1
|
Cao Y, Li S, Zhang Z, Zeng M, Zheng X, Feng W. A metabolomics study on the mechanisms of Gardeniae fructus against α-naphthylisothiocyanate-induced cholestatic liver injury. Biomed Chromatogr 2024; 38:e5961. [PMID: 39054754 DOI: 10.1002/bmc.5961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Gardeniae fructus (GF) is known for its various beneficial effects on cholestatic liver injury (CLI). However, the biological mechanisms through which GF regulates CLI have not been fully elucidated. This study aimed to explore the potential mechanisms of GF against α-naphthylisothiocyanate (ANIT)-induced CLI. First, HPLC technology was used to analyze the chemical profile of the GF extract. Second, the effects of GF on serum biochemical indicators and liver histopathology were examined. Lastly, metabolomics was utilized to study the changes in liver metabolites and clarify the associated metabolic pathways. In chemical analysis, 10 components were identified in the GF extract. GF treatment regulated serum biochemical indicators in ANIT-induced CLI model rats and alleviated liver histological damage. Metabolomics identified 26 endogenous metabolites as biomarkers of ANIT-induced CLI, with 23 biomarkers returning to normal levels, particularly involving primary bile acid biosynthesis, glycerophospholipid metabolism, tryptophan metabolism, and arachidonic acid metabolism. GF shows promise in alleviating ANIT-induced CLI by modulating multiple pathways.
Collapse
Affiliation(s)
- Yangang Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Shujing Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
- The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, People's Republic of China
| |
Collapse
|
2
|
Shahbaz K, Chang D, Zhou X, Low M, Seto SW, Li CG. Crocins for Ischemic Stroke: A Review of Current Evidence. Front Pharmacol 2022; 13:825842. [PMID: 35991882 PMCID: PMC9388830 DOI: 10.3389/fphar.2022.825842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Crocins (CRs) and the related active constituents derived from Crocus sativus L. (Saffron) have demonstrated protective effects against cerebral ischemia and ischemic stroke, with various bioactivities including neuroprotection, anti-neuroinflammation, antioxidant, and cardiovascular protection. Among CRs, crocin (CR) has been shown to act on multiple mechanisms and signaling pathways involved in ischemic stroke, including mitochondrial apoptosis, nuclear factor kappa light chain enhancer of B cells pathway, S100 calcium-binding protein B, interleukin-6 and vascular endothelial growth factor-A. CR is generally safe and well-tolerated. Pharmacokinetic studies indicate that CR has poor bioavailability and needs to convert to crocetin (CC) in order to cross the blood-brain barrier. Clinical studies have shown the efficacy of saffron and CR in treating various conditions, including metabolic syndrome, depression, Alzheimer’s disease, and coronary artery disease. There is evidence supporting CR as a treatment for ischemic stroke, although further studies are needed to confirm their efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Kiran Shahbaz
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Reserach Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Chung Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- *Correspondence: Kiran Shahbaz, ; Chung Guang Li,
| |
Collapse
|
3
|
Fan Y, Li X, Ding L, Zhou W, Xu G, Wang Y, Zhang Y, Ni Q. Accelerated Solvent Extraction of Antioxidant Compounds from Gardeniae Fructus and Its Acetylcholinesterase Inhibitory and PC12 Cell Protective Activities. Foods 2021; 10:foods10112805. [PMID: 34829086 PMCID: PMC8622743 DOI: 10.3390/foods10112805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Gardeniae fructus is a common neuroprotective medicinal food in China, however the extraction efficiency and mixture activities are rarely mentioned. In this study, accelerated solvent extraction (ASE) parameters were optimized by a response surface methodology to extract antioxidants from Gardeniae fructus. Neuroprotective activity was evaluated using H2O2 and amyloid-β25–35 peptide-treated PC12 cells. By comparing with three other extract methods (i.e., heated refluxing extraction (HRE), ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE)), it was found that the yield (35.10%), total iridoids (27.69%), total flavonoid (6.12%) content, antioxidant activities (IC50 on DPPH, 164.46 µg/mL; FRAP value 4703.54 μmol/L), and acetylcholinesterase inhibitory ability (IC50 92.58 µg/mL) of ASE extract under the optimal condition (150 °C temperature, 10 min static time, 60% ethanol, 2 extract cycles) were significantly higher than other extract methods. The strongest ability to protect PC12 cells from damage was also present in ASE extract, as evidenced by decreasing lactate dehydrogenase and malondialdehyde levels, elevating superoxide dismutase and glutathioneperoxidase activities. Compositional analysis indicated that the extremely high crocetin level in ASE extract (1.30 μg/mg) may offer great potential. Our results indicated that ASE is a proper extraction method that could offer great potential for finding the neuroprotective ability of Gardeniae fructus for the treatment of AD.
