1
|
Li S, Li W, Jin Y, Wu B, Wu Y. Advancements in the development of nucleic acid vaccines for syphilis prevention and control. Hum Vaccin Immunother 2023; 19:2234790. [PMID: 37538024 PMCID: PMC10405752 DOI: 10.1080/21645515.2023.2234790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Syphilis, a chronic systemic sexually transmitted disease, is caused by the bacterium Treponema pallidum (T. pallidum). Currently, syphilis remains a widespread infectious disease with significant disease burden in many countries. Despite the absence of identified penicillin-resistant strains, challenges in syphilis treatment persist due to penicillin allergies, supply issues, and the emergence of macrolide-resistant strains. Vaccines represent the most cost-effective strategy to prevent and control the syphilis epidemic. In light of the ongoing global coronavirus disease 2019 (COVID-19) pandemic, nucleic acid vaccines have gained prominence in the field of vaccine research and development, owing to their superior efficiency compared to traditional vaccines. This review summarizes the current state of the syphilis epidemic and the preliminary findings in T. pallidum nucleic acid vaccine research, discusses the challenges associated with the development of T. pallidum nucleic acid vaccines, and proposes strategies and measures for future T. pallidum vaccine development.
Collapse
Affiliation(s)
- Sijia Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Weiwei Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
- Department of Clinical Laboratory, The Second People’s Hospital of Foshan, Foshan, China
| | - Yinqi Jin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Bin Wu
- First Affiliated Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yimou Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| |
Collapse
|
2
|
Laughlin RC, Mickum M, Rowin K, Adams LG, Alaniz RC. Altered host immune responses to membrane vesicles from Salmonella and Gram-negative pathogens. Vaccine 2015; 33:5012-9. [PMID: 26001432 DOI: 10.1016/j.vaccine.2015.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 02/08/2023]
Abstract
Membrane vesicles (MVs), discrete nano-structures produced from the outer membrane of Gram-negative bacteria such as Salmonella enterica Typhimurium (S. Typhimurium), strongly activate dendritic cells (DCs), contain major antigens (Ags) recognized by Salmonella-specific B-cells and CD4+ T-cells, and provide protection against S. Typhimurium challenge in a mouse model. With this in mind, we hypothesized that alterations to the gene expression profile of bacteria will be reflected in the immunologic response to MVs. To test this, we assessed the ability of MVs from wild-type (WT) S. Typhimurium or a strain with a phenotype mimicking the intracellular-phase of S. Typhimurium (PhoP(c)) to activate dendritic cells and initiate a strong inflammatory response. MVs, isolated from wild-type and PhoP(c)S. Typhimurium (WTMVs and PhoPcMVs, respectively) had pro-inflammatory properties consistent with the parental bacterial strains: PhoPcMVs were less stimulatory for DC activation in vitro and were impaired for subsequent inflammatory responses compared to WTMVs. Interestingly, the reduced pro-inflammatory properties of PhoPcMVs did not completely rely on signals through TLR4, the receptor for LPS. Nonetheless, both WTMVs and PhoPcMVs contained abundant immunogenic antigens capable of being recognized by memory-immune CD4+ T-cells from mice previously infected with S. Typhimurium. Furthermore, we analyzed a suite of pathogenic Gram-negative bacteria and their purified MVs for their ability to activate DCs and stimulate inflammation in a manner consistent with the known inflammatory properties of the parental strains, as shown for S. Typhimurium. Finally, analysis of the potential vaccine utility of S. Typhimurium MVs revealed their capacity to encapsulate an exogenous model antigen and stimulate antigen-specific CD4+ and CD8+ T-cell responses. Taken together, our results demonstrate the dependence of bacterial cell gene expression for MV immunogenicity and subsequent in vitro immunologic response, as well as their potential utility as a vaccine platform.
Collapse
Affiliation(s)
- Richard C Laughlin
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Megan Mickum
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Kristina Rowin
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - L Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-4467, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX 77843, USA.
| |
Collapse
|
3
|
|
4
|
Liu DS, Hu SJ, Zhou NJ, Xie Y, Cao J. Construction and characterization of recombinant attenuated Salmonella typhimurium expressing the babA2/ureI fusion gene of Helicobacter pylori. Clin Res Hepatol Gastroenterol 2011; 35:655-60. [PMID: 21798844 DOI: 10.1016/j.clinre.2011.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/20/2011] [Indexed: 02/04/2023]
Abstract
AIM This study aimed to construct a live attenuated Salmonella typhimurium strain harbouring the Helicobacter pylori babA2 and ureI fusion gene, and to evaluate its immunogenicity. METHODS The babA2 and ureI fusion gene were cloned on an asd+ vector pYA3342 and expressed in attenuated S. typhimurium strain x8501 (Δasd). The level of babA2 and ureI fusion protein expression in S. typhimurium x8501 was examined by RT-PCR and Western blot tests. Stability of the recombinant x8501 (pYA3342/babA2/ureI) was determined after incubation for five days in vitro. RESULTS The fusion gene, composed of 2860 base pairs, was inserted into the recombinant vector, as indicated by PCR amplification, endonuclease digestion and sequencing. Compared with the GenBank database, homologies of amino-acid sequences of the cloned babA2 and ureI were 100% and 97%, respectively. Recombinant fusion protein was recognized by commercial antibodies for whole-cell lysate of H. pylori. Furthermore, plasmids were able to stably reside in host bacteria. CONCLUSION A prokaryotic expression system, recombinant live attenuated S. typhimurium expressing the H. pylori babA2 and ureI fusion gene, was successfully constructed, and the expressed fusion protein showed satisfactory immunoreactivity, thus offering a new candidate for prophylactic and therapeutic vaccines against H. pylori.
Collapse
Affiliation(s)
- Dong-sheng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 7 Yongwai Zheng Street, Nanchang, Jiangxi, China
| | | | | | | | | |
Collapse
|
5
|
van Pijkeren JP, Morrissey D, Monk IR, Cronin M, Rajendran S, O'Sullivan GC, Gahan CGM, Tangney M. A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy. Hum Gene Ther 2010; 21:405-16. [PMID: 20105075 DOI: 10.1089/hum.2009.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria-mediated transfer of plasmid DNA to mammalian cells (bactofection) has been shown to have significant potential as an approach to express heterologous proteins in various cell types. This is achieved through entry of the entire bacterium into cells, followed by release of plasmid DNA. In a murine model, we show that Listeria monocytogenes can invade and spread in tumors, and establish the use of Listeria to deliver genes to tumors in vivo. A novel approach to vector lysis and release of plasmid DNA through antibiotic administration was developed. Ampicillin administration facilitated both plasmid transfer and safety control of vector. To further improve on the gene delivery system, we selected a Listeria monocytogenes derivative that is more sensitive to ampicillin, and less pathogenic than the wild-type strain. Incorporation of a eukaryotic-transcribed lysin cassette in the plasmid further increased bacterial lysis. Successful gene delivery of firefly luciferase to growing tumors in murine models and to patient breast tumor samples ex vivo was achieved. The model described encompasses a three-phase treatment regimen, involving (1) intratumoral administration of vector followed by a period of vector spread, (2) systemic ampicillin administration to induce vector lysis and plasmid transfer, and (3) systemic administration of combined moxifloxacin and ampicillin to eliminate systemic vector. For the first time, our results reveal the potential of Listeria monocytogenes for in vivo gene delivery.
Collapse
Affiliation(s)
- Jan Peter van Pijkeren
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C. Quick Jnr. Laboratory, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Oliveira AF, Ruas LP, Cardoso SA, Soares SG, Roque-Barreira MC. Vaccination of mice with salmonella expressing VapA: mucosal and systemic Th1 responses provide protection against Rhodococcus equi infection. PLoS One 2010; 5:e8644. [PMID: 20072623 PMCID: PMC2800180 DOI: 10.1371/journal.pone.0008644] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/21/2009] [Indexed: 11/28/2022] Open
Abstract
Conventional vaccines to prevent the pneumonia caused by Rhodococcus equi have not been successful. We have recently demonstrated that immunization with Salmonella enterica Typhimurium expressing the VapA antigen protects mice against R. equi infection. We now report that oral vaccination of mice with this recombinant strain results in high and persistent fecal levels of antigen-specific IgA, and specific proliferation of the spleen cells of immunized mice in response to the in vitro stimulation with R. equi antigen. After in vitro stimulation, spleen cells of immunized mice produce high levels of Th1 cytokines and show a prominent mRNA expression of the Th1 transcription factor T-bet, in detriment of the Th2 transcription factor GATA-3. Following R. equi challenge, a high H2O2, NO, IL-12, and IFN-γ content is detected in the organs of immunized mice. On the other hand, TNF-α and IL-4 levels are markedly lower in the organs of vaccinated mice, compared with the non-vaccinated ones. The IL-10 content and the mRNA transcription level of TGF-β are also higher in the organs of immunized mice. A greater incidence of CD4+ and CD8+ T cells and B lymphocytes is verified in vaccinated mice. However, there is no difference between vaccinated and non-vaccinated mice in terms of the frequency of CD4+CD25+Foxp3+ T cells. Finally, we show that the vaccination confers a long-term protection against R. equi infection. Altogether, these data indicate that the oral vaccination of mice with S. enterica Typhimurium expressing VapA induces specific and long-lasting humoral and cellular responses against the pathogen, which are appropriately regulated and allow tissue integrity after challenge.
Collapse
Affiliation(s)
- Aline F. Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciana P. Ruas
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silvia A. Cardoso
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandro G. Soares
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria-Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Yang H, Cao S, Huang X, Liu J, Tang Y, Wen X. Intragastric administration of attenuated Salmonella typhimurium harbouring transmissible gastroenteritis virus (TGEV) DNA vaccine induced specific antibody production. Vaccine 2009; 27:5035-40. [PMID: 19573642 PMCID: PMC7126841 DOI: 10.1016/j.vaccine.2009.06.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 05/03/2009] [Accepted: 06/10/2009] [Indexed: 11/17/2022]
Abstract
Attenuated Salmonella typhimurium was selected as a transgenic vehicle for the development of live mucosal vaccines against transmissible gastroenteritis virus (TGEV). A 2.2kb DNA fragment, encoding for N-terminal domain glycoprotein S of TGEV, was amplified by RT-PCR and cloned into eukaryotic expression vector pVAX1. The recombinant plasmid pVAX-S was transformed by electroporation into attenuated S. typhimurium SL7207, the expression and translation of the pVAX-S delivered by recombinant S. typhimurium SL7207 (pVAX-S) was detected in vitro and in vivo respectively. BALB/c mice were inoculated orally with SL7207 (pVAX-S) at different dosages, the bacterium was safe to mice at dosage of 2x10(9)CFU and eventually eliminated from the spleen and liver at week 4 post-immunization. Mice immunized with different dosages of SL7207 (pVAX-S) elicited specific anti-TGEV local mucosal and humoral responses as measured by indirect ELISA assay. Moreover, the immunogenicity of the DNA vaccine was highly dependent on the dosage of the attenuated bacteria used for oral administration, 10(9)CFU dosage group showed higher antibody response than 10(8)CFU and 10(7)CFU dosages groups during week 4-8 post-immunization. The results indicated that attenuated S. typhimurium could be used as a delivery vector for oral immunization of TGEV DNA vaccine.
Collapse
Affiliation(s)
- Heng Yang
- Sichuan Agricultural University, Ya'an, China
| | | | | | | | | | | |
Collapse
|
8
|
Sun B, Li ZS, Tu ZX, Xu GM, Du YQ. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity. World J Gastroenterol 2006; 12:7042-6. [PMID: 17109503 PMCID: PMC4087352 DOI: 10.3748/wjg.v12.i43.7042] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a live attenuated Salmonella typhimurium (S. typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity.
METHODS: By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments.
RESULTS: A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recombinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylorii whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response.
CONCLUSION: The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.
Collapse
Affiliation(s)
- Bo Sun
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, 174 Changhai Road, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
9
|
Abstract
Strategies for gene delivery comprise a diverse range of live and synthetic approaches; DNA delivery for the purposes of immunisation in turn comprises a large part of this research. This review mainly discusses synthetic systems for application in the delivery of plasmid DNA vaccines, outlining polylactide-co-glycolide, liposome, chitosan and complex combination delivery systems. Areas of promise for DNA vaccine candidates include immune modulation of allergic responses and veterinarian application. The potential for realistic consideration of DNA vaccines as an alternative to existing approaches is dependent on the development of efficient DNA vaccine vectors and improved systems for DNA vaccine delivery. DNA vaccine technology may yet prove to be an important asset in an environment where there is a critical need for therapeutic and prophylactic strategies to combat a wide range of disease states.
Collapse
Affiliation(s)
- H Oya Alpar
- University of London, School of Pharmacy, UK.
| | | | | |
Collapse
|
10
|
Abstract
The use of live attenuated bacterial vaccine strains allows the targeted delivery of macromolecules to mammalian cells and tissues via the mucosal route. Depending on their specific virulence mechanisms and inherent metabolic preferences, bacteria invade certain cell types and body niches where they consequently deliver their cargo. Recently, the ability of attenuated strains of Salmonella, Shigella and Yersinia spp., as well as Listeria monocytogenes and invasive Escherichia coli, to deliver eukaryotic expression plasmids into mammalian cells in vitro and in vivo has been discovered. The great potential of bacteria-mediated transfer of plasmid DNA encoding vaccine antigens and/or therapeutic molecules was demonstrated in experimental animal models of infectious diseases, tumours and gene deficiencies. The exact mechanism of DNA transfer from the bacterial vector into the mammalian host is not yet completely known. The understanding of molecular events during bacterial DNA transfer, however, will further the development of bacterial vector systems with great promise for various clinical applications.
Collapse
Affiliation(s)
- Holger Loessner
- Molecular Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | |
Collapse
|
11
|
Kitazawa H, Shimosato T, Tohno M, Saito T. Immunostimulatory Activities of Lactic Acid Bacteria via Toll-like Receptors. ACTA ACUST UNITED AC 2005. [DOI: 10.4109/jslab1997.16.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Haruki Kitazawa
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University
| | - Takeshi Shimosato
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University
| | - Masanori Tohno
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University
| | - Tadao Saito
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
12
|
Tabrizi CA, Walcher P, Mayr UB, Stiedl T, Binder M, McGrath J, Lubitz W. Bacterial ghosts – biological particles as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004; 15:530-7. [PMID: 15560979 DOI: 10.1016/j.copbio.2004.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite the exponential rate of discovery of new antigens and DNA vaccines resulting from modern molecular biology and proteomics, the lack of effective delivery technology is a major limiting factor in their application. The bacterial ghost system represents a platform technology for antigen, nucleic acid and drug delivery. Bacterial ghosts have significant advantages over other engineered biological delivery particles, owing to their intrinsic cellular and tissue tropic abilities, ease of production and the fact that they can be stored and processed without the need for refrigeration. These particles have found both veterinary and medical applications for the vaccination and treatment of tumors and various infectious diseases.
Collapse
Affiliation(s)
- Chakameh Azimpour Tabrizi
- Institute of Microbiology and Genetics, Section Microbiology and Biotechnology, University of Vienna, Althanstrasse 14, UZAII, 2B 522, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
13
|
Sun B, He M, Yang H, Jin J, Man XH, Gong YF, Tu ZX, Du YQ, Li ZS. Construction of an oral recombinant DNA vaccine strain of live attenuated Salmonella typhimurium carrying H. pylori neutrophil activating protein. Shijie Huaren Xiaohua Zazhi 2004; 12:1317-1320. [DOI: 10.11569/wcjd.v12.i6.1317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a live attenuated Salmonella typhimurium (S. typhimurium) strain carrying H. pylori-neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine.
METHODS: By genetic engineering method, a 435 bp napA gene (encoding HP-NAP) was subcloned into an eukaryotic expression vector pIRES. After sequencing and BLAST analysis, the identified recombinant plasmid was then transformed into a live attenuated S. typhimurium strain SL7207.
RESULTS: By using polymerase chain reaction (PCR) and restriction enzyme digestion, a recombinant eukaryotic expression plasmid pIRES-napA containing napA gene of H. pylori was constructed, and the recombinant plasmid was transformed successfully into the live attenuated S. typhimurium strain SL7207. Most of the H. pylori-napA sequences in recombinant plasmid pIRES-napA were homologized with that of SS1 strain reported by GenBank, and the homology of nucleotide and protein was 98%, respectively.
CONCLUSION: A recombinant live attenuated S. typhimurium strain carrying HP-NAP gene as DNA vaccine is successfully constructed. The results lay the foundation for developing multivalent oral DNA vaccine against H. pylori infection.
Collapse
|
14
|
Kolb-Mäurer A, Kurzai O, Goebel W, Frosch M. The role of human dendritic cells in meningococcal and listerial meningitis. Int J Med Microbiol 2003; 293:241-9. [PMID: 14503789 DOI: 10.1078/1438-4221-00266] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Few bacteria are capable of causing infections of the central nervous system (CNS), one of the most subtly shielded anatomical structures within the human body. Neisseria meningitidis is an important cause of bacterial meningitis and commonly affects otherwise healthy infants and adolescents. In contrast, Listeria monocytogenes is a cause of septicaemia and meningitis in neonates and immunocompromised adults. Dendritic cells (DCs) provide the physical link between the innate and adaptive immune system and play a crucial role in host defence against invading bacterial pathogens. The mechanisms of interaction of L. monocytogenes and N. meningitidis with DCs are entirely distinct. Whereas L. monocytogenes is readily phagocytosed by DCs by a serum-dependent mechanism, N. meningitidis is largely protected against phagocytotic uptake by its polysaccharide capsule. In addition, the pattern of secreted cytokines induced by L. monocytogenes is dominated by interleukin (IL)-12 and IL-18, capable of initiating a Th-1 response, whereas N. meningitidis induces high levels of proinflammatory cytokines. Therefore, we propose distinct functions of DCs in both types of bacterial meningitis.
Collapse
|
15
|
Kolb-Mäurer A, Goebel W. Susceptibility of hematopoietic stem cells to pathogens: role in virus/bacteria tropism and pathogenesis. FEMS Microbiol Lett 2003; 226:203-7. [PMID: 14553912 DOI: 10.1016/s0378-1097(03)00643-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Human hematopoietic stem cells (HSCs) are generated in the bone marrow and differentiate into erythrocytes, granulocytes, monocytes, megacaryocytes, and lymphocytes. HSCs may be manipulated under different conditions. Advances in cell biology result in a better understanding of the relationship between viruses/bacteria and hematopoietic cells. Microbial infections can lead to profound disturbance of hematopoiesis. Infection may augment the production of cytokines, with proliferation and differentiation of the stem cells. Alternatively, infection may lead to destruction of progenitor cells. This results in defective hematopoiesis in certain infections. Since circulating CD34+ cells represent a distinct progenitor pool responsible for seeding extramedullary sites of hematopoiesis, infected peripheral blood-derived CD34+ progenitor cells may serve to disseminate pathogens into diverse anatomic sites. Therefore, progenitor cell infection may additionally effect long-term functional consequences within extramedullary sites of lymphopoiesis. A variety of viruses have been reported to target HSCs, whereas quiescent human HSCs are fully resistant to infection by different bacteria. For susceptibility of HSCs to infectious agents pathogen-receptor interaction plays an important role in virus/bacteria tropism and pathogenesis.
Collapse
|
16
|
Magliani W, Conti S, Frazzi R, Pozzi G, Oggioni M, Polonelli L. Engineered commensal bacteria as delivery systems of anti-infective mucosal protectants. Biotechnol Genet Eng Rev 2003; 19:139-56. [PMID: 12520876 DOI: 10.1080/02648725.2002.10648027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Walter Magliani
- Microbiology Section, Department of Pathology and Laboratory Medicine, University of Parma, Viale Gramsci 14