloid, inhibits the growth of Escherichia coli and Staphylococcus aureus by damaging the cell membrane. J Antibiot (Tokyo) 2014; 67:689-96. [PMID: 24894184 DOI: 10.1038/ja.2014.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 03/04/2014] [Accepted: 04/03/2014] [Indexed: 11/09/2022]
Abstract
In the present study, antimicrobial activity and mode of a novel synthesized pyrrolizidine alkaloid (PA-1) were investigated. PA-1 exhibited predominantly strong antibacterial activity toward six bacteria tested with minimal inhibitory concentration (MIC) values ranging from 0.0039 to 0.025 mg ml(-1). The time-kill assay indicated that PA-1 killed Escherichia coli and Staphylococcus aureus completely at 2MIC (minimum bactericidal concentration) within 8 h. Besides, PA-1-induced death rates of most sensitive strains (E. coli, 97.80% and S. aureus, 96.24%) were analyzed by flow cytometry. A combination of approaches was used to verify the membrane damage of E. coli and S. aureus. Results showed that release of 260 nm absorbing materials quickly increased after PA-1 treatment. PA-1 also rapidly promoted the uptake of crystal violet from 24.52 to 97.12% for E. coli and from 19.68 to 97.63% for S. aureus when the concentrations were changed from MIC to 4MIC. Furthermore, the cellular membrane damages were testified by the significant increase of fluorescence intensity and decrease of membrane potential. Finally, lecithin and phosphate groups were applied to search the possibly targets on the cytoplasmic membrane. Results showed that PA-1 acted on cytoplasmic membrane phospholipids and phosphate groups of S. aureus but not of E. coli. In conclusion, the novel synthesized PA-1 exerted its antibacterial activity by acting on membrane phospholipids and phosphate groups and then damaging the structures of cellular membrane, which finally led to cell death.
Collapse
Affiliation(s)
- Na Li
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Sheng-nan Tan
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Jian Cui
- College of Life Sciences, Northeast Forestry University, Harbin, People's Republic of China
| | - Na Guo
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Wei Wang
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Yuan-gang Zu
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Shuang Jin
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| | - Xian-xiu Xu
- Department of Chemistry, Northeast Normal University, Changchun, People's Republic of China
| | - Qun Liu
- Department of Chemistry, Northeast Normal University, Changchun, People's Republic of China
| | - Yu-jie Fu
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, People's Republic of China
| |
Collapse
|
4
|
Jose J, Maas RM, Teese MG. Autodisplay of enzymes—Molecular basis and perspectives. J Biotechnol 2012; 161:92-103. [DOI: 10.1016/j.jbiotec.2012.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 02/14/2012] [Accepted: 04/04/2012] [Indexed: 11/16/2022]
|
5
|
Jose J, von Schwichow S. Autodisplay of Active Sorbitol Dehydrogenase (SDH) Yields a Whole Cell Biocatalyst for the Synthesis of Rare Sugars. Chembiochem 2004; 5:491-9. [PMID: 15185373 DOI: 10.1002/cbic.200300774] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whole cell biocatalysts are attractive technological tools for the regio- and enantioselective synthesis of products, especially from substrates with several identical reactive groups. In the present study, a whole cell biocatalyst for the synthesis of rare sugars from polyalcohols was constructed. For this purpose, sorbitol dehydrogenase (SDH) from Rhodobacter sphaeroides, a member of the short-chain dehydrogenase/reductase (SDR) family, was expressed on the surface of Escherichia coli using Autodisplay. Autodisplay is an efficient surface display system for Gram-negative bacteria and is based on the autotransporter secretion pathway. Transport of SDH to the outer membrane was monitored by SDS-PAGE and Western blotting of different cell fractions. The surface exposure of the enzyme could be verified by immunofluorescence microscopy and fluorescence activated cell sorting (FACS). The activity of whole cells displaying SDH at the surface was determined in an optical test. Specific activities were found to be 12 mU per 3.3 x 10(8) cells for the conversion of D-glucitol (sorbitol) to D-fructose, 7 mU for the conversion D-galactitol to D-tagatose, and 17 mU for the conversion of L-arabitol to L-ribulose. The whole cell biocatalyst obtained by surface display of SDH could also produce D-glucitol from D-fructose (29 mU per 3.3 x 10(8) cells).
Collapse
Affiliation(s)
- Joachim Jose
- Pharmazeutische und Medizinische Chemie, Naturwissenschaftlich-Technische Fakultät III, Universität des Saarlandes, P. O. Box 151150, 66041 Saarbrücken, Germany.
| | | |
Collapse
|