Collapse
Affiliation(s)
- Yiling Fan
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Xueying Li
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Lan Ding
- Agricultural and Forestry Technology Extension Center of Lin’an, Hangzhou 311300, China;
| | - Weiying Zhou
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Guangzhi Xu
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Yan Wang
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Youzuo Zhang
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
| | - Qinxue Ni
- Food and Health College, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (Y.F.); (X.L.); (W.Z.); (G.X.); (Y.W.); (Y.Z.)
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- Correspondence: ; Tel.: +86-15858191911
| |
Collapse
|
4
|
The RIG-I Signal Pathway Mediated Panax notoginseng Saponin Anti-Inflammatory Effect in Ischemia Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8878428. [PMID: 34462642 PMCID: PMC8403041 DOI: 10.1155/2021/8878428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/09/2021] [Accepted: 08/07/2021] [Indexed: 01/10/2023]
Abstract
Panax notoginseng saponins (PNS), the main bioactive constituents of a traditional Chinese herb Panax notoginseng, were commonly used for ischemic stroke in China. However, the associated cellular and molecular mechanisms of PNS have not been well examined. This study aimed to decipher the underlying molecular target of PNS in the treatment of cerebral ischemia. The oxygen-glucose-deprived (OGD) model of rat brain microvascular endothelial cells (BMECs) was used in this study. The alteration of gene expression in rat BMECs after PNS treatment was measured by microarray and indicated that there were 38 signaling pathways regulated by PNS. Among them, RIG-I receptor and related signaling molecules TNF receptor-associated factor 2 (Traf2) and nuclear factor-kappa B (NF-κB) were significantly suppressed by PNS, which was verified again in OGD-induced BMECs measured by FQ-PCR and western blotting and in middle cerebral artery occlusion (MCAO) rats measured by immunohistochemistry. The levels of TNF-α, IL-8, and the downstream cytokines regulated by RIG-I receptor pathway were also decreased by PNS. Meanwhile, the neurological evaluation, hematoxylin and eosin (HE) staining, and Evans blue staining were conducted to evaluate the effect of PNS in MCAO rats. Results showed PNS significantly improved functional outcome and cerebral vascular leakage. Flow cytometry showed the number of the inflammatory cells infiltrated in brain tissue was decreased in PNS treatment. Our results identified that RIG-I signaling pathway mediated anti-inflammatory properties of PNS in cerebral ischemia, which provided the novel insights of PNS application in clinics.
