1
|
Qingda granules attenuate hypertensive cardiac remodeling and inflammation in spontaneously hypertensive rats. Biomed Pharmacother 2020; 129:110367. [PMID: 32559624 DOI: 10.1016/j.biopha.2020.110367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 01/08/2023] Open
Abstract
Qingda granules (QDG) are derived from QingXuanJiangYa Decoction (QXJYD) a traditional Chinese medication that has been used to treat hypertension for more than 60 years. QXJYD has been shown to be effective in rat models of hypertension. However, the effects of QDG on hypertension remain largely unknown. In the current study, baicalin was identified as one of the main components of QDG using Ultra Performance Liquid Chromatography (UPLC) analysis. We investigated the effects of QDG on blood pressure, cardiac remodeling, and cardiac inflammation. QDG (0.8 g/kg/day) treatment attenuated the elevated blood pressure in spontaneously hypertensive rats (SHRs). Moreover, QDG treatment reduced the degree of myocardial fiber disarray, degeneration and necrosis of myocardial cells, expression of ANP and BNP, as well as collagen content of SHRs. Moreover, we further assessed the effect of QDG treatment on cardiac inflammation and found that QDG treatment reduced CD68 protein expression, decreased levels of IL-6 and TNF-α in both serum and cardiac tissues, as well as suppressed activation of NF-κB pathway in cardiac tissues of SHRs. Differential expressed metabolites (DEMs) analysis identified 41 increased and 51 decreased metabolites in the cardiac tissues of SHRs after QDG treatment. In summary, QDG treatment of SHRs attenuated the elevated blood pressure and ameliorated cardiac remodeling and inflammation, in part, through suppression of NF-κB pathway and DEMs, which provide a basis for other therapeutic uses of this TCM.
Collapse
|
2
|
Yoshikawa Y, Katayanagi Y, Kamiya M, Yamamoto Y, Fukutomi R, Imai S, Miyoshi N, Ohashi N. Tomato saponin supplementation ameliorates the development of experimental arthritis by regulating inflammatory responses. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
3
|
Wang XL, Zhao YY, Sun L, Shi Y, Li ZQ, Zhao XD, Xu CG, Ji HG, Wang M, Xu WR, Zhu W. Exosomes derived from human umbilical cord mesenchymal stem cells improve myocardial repair via upregulation of Smad7. Int J Mol Med 2018; 41:3063-3072. [PMID: 29484378 DOI: 10.3892/ijmm.2018.3496] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
It has been previously reported that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC)‑exosomes exhibit cardioprotective effects on the rat acute myocardial infarction (AMI) models and cardiomyocyte hypoxia injury models in vitro, however the exact mechanisms involved require further investigation. The present study aimed to investigate the repair effects of hucMSC‑exosomes on myocardial injury via the regulation of mothers against decapentaplegic homolog 7 (Smad7) expression. Compared with sham or normoxia groups (in vivo and in vitro, respectively), western blotting demonstrated that Smad7 expression was significantly decreased in the borderline area of infraction myocardium and in H9C2(2‑1) cells following hypoxia‑induced injury. Additionally, microRNA (miR)‑125b‑5p expression was markedly increased using reverse transcription‑quantitative polymerase chain reaction, but was reversed by hucMSC‑exosomes. Trypan blue staining and lactate dehydrogenase release detection demonstrated that cell injury was significantly increased in the AMI + PBS and hypoxia group compared with in the sham and normoxia groups and was inhibited by hucMSC‑exosomes. A dual luciferase reporter gene assay confirmed that Smad7 is a target gene of miR‑125b‑5p. In addition, miR‑125b‑5p mimics promoted H9C2(2‑1) cell injury following 48 h exposure to hypoxia. Downregulation of Smad7 expression under hypoxia was increased by miR‑125b‑5p mimics compared with the mimic negative control, and hucMSC‑exosomes partially alleviated this phenomenon. In conclusion, hucMSC‑exosomes may promote Smad7 expression by inhibiting miR‑125b‑5p to increase myocardial repair. The present study may provide a potential therapeutic approach to improve myocardial repair following AMI.
Collapse
Affiliation(s)
- Xin-Long Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuan-Yuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li Sun
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yu Shi
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zhu-Qian Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiang-Dong Zhao
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Chang-Gen Xu
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Hong-Ge Ji
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, Jiangsu 212000, P.R. China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wen-Rong Xu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
4
|
Duan W, Chen J, Wu Y, Zhang Y, Xu Y. Protective effect of higenamine ameliorates collagen-induced arthritis through heme oxygenase-1 and PI3K/Akt/Nrf-2 signaling pathways. Exp Ther Med 2016; 12:3107-3112. [PMID: 27882125 DOI: 10.3892/etm.2016.3730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/11/2016] [Indexed: 01/20/2023] Open
Abstract
Existing in Ranunculaceae Aconitum and tomato, with the chemical name 1-phydroxybenzyl-1,2,3,4-tetrahy-droisoquinoline, higenamine is widely distributed in China. Higenamine's anti-inflammatory, antioxidant and anti-apoptotic effects have been identified in previous studies. The present study attempted to determine the protective effect of higenamine against collagen-induced arthritis through heme oxygenase-1 (HO-1) and PI3K/Akt/Nrf-2 signaling pathways. A type II collagen (CII)-induced arthritis (CIA) model was established and clinical arthritis scores were used to appraise the curative effect of higenamine. Inflammatory reactions, oxidative damage and caspase-3/9 activation were detected using specific ELISA kits. In addition, western blotting was used to evaluate the expression of HO-1, Akt and Nrf-2 protein in CII-induced CIA mice. In CII-induced CIA mice, the clinical arthritis scores, inflammatory reactions, oxidation damage and caspase-3/9 activation were increased and activated. The results demonstrated that treatment with higenamine significantly reduced the elevation of clinical arthritis scores (P<0.01), and suppressed the promotion of inflammatory reactions, oxidation damage and caspase-3/9 activation. Furthermore, higenamine significantly increased HO-1 protein expression (P<0.01) and upregulated the PI3K/Akt/Nrf-2 signal pathway in CII-induced CIA mice. Collectively, it is concluded that higenamine protects against CII-induced CIA through the induction of HO-1 and the upregulation of the PI3K/Akt/Nrf-2 signaling pathway. In conclusion, higenamine may be a beneficial drug for protecting against CIA.
Collapse
Affiliation(s)
- Wenjiang Duan
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Jianmin Chen
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Yu Wu
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Yong Zhang
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Yuansheng Xu
- Department of Orthopaedics, Jingdu Hospital, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|