1
|
Merchant HN, Portugal SJ, Bennett NC, Janse van Vuuren AK, Faulkes CG, Bowen J, Hart DW. New insights into morphological adaptation in common mole-rats ( Cryptomys hottentotus hottentotus) along an aridity gradient. Ecol Evol 2024; 14:e11301. [PMID: 38651162 PMCID: PMC11033624 DOI: 10.1002/ece3.11301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Morphological adaptation is the change in the form of an organism that benefits the individual in its current habitat. Mole-rats (family Bathyergidae), despite being subterranean, are impacted by both local and broad-scale environmental conditions that occur above ground. Common mole-rats (Cryptomys hottentotus hottentotus) present an ideal mammalian model system for the study of morphological variation in response to ecology, as this species is found along an aridity gradient and thus can be sampled from geographically non-overlapping populations of the same species along an environmental longitudinal cline. Using the mass of five internal organs, ten skeletal measurements and 3D morphometric analyses of skulls, we assessed the morphology of wild non-breeding individuals from five common mole-rat populations in South Africa. We found that the body mass and mean relative mass of the spleen and kidneys in arid populations was larger, and individuals from arid regions possessed shorter legs and larger inter-shoulder widths compared to individuals from mesic regions. Additionally, arid populations demonstrated greater skull depth, and shape change of features such as angular processes of the lower jaw than mesic individuals, indicating that these distinct geographic populations show differences corresponding to the aridity gradient, potentially in response to environmental factors such as the variation in food sources found between different habitats, in addition to different soil compositions found in the different regions. Arid populations potentially require a stronger jaw and neck musculature associated with mastication to chew xeric-adapted plants and to dig through hard soil types, whereas mesic populations excavate through soft, looser soil and may make use of their front limbs to aid the movement of soils when digging. Aridity influences the morphology of this species and could indicate the impact of environmental changes on speciation and mammalian skull morphology.
Collapse
Affiliation(s)
- Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental SciencesRoyal Holloway University of LondonEgham, SurreyUK
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental SciencesRoyal Holloway University of LondonEgham, SurreyUK
| | - Nigel C. Bennett
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaGautengSouth Africa
| | | | - Chris G. Faulkes
- School of Biological and Behavioural SciencesQueen Mary University of LondonLondonUK
| | - James Bowen
- Faculty of Science, Technology, Engineering, and MathematicsOpen UniversityMilton KeynesUK
| | - Daniel W. Hart
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
2
|
Ndaba N, Fotsing MCD, Govender PP. Assessment of Drimia delagoensis (Jessop) Baker Total Phenol, Flavonoids Content and Antioxidant Activity of Both Bulb and Leaves. Chem Biodivers 2024; 21:e202301402. [PMID: 38100129 DOI: 10.1002/cbdv.202301402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/03/2023] [Indexed: 01/17/2024]
Abstract
Drimia delagoensis has been utilized for its medicinal properties since antiquity. The bulb and leaves are predominantly composed of secondary metabolites that exhibit biological activity. The quantification of total phenolic and flavonoid content, as well as the assessment of antioxidant activity was conducted using the Folin-Ciocalteus method, coulometric analysis, DPPH and the FRAP assays. The ethyl acetate, aqueous, and hexane extracts of the bulb exhibited significantly high total phenolic contents (167.9000±0.3376 μg GAE/mg, 56.2500±0.0043 μg GAE/mg, and 26.4000±0.0198 μg GAE/mg, respectively) compared to the ethyl acetate (49.4400±0.1341 μg QE/mg), aqueous (9.5200±0.1274 μg QE/mg), and hexane leaf extracts (1.8091±0.0049 μg QE/mg). On the other hand, the ethyl acetate leaf extract exhibited the highest antioxidant and free radical scavenging activity. The ethyl acetate extract of D. delagoensis, was identified as a significant source of natural antioxidants, and its use in the management of diabetic foot ulcers linked with oxidative stress is supported.
Collapse
Affiliation(s)
- Nokuthula Ndaba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, P.O Box 17011, 2028, South Africa
| | - Marthe Carine Djuidje Fotsing
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, P.O Box 17011, 2028, South Africa
- Drug Discovery and Smart Molecules Research Laboratory, Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
- Centre for Natural Product Research (CNPR), Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Penny Poomani Govender
- Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, P.O Box 17011, 2028, South Africa
| |
Collapse
|
3
|
Khattab OM, El-Kersh DM, Khalifa SAM, Yosri N, El-Seedi HR, Farag MA. Comparative MS- and NMR-Based Metabolome Mapping of Egyptian Red and White Squill Bulbs F. Liliaceae and in Relation to Their Cytotoxic Effect. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112078. [PMID: 37299060 DOI: 10.3390/plants12112078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Urginea maritima L. (squill) species is widely spread at the Mediterranean region as two main varieties, i.e., white squill (WS) and red squill (RS), that are recognized for several health potentials. The major secondary metabolite classes of the squill are cardiac glycosides, mainly, bufadienolides, flavonoids, and anthocyanins. Herein, a multiplex MS and NMR metabolomics approach targeting secondary and aroma compounds in WS and RS was employed for varieties classification. Solid-phase micro extraction-gas chromatography/mass spectroscopy (SPME-GC/MS), ultra-high-performance liquid chromatography/mass spectrometry (UPLC/MS), as well as nuclear magnetic resonance (NMR) provided fingerprinting and structural confirmation of the major metabolites for both types of the squill. For comparison of the different platforms' classification potential, multivariate data analysis was employed. While Bufadienolides, viz. "hydroxy-scilliglaucosidin-O-rhamnoside, desacetylscillirosidin-O-rhamnoside and bufotalidin-O-hexoside" as well as oxylipids, were enriched in WS, flavonoids, i.e., dihydro-kaempferol-O-hexoside and its aglycon, taxifolin derivative, were predominant in RS. A cytotoxicity screening against three cancer cell lines, including breast adenocarcinoma (MCF-7), lung (A-549), and ovarian (SKOV-3) cell lines was conducted. Results revealed that WS was more effective on A-549 and SKOV-3 cell lines (WS IC50 0.11 and 0.4 µg/mL, respectively) owing to its abundance of bufadienolides, while RS recorded IC50 (MCF7 cell line) 0.17 µg/mL since is is rich inflavonoids.
Collapse
Affiliation(s)
- Omar M Khattab
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Dina M El-Kersh
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, Cairo 11837, Egypt
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Zhenjiang 212013, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| |
Collapse
|
4
|
Dormousoglou M, Boti V, Hela D, Vlastos D, Antonopoulou M, Chondrogiannis C, Petropoulou Y, Dailianis S. Beneficial properties of Drimia numidica leaf methanolic extract against the cytogenotoxic effects of mitomycin C on human lymphocytes. Food Chem Toxicol 2023; 173:113626. [PMID: 36682415 DOI: 10.1016/j.fct.2023.113626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
This study investigated the phytochemical profile of Drimia numidica leaf methanolic extract, as well as its cyto-genotoxic and cyto/genoprotective potential against mitomycin C (MMC) mediated effects on healthy human lymphocytes. Photosynthetic pigments, trace elements, and secondary metabolites were estimated and/or identified in methanolic extract of mature leaves, and the latter was further used for assessing its in vitro biological effects on MMC-free and/or MMC-treated human lymphocytes (at low, non-toxic concentrations of 0.001 and 0.01% v/v). The results showed that D. numidica leaf methanolic extract, being rich in carotenoids, phenolics, flavonoids, organic acids and bufadienolides, could be protective against MMC mediated cyto/genotoxic potential in healthy human lymphocytes. Biomolecules possessing antioxidant and antitumor potential, such as beta-carotene and lutein among others, chlorogenic acid, caffeic acid and their derivatives, minerals such as Si, as well as apigenin- and luteolin-derived glycosides, either individual or in a mixture, could be beneficial rather than harmful, at least at the extract concentrations tested. Although further in vitro and in vivo studies are still needed for elucidating the beneficial (individual and/or additive/synergistic) role of those compounds, the results of the present study are quite promising, thus encouraging new challenges for the appropriate utilization of D. numidica leaf extract.
Collapse
Affiliation(s)
- Margarita Dormousoglou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece; Department of Sustainable Agriculture, University of Patras, GR-30100, Agrinio, Greece
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, GR-45110, Greece; Unit of Environmental, Organic and Biochemical High-resolution Analysis-Orbitrap-LC-MS, University of Ioannina, Ioannina, GR-45110, Greece
| | - Dimitra Hela
- Department of Chemistry, University of Ioannina, GR-45110, Ioannina, Greece; Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), Ioannina, GR-45110, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30100, Agrinio, Greece
| | - Christos Chondrogiannis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Yiola Petropoulou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500, Rio, Patras, Greece.
| |
Collapse
|
5
|
Untargeted Phenolic Profiling and Functional Insights of the Aerial Parts and Bulbs of Drimia maritima (L.) Stearn. PLANTS 2022; 11:plants11050600. [PMID: 35270070 PMCID: PMC8912325 DOI: 10.3390/plants11050600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Drimia maritima (L.) Stearn (squill), belonging to the Asparagaceae family, is acknowledged as a medicinally valuable species from the Drimia genera. In this study, water, methanol, and ethyl acetate extracts of D. maritima aerial parts and bulbs were investigated for their polyphenols profile and evaluated for their antioxidant and enzyme inhibition properties. Phenolics were profiled through an untargeted metabolomics approach using an ultra-high pressure liquid chromatograph coupled to quadrupole-time-of-flight mass spectrometry (UHPLC-QTOF-MS). This analysis revealed an enrichment of low molecular weight phenolics and flavonoids in the aerial parts of D. maritima, while lignans mainly characterized bulb extracts. Antioxidant capacity was investigated by different assays, including phosphomolybdenum assays, radical scavenging (DPPH: 2,2-diphenyl-1-picrylhydrazyl; ABTS: 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), as well as reducing ability (CUPRAC: cupric reducing antioxidant capacity; FRAP: ferric reducing antioxidant power), and metal chelating. In radical scavenging and reducing power assays, the water extract of aerial parts exhibited the strongest ability (DPPH: 36.99 mg trolox equivalent (TE)/g; ABTS: 85.96 mg TE/g; CUPRAC: 87.37 mg TE/g; FRAP: 55.43 mg TE/g). In general, the ethyl acetate extracts from aerial parts and bulbs provided the weakest antioxidant capacity. Concerning enzyme inhibitory activities, the water extracts of the bulb were poorly active, while the ethyl acetate extracts from both plant portions displayed the best α-amylase inhibitory abilities. The best acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) abilities were recorded by ethyl acetate extract of aerial parts (2.36 mg galantamine equivalent (GALAE)/g) and bulbs (5.10 mg GALAE/g), respectively. Overall, these results support the medicinal aptitude of D. maritima and its possible use as a natural source of antioxidants and enzyme inhibitors with functional potential.
Collapse
|
6
|
Bottoni M, Milani F, Galimberti PM, Vignati L, Romanini PL, Lavezzo L, Martinetti L, Giuliani C, Fico G. Ca' Granda, Hortus simplicium: Restoring an Ancient Medicinal Garden of XV-XIX Century in Milan (Italy). Molecules 2021; 26:6933. [PMID: 34834025 PMCID: PMC8620247 DOI: 10.3390/molecules26226933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
This work is based on the study of 150 majolica vases dated back to the mid XVII century that once preserved medicinal remedies prepared in the ancient Pharmacy annexed to the Ospedale Maggiore Ca' Granda in Milan (Lombardy, Italy). The Hortus simplicium was created in 1641 as a source of plant-based ingredients for those remedies. The main objective of the present work is to lay the knowledge base for the restoration of the ancient Garden for educational and informative purposes. Therefore, the following complementary phases were carried out: (i) the analysis of the inscriptions on the jars, along with the survey on historical medical texts, allowing for the positive identification of the plant ingredients of the remedies and their ancient use as medicines; (ii) the bibliographic research in modern pharmacological literature in order to validate or refute the historical uses; (iii) the realization of the checklist of plants potentially present in cultivation at the ancient Garden, concurrently with the comparison with the results of a previous in situ archaeobotanical study concerning pollen grains. For the species selection, considerations were made also regarding drug amounts in the remedies and pedoclimatic conditions of the study area. Out of the 150 vases, 108 contained plant-based remedies, corresponding to 148 taxa. The remedies mainly treated gastrointestinal and respiratory disorders. At least one of the medicinal uses was validated in scientific literature for 112 out of the 148 examined species. Finally, a checklist of 40 taxa, presumably hosted in the Hortus simplicium, was assembled.
Collapse
Affiliation(s)
- Martina Bottoni
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Fabrizia Milani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Paolo M. Galimberti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 28, 20122 Milan, Italy;
| | - Lucia Vignati
- Landscape Ecomuseum of Parabiago, P.za della Vittoria 7, 20015 Milan, Italy;
| | - Patrizia Luise Romanini
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Luca Lavezzo
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Livia Martinetti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy;
| | - Claudia Giuliani
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| | - Gelsomina Fico
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (M.B.); (F.M.); (P.L.R.); (L.L.); (G.F.)
- Ghirardi Botanic Garden, Department of Pharmaceutical Sciences, University of Milan, Via Religione 25, 25088 Toscolano Maderno, Italy
| |
Collapse
|
7
|
Karimi F, Babazadeh R, Zojaji A, Jouya S. Squill oil for decreasing dyspareunia and increasing sexual satisfaction in menopausal women: A triple-blind randomized controlled trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:464-472. [PMID: 34745918 PMCID: PMC8554279 DOI: 10.22038/ajp.2021.17777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The present study aimed to investigate the effect of squill oil on dyspareunia and sexual satisfaction in menopausal women. MATERIALS AND METHODS The present triple-blind randomized two-group controlled trial was conducted on 60 menopausal women (n=30 in placebo group and n=30 in squill oil group) in Mashhad in northeast of Iran in 2019. The Sabbatsberg Sexual Self-Rating Scale and Marinoff dyspareunia scale were the main tools used in this study. The participants were randomly assigned to two groups namely, squill oil group and placebo group and they received the treatments for 4 weeks. Questionnaires were completed before and 4 weeks after the intervention in both groups. Data analysis was performed using SPSS 24 by Mann-Whitney, t-test, and repeated measures ANOVA with a significance level of less than 0.05. RESULTS The average age in the squill oil group and placebo group were 53.5±2.2 and 51.7±4.5 years, respectively. There was a significant difference (p<0.001) between the two groups in terms of dyspareunia score before (1±3.6 vs 1±3.5) and after intervention (0.7±0.1 vs 1.2±1.2) in two groups.Results of independent t-test indicated that there was a significant difference (p<0.001) between the two groups in terms of sexual satisfaction before (23.4±5.7 vs 23.1±2.8) and after intervention (36.5±5.6 vs 24.8±2.5) in two groups. CONCLUSION Using squill oil can cause a reduction in painful sexual intercourse and an increase in sexual satisfaction in postmenopausal women.
Collapse
Affiliation(s)
- Farzane Karimi
- Department of Midwifery, Birjand branch, Islamic Azad University, Birjand, Iran
| | - Raheleh Babazadeh
- Nursing and Midwifery Care Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Zojaji
- Department of Medicine, Mashhad branch, Islamic Azad University, Mashhad, Iran
| | - Samaneh Jouya
- Department of Midwifery, School of Nursing and Midwifery, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Manganyi MC, Tlatsana GS, Mokoroane GT, Senna KP, Mohaswa JF, Ntsayagae K, Fri J, Ateba CN. Bulbous Plants Drimia: "A Thin Line between Poisonous and Healing Compounds" with Biological Activities. Pharmaceutics 2021; 13:1385. [PMID: 34575461 PMCID: PMC8465487 DOI: 10.3390/pharmaceutics13091385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022] Open
Abstract
Drimia (synonym Urginea) plants are bulbous plants belonging to the family Asparagaceae (formerly the family Hyacinthaceae) and are distinctive, powerful medicinal plants. Just some species are indigenous to South Africa and have been traditionally utilized for centuries to cure various diseases and/or ailments. They have been recognized among the most famous and used medicinal plants in South Africa. Traditionally, the plants are used for various illnesses such as dropsy, respiratory disease, bone and joint complications, skin disorders, epilepsy and cancer. A number of studies have reported biological properties such as antiviral, antibacterial, antioxidant and anti-inflammatory, immunomodulatory, and anticancer activities. Their bulbs are a popular treatment for colds, measles, pneumonia, coughs, fever and headaches. However, some plant species are regarded as one of the six most common poisonous plants in Southern Africa that are toxic to livestock and humans. Due to the therapeutic effects of the Drimia plant bulb, research has focused on the phytochemicals of Drimia species. The principal constituents isolated from this genus are cardiac glycosides. In addition, phenolic compounds, phytosterols and other phytochemical constituents were identified. This study constitutes a critical review of Drimia species' bioactive compounds, toxicology, biological properties and phytochemistry, advocating it as an important source for effective therapeutic medicine. For this purpose, various scientific electronic databases such as ScienceDirect, Scopus, Google Scholar, PubMed and Web of Science were researched and reviewed to conduct this study. Despite well-studied biological investigations, there is limited research on the toxic properties and the toxic compounds of certain Drimia species. Searching from 2017 to 2021, Google Scholar search tools retrieved 462 publications; however, only 3 investigated the toxicity and safety aspects of Drimia. The aim was to identify the current scientific research gap on Drimia species, hence highlighting a thin line between poisonous and healing compounds, dotted across numerous publications, in this review paper.
Collapse
Affiliation(s)
- Madira Coutlyne Manganyi
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University, PBX1, Mthatha 5117, South Africa
| | - Gothusaone Simon Tlatsana
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Given Thato Mokoroane
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Keamogetswe Prudence Senna
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - John Frederick Mohaswa
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Kabo Ntsayagae
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Justine Fri
- Department of Microbiology, Mafikeng Campus, North West University, Mmabatho 2735, South Africa; (G.S.T.); (G.T.M.); (K.P.S.); (J.F.M.); (K.N.); (J.F.)
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| |
Collapse
|
9
|
Anticonvulsant effects of Squill Oxymel(A traditional formulation) in Mice. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Ndaba N, Fotsing MC, Anku WW, Govender PP. In vitro and in silico studies of the antifungal properties of the bulb and leaves extracts of Drimia delagoensis Baker (Jessop). ADVANCES IN TRADITIONAL MEDICINE 2019. [DOI: 10.1007/s13596-019-00418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Antimicrobial Activity, Antioxidant Potential, Cytotoxicity and Phytochemical Profiling of Four Plants Locally Used against Skin Diseases. PLANTS 2019; 8:plants8090350. [PMID: 31540194 PMCID: PMC6783968 DOI: 10.3390/plants8090350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023]
Abstract
Although orthodox medications are available for skin diseases, expensive dermatological services have necessitated the use of medicinal plants as a cheaper alternative. This study evaluated the pharmacological and phytochemical profiles of four medicinal plants (Drimia sanguinea, Elephantorrhiza elephantina, Helichrysum paronychioides, and Senecio longiflorus) used for treating skin diseases. Petroleum ether and 50% methanol extracts of the plants were screened for antimicrobial activity against six microbes: Bacillus cereus, Shigella flexneri, Candida glabrata, Candida krusei, Trichophyton rubrum and Trichophyton tonsurans using the micro-dilution technique. Antioxidant activity was conducted using 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging and β-carotene linoleic acid models. Cytotoxicity was determined against African green monkey Vero kidney cells based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. Spectrophotometric and Gas Chromatography-Mass Spectrometry (GC-MS) methods were used to evaluate the phytochemical constituents. All the extracts demonstrated varying degrees of antimicrobial potencies. Shigella flexneri, Candida glabrata, Trichophyton rubrum and Trichophyton tonsurans were most susceptible at 0.10 mg/mL. In the DPPH test, EC50 values ranged from approximately 6–93 µg/mL and 65%–85% antioxidant activity in the β-carotene linoleic acid antioxidant activity model. The phenolic and flavonoid contents ranged from 3.5–64 mg GAE/g and 1.25–28 mg CE/g DW, respectively. The LC50 values of the cytotoxicity assay ranged from 0.015–5622 µg/mL. GC-MS analysis revealed a rich pool (94–198) of bioactive compounds including dotriacontane, benzothiazole, heptacosane, bumetrizole, phthalic acid, stigmasterol, hexanoic acid and eicosanoic acid, which were common to the four plants. The current findings provide some degree of scientific evidence supporting the use of these four plants in folk medicine. However, the plants with high cytotoxicity need to be used with caution.
Collapse
|
12
|
Drimia indica: A Plant Used in Traditional Medicine and Its Potential for Clinical Uses. ACTA ACUST UNITED AC 2019; 55:medicina55060255. [PMID: 31181697 PMCID: PMC6630810 DOI: 10.3390/medicina55060255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/27/2022]
Abstract
Drimia indica (Roxb.) Jessop (Asparagaceae) is a reputed Ayurvedic medicine for a number of therapeutic benefits, including for cardiac diseases, indigestion, asthma, dropsy, rheumatism, leprosy, and skin ailments. The present work aimed to critically and extensively review its traditional uses, phytochemistry, pharmacology, toxicology, and taxonomy together with the mechanisms of action of selected extracts of D. indica. A systematic literature survey from scientific databases such as PubMed, Scopus, and Web of Science as well as from some textbooks and classical texts was conducted. The plant, mainly its bulb, contains various bioactive constituents, such as alkylresorcinols, bufadienolides, phytosterols, and flavonoids. Various scientific studies have proven that the plant has anthelmintic, anticancer, antidiabetic, antimicrobial, antioxidant, and wound healing activities. The present work concludes that D. indica has the potential to treat various diseases, mainly microbial infections. This review also suggests that bufadienolides, flavonoids, and steroids might be responsible for its bioactive potential.
Collapse
|
13
|
Nyambe MN, Beukes DR, Van De Venter M, Swanepoel B, Hlangothi BG. Isolation and characterisation of altissimin: a novel cytotoxic flavonoid C-apioglucoside from Drimia altissima ( Asparagaceae). Nat Prod Res 2019; 35:717-725. [PMID: 30964337 DOI: 10.1080/14786419.2019.1596097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Flavonoids are a class of biologically active compounds with various proven nutraceutical benefits. In flavonoid C-glycosides, the aglycones are attached to sugar residues via cleavage-resistant C-C bonds which alter typical flavonoid pharmacokinetic properties. In these compounds, the combination of biological activities from the flavonoid moieties and sugar residues create unique and more diverse biological functions than those of O-glycosylated and unsubstituted flavonoids. Through a series of reverse phase chromatography techniques and various spectroscopic methods, the phytochemical investigation of Drimia altissima (L.F.) Ker Gawl., a specie from the Asparagaceae family, led to the isolation and chemical characterisation of a novel C-glucosylflavonoid, altissimin, with a unique apioglucoside arrangement to the apigenin aglycone. Altissimin was found to possess strong in vitro anti-proliferative activity against HeLa cervical cancer cells.
Collapse
Affiliation(s)
- Mutenta N Nyambe
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Denzil R Beukes
- School of Pharmacy, University of the Western Cape, Bellville, South Africa
| | - Maryna Van De Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, South Africa
| | - Buyiswa G Hlangothi
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
14
|
Hamzeloo-Moghadam M, Aghaei M, Abdolmohammadi MH, Khalaj A, Fallahian F. Cytotoxic effect of Drimia maritima bulb extract and induction of mitochondrial apoptotic signaling in human breast cancer cells, MCF-7 and MDA-MB-468. Onco Targets Ther 2018; 11:7669-7677. [PMID: 30464515 PMCID: PMC6217182 DOI: 10.2147/ott.s182786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Drimia maritima (D. maritima) is a plant belonging to the family Asparagaceae, which has been used for the treatment of several ailments including cancer around the world. To our knowledge, there is no comprehensive study about the molecular mechanisms of anticancer activity of this plant, yet. Materials and methods In the current study, cell viability, apoptosis induction, ROS production, mitochondrial apoptotic pathway, and ER stress mediators have been evaluated in breast cancer cells, MCF7, and MDA-MB-468 treated with D. maritima. Results Significant cytotoxic effects were observed in MCF-7 and MDA-MB-468 cells after exposure to D. maritima. Apoptosis induction was determined using Annexin-V-FITC and propidium iodide staining. Furthermore, an increase of ROS, loss of mitochondrial membrane potential, the release of cytochrome c, activation of caspases, and elevation in the Bax/Bcl-2 ratio was determined. D. maritima dose-dependently increased the mRNA expression of ER stress markers such as CHOP, ATF-4, GADD34, and TRIB3 in MCF-7, and MDA-MB-468 cells. Conclusion These data suggest that D. maritima induces apoptosis in human breast cancer cells via the mitochondrial-mediated pathway. In addition, endoplasmic reticulum stress seems to be involved in D. maritima-induced cell death.
Collapse
Affiliation(s)
- Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Khalaj
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Food and Drug Laboratory Research Center, Food and Drug Organization, Ministry of Health and Medical Education, Tehran, Iran
| | - Faranak Fallahian
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran,
| |
Collapse
|