Collapse
|
5
|
Liu H, Zhang Z, Zang C, Wang L, Yang H, Sheng C, Shang J, Zhao Z, Yuan F, Yu Y, Yao X, Bao X, Zhang D. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113491. [PMID: 33091490 DOI: 10.1016/j.jep.2020.113491] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides J. Ellis (Fructus Gardenia) is a traditional Chinese medicine with diverse pharmacological functions, such as anti-inflammation, anti-depression, as well as improvement of cognition and ischemia brain injury. GJ-4 is a natural extract from Gardenia jasminoides J. Ellis (Fructus Gardenia) and has been proved to improve memory impairment in Alzheimer's disease (AD) mouse model in our previous studies. AIM OF THE STUDY This study aimed to evaluate the therapeutic effects of GJ-4 on vascular dementia (VD) and explore the potential mechanisms. MATERIAL AND METHODS In our experiment, a focal cerebral ischemia and reperfusion rat model was successfully developed by the middle cerebral artery occlusion and reperfusion (MCAO/R). GJ-4 (10 mg/kg, 25 mg/kg, 50 mg/kg) and nimodipine (10 mg/kg) were orally administered to rats once a day for consecutive 12 days. Learning and memory behavioral performance was assayed by step-down test and Morris water maze test. The neurological scoring test was performed to evaluate the neurological function of rats. 2,3,5-Triphenyltetrazolium chloride (TTC) staining and Nissl staining were respectively employed to determine the infarct condition and neuronal injury of the brain. Iba1 immunohistochemistry was used to show the activation of microglia. Moreover, the synaptic damage and inflammatory level were detected by Western blot. RESULTS GJ-4 could significantly improve memory impairment, cerebral infraction, as well as neurological deficits of VD rats induced by MCAO/R. Further research indicated VD-induced neuronal injury was alleviated by GJ-4. In addition, GJ-4 could protect synapse of VD rats by upregulating synaptophysin (SYP) expression, post synaptic density 95 protein (PSD95) expression, and downregulating N-Methyl-D-Aspartate receptor 1 (NMDAR1) expression. Subsequent investigation of the underlying mechanisms identified that GJ-4 could suppress neuroinflammatory responses, supported by inhibited activation of microglia and reduced expression of inflammatory proteins, which ultimately exerted neuroprotective effects on VD. Further mechanistic study indicated that janus kinase 2 (JAK2)/signal transducer and activator of transcription 1 (STAT1) pathway was inhibited by GJ-4 treatment. CONCLUSION These results suggested that GJ-4 might serve as a potential drug to improve VD. In addition, our study indicated that inhibition of neuroinflammation might be a promising target to treat VD.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/enzymology
- Brain/pathology
- Brain/physiopathology
- Dementia, Vascular/enzymology
- Dementia, Vascular/etiology
- Dementia, Vascular/prevention & control
- Dementia, Vascular/psychology
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Gardenia
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/enzymology
- Infarction, Middle Cerebral Artery/physiopathology
- Inflammation Mediators/metabolism
- Janus Kinase 2/metabolism
- Male
- Memory/drug effects
- Memory Disorders/enzymology
- Memory Disorders/etiology
- Memory Disorders/prevention & control
- Memory Disorders/psychology
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Neuroprotective Agents/pharmacology
- Nootropic Agents/pharmacology
- Plant Extracts/pharmacology
- Rats, Sprague-Dawley
- Reperfusion Injury/enzymology
- Reperfusion Injury/etiology
- Reperfusion Injury/physiopathology
- Reperfusion Injury/prevention & control
- STAT1 Transcription Factor/metabolism
- Signal Transduction
- Synapses/drug effects
- Synapses/metabolism
- Synapses/pathology
- Rats
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Lu Wang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hanyu Yang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Chanjuan Sheng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Yang Yu
- Institute of TCM, Natural Products College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- Institute of TCM, Natural Products College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050, China.
| |
Collapse
|
6
|
Zhu L, Gong X, Gong J, Xuan Y, Fu T, Ni S, Xu L, Ji N. Notoginsenoside R1 upregulates miR-221-3p expression to alleviate ox-LDL-induced apoptosis, inflammation, and oxidative stress by inhibiting the TLR4/NF-κB pathway in HUVECs. ACTA ACUST UNITED AC 2020; 53:e9346. [PMID: 32401923 PMCID: PMC7233198 DOI: 10.1590/1414-431x20209346] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Atherosclerosis (AS) is a common vascular disease, which can cause apoptosis of vascular endothelial cells. Notoginsenoside R1 (NGR1) is considered an anti-AS drug. MicroRNAs (miRNAs) are believed to play a vital role in cell apoptosis and angiogenesis. This study aimed to explore the mechanism of NGR1 for treating AS through miRNAs. Flow cytometry was used to detect the apoptosis rate. The levels of inflammatory cytokines interleukin (IL)-6 and IL-1β were detected using ELISA. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were measured using corresponding assay kits. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to detect miR-221-3p expression. Dual-luciferase reporter and RNA immunoprecipitation assays were carried out to examine the relationship between miR-221-3p and toll-like receptors 4 (TLR4). Also, western blot analysis was performed to determine the levels of TLR4 and nuclear factor kappa B (NF-κB) signaling pathway-related proteins. Oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) apoptosis, inflammation, and oxidative stress. NGR1 alleviated the negative effect of ox-LDL through promoting the expression of miR-221-3p in HUVECs. TLR4 was a target of miR-221-3p, and its overexpression could reverse the inhibition effects of miR-221-3p on apoptosis, inflammation, and oxidative stress. NGR1 improved miR-221-3p expression to inhibit the activation of the TLR4/NF-κB pathway in ox-LDL-treated HUVECs. NGR1 decreased ox-LDL-induced HUVECs apoptosis, inflammation, and oxidative stress through increasing miR-221-3p expression, thereby inhibiting the activation of the TLR4/NF-κB pathway. This study of the mechanism of NGR1 provided a more theoretical basis for the treatment of AS.
Collapse
Affiliation(s)
- Lingbo Zhu
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Xinyan Gong
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Jianping Gong
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Yungang Xuan
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Ting Fu
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Shimao Ni
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Lei Xu
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| | - Ningning Ji
- Department of Cardiology, Central Hospital of Yiwu, Yiwu, Zhejiang, China
| |
Collapse
|
7
|
Tongluojiunao, a traditional Chinese medication with neuroprotective ability: A review of the cellular, molecular and physiological mediators of TLJN’s effectiveness. Biomed Pharmacother 2019; 111:485-495. [DOI: 10.1016/j.biopha.2018.12.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/16/2018] [Accepted: 12/17/2018] [Indexed: 11/17/2022] Open
|
8
|
Yang G, Wang N, Seto SW, Chang D, Liang H. Hydroxysafflor yellow a protects brain microvascular endothelial cells against oxygen glucose deprivation/reoxygenation injury: Involvement of inhibiting autophagy via class I PI3K/Akt/mTOR signaling pathway. Brain Res Bull 2018; 140:243-257. [PMID: 29775658 DOI: 10.1016/j.brainresbull.2018.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/27/2018] [Accepted: 05/11/2018] [Indexed: 12/31/2022]
Abstract
The present study aimed to test whether Hydroxysafflor yellow A (HSYA) protects the brain microvascular endothelial cells (BMECs) injury induced by oxygen glucose deprivation/reoxygenation (OGD/R) via the PI3K/Akt/mTOR autophagy signaling pathway. Primary rat BMECs were cultured and identified by the expression of factor VIII-related antigen before being exposed to OGD/R to imitate ischemia/reperfusion (I/R) damage in vitro. The protective effect of HSYA was evaluated by assessing (1) cellular morphologic and ultrastructural changes; (2) cell viability and cytotoxicity; (3) transendothelial electrical resistance (TEER) of monolayer BMECs; (4) cell apoptosis; (5) fluorescence intensity of LC3B; (6) LC3 mRNA expression; (7) protein expressions of LC3, Beclin-1, Zonula occludens-1 (ZO-1), phospho-Akt (p-Akt), Akt, phospho-mTOR (p-mTOR) and mTOR. It was found that HSYA (20, 40, and 80 μM) and 3-MA effectively reversed the cellular morphological and ultrastructural changes, increased cell survival, normalized the permeability of BMECs, and suppressed apoptosis induced by OGD/R (2 h OGD followed by 24 h reoxygenation). Concurrently, HSYA and 3-MA also inhibited OGD/R-induced autophagy evidenced by the decreased number of autophagosomes and down-regulated levels of LC3 and Beclin-1 proteins and mRNAs. HSYA (80 μM), in combination with 3-MA showed a synergistic effect. Mechanistic studies revealed that HSYA (80 μM) markedly increased the levels of p-Akt and p-mTOR proteins. Blockade of PI3K activity by ZSTK474 abolished its anti-autophagic and pro-survival effect and lowered both Akt and mTOR phosphorylation levels. Taken together, these results suggest that HSYA protects BMECs against OGD/R-induced injury by inhibiting autophagy via the Class I PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Guang Yang
- Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China.
| | - Ning Wang
- Anhui University of Chinese Medicine, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China; National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Sai Wang Seto
- National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dennis Chang
- National Institute of Complementary Medicine, Western Sydney University, Penrith, NSW 2751, Australia
| | - Huangzheng Liang
- School of Medical, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
9
|
Fang J, Yang B, Ge Z, Bai X, Yan B. Single standard substance for the determination of nine volatile components in the distillate of Fructus Gardeniae and Radix Curcumae (an intermediate of Xingnaojing Injection). J Sep Sci 2017; 40:3946-3957. [PMID: 28857420 DOI: 10.1002/jssc.201700593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/11/2017] [Accepted: 07/30/2017] [Indexed: 11/08/2022]
Abstract
Xingnaojing Injection is a traditional Chinese medicine extensively used for stroke and cerebral ischemia. For better in-process quality control of Xingnaojing Injection, a method for the analysis of its intermediate (i.e., the distillate of Fructus Gardeniae and Radix Curcumae) is needed to monitor and optimize the hydrodistillation extraction process. In this work, nine major volatile components in the intermediate were identified: isophorone, 4-methylene-isophorone, curcumenone, curcumenol, curdione, curzerenone, furanodienone, curcumol, and germacrone. A quantitative analysis of multi-component with a single-marker method based on high-performance liquid chromatography with diode array detection was developed for the simultaneous determination of the nine components. In this method, only curdione was needed as the reference substance, and the other eight components were determined using their relative correction factors to curdione. In the method validation, good linearity (r > 0.9999), sensitivity, repeatability, and accuracy (recoveries within 95.3-105.4%) were shown. The repeatability and robustness of the relative correction factors were studied with different column temperatures, flow rates, detection wavelengths, columns, and instruments. In sample analyses, consistent results between the proposed method and the external standard method were shown. The proposed method provides a comprehensive and low-cost tool for the quality assessment of the intermediate of Xingnaojing Injection.
Collapse
Affiliation(s)
- Jinyang Fang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Yang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Xue Bai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Binjun Yan
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Jung HR, Kim SJ, Ham SH, Cho JH, Lee YB, Cho HY. Simultaneous determination of puerarin and its active metabolite in human plasma by UPLC-MS/MS: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 971:64-71. [PMID: 25264914 DOI: 10.1016/j.jchromb.2014.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/18/2022]
Abstract
A rapid, selective and sensitive ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry method about the simultaneous determination of puerarin and its major active metabolite, daidzein, in human plasma was developed and validated in order to investigate the pharmacokinetics (PKs) of Gegen after the usual oral dose administration to human. Chromatography was carried out on a Kinetex C18 column (2.1mm×50mm, 1.7μm) using 0.05% acetic acid in water and 0.05% acetic acid in methanol as mobile phase with a gradient elution. Liquid-liquid extraction with ethyl acetate in acidic condition could remove the interference and minimize the matrix effect of human plasma. The lower limit of quantification in human plasma was 0.2ng/mL for both of compounds, puerarin and daidzein. The calibration curves for puerarin and daidzein in human plasma were linear over all the concentration range of 0.2-100ng/mL with correlation coefficients greater than 0.998. This assay procedure was successfully applied to the PKs of puerarin and daidzein, after the usual oral dose of Gegen extract powder (2.56g, containing 9.984mg puerarin) in human subjects.
Collapse
Affiliation(s)
- Hyo-Rin Jung
- College of Pharmacy, CHA University, 59 Yatap-Ro, Bundang-gu, Seongnam-Si, Gyeonggi-Do 463-712, Republic of Korea
| | - Sook-Jin Kim
- College of Pharmacy, CHA University, 59 Yatap-Ro, Bundang-gu, Seongnam-Si, Gyeonggi-Do 463-712, Republic of Korea
| | - Seong-Ho Ham
- Jeonnam Development Institute for Korean Traditional Medicine, Jeollanam-do 288, Republic of Korea
| | - Jung-Hee Cho
- Jeonnam Development Institute for Korean Traditional Medicine, Jeollanam-do 288, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 300 Yongbong-Dong, Buk-Gu, Gwangju 500-757, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 59 Yatap-Ro, Bundang-gu, Seongnam-Si, Gyeonggi-Do 463-712, Republic of Korea.
| |
Collapse
|
11
|
Yu Z, Gao X, Yuan H, Liu T, Ma M, Chen X, Bi K. Simultaneous determination of safflor yellow A, puerarin, daidzein, ginsenosides (Rg(1), Rb(1), Rd), and notoginsenoside R(1) in rat plasma by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2007; 45:327-36. [PMID: 17590558 DOI: 10.1016/j.jpba.2007.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 05/04/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022]
Abstract
A liquid chromatograph/mass spectrometry (LC/MS) method was developed for the simultaneous quantitation of seven compounds (safflor yellow A, puerarin, daidzein, ginsenosides (Rg(1), Rb(1), Rd), and notoginsenoside R(1)) in rat plasma samples with sufficient sensitivity to facilitate analysis of samples collected after an intravenous injection of Naodesheng. The plasma samples were subjected to protein precipitation with acetone, and analyzed using negative atmospheric pressure chemical ionization mass spectrometry in selected ion monitoring (SIM) mode with baicalin as an internal standard. Good linearity for all the seven compounds was observed. The intra- and inter-day precision of analysis was <15.0% for each compound, and the accuracy ranged from 90.0% to 109.0%. This quantitation method was successfully applied to a pharmacokinetic study of following intravenous injection of rats with Naodesheng.
Collapse
Affiliation(s)
- Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, PR China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Li Y, Zhang ZY, Zhang JL. Determination of hydroxysafflor yellow A in rat plasma and tissues by high-performance liquid chromatography after oral administration of safflower extract or safflor yellow. Biomed Chromatogr 2007; 21:326-34. [PMID: 17221936 DOI: 10.1002/bmc.769] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple and reproducible HPLC method for quantification of hydroxysafflor yellow A (HSYA) in rat plasma and tissues after oral administration of safflower extract or safflor yellow (SY) was developed. Sample preparation was achieved by protein precipitation of plasma and tissue homogenates with three volumes of methanol. p-Hydroxybenzaldehyde was used as the internal standard (IS). HSYA and IS were separated on a Hypersil BDS-C(18) column with a gradient elution system composed of acetonitrile and aqueous acetic acid. UV detection was used at 320 nm. The calibration curves were linear in all matrices (r(2) > 0.999) in the concentration ranges 0.51-101.36 microg/mL for plasma, 12.27-2454.46 microg/g for intestines and 0.96-192.20 microg/g for lung. The intra-day and inter-day precision were all less than 12.5%, and the extract recovery was in the range 64.1-103.7% with RSD less than 15.6% for HSYA in all matrices. The method was used successfully to quantify HSYA in rat plasma and tissue samples to support a pharmacokinectic study.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | | | | |
Collapse
|
13
|
Yu Z, Gao X, Zhao Y, Bi K. HPLC determination of safflor yellow A and three active isoflavones from TCM Naodesheng in rat plasma and tissues and its application to pharmacokinetic studies. Biomed Chromatogr 2007; 21:577-84. [PMID: 17385809 DOI: 10.1002/bmc.764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A high-performance liquid chromatographic method was developed for the simultaneous determination and pharmacokinetic studies of safflor yellow A, puerarin, 3'-methoxyl-puerarin, and puerarinapioside in the plasma and tissues of rats that had been administered with the traditional Chinese medicine (TCM) preparation Naodesheng via the caudal vein. Samples taken from rats were subjected to protein precipitation with acetone. Separation of these four compounds was accomplished on a Kromisil C18 stationary phase using a mobile phase of acetonitrile-0.1% phosphoric acid-tetrahydrofuran (8:92:2, v/v/v) at a flow-rate of 1.0 mL/min. The detection wavelength was set at 250 nm. The calibration curves of the four components were linear in the given concentration ranges. The intra- and inter-day precisions in plasma and tissues were less than 15% and the extraction recoveries were higher than 60%. The lower limits of quantitation of four components were low enough to determine the four components. These four components all exhibited kinetics that fitted a two-compartment model in rats. The elimination half-life was 1.19 h for safflor yellow A, 2.69 h for puerarin, 2.94 h for 3'-methoxyl-puerarin, and 0.87 h for puerarinapioside, respectively. Following administration of a single injection of Naodesheng, the concentration (C) of the four components in the tissues showed C(kidney) > C(lung), C(liver) > C(spleen), C(stomach), C(heart), approximately. The method is a reliable tool for performing studies of safflor yellow A and three puerarin isoflavones in different biological material.
Collapse
Affiliation(s)
- Zhiguo Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, no. 103 Wenhua Road, Shenyang 110016, People's Republic of China
| | | | | | | |
Collapse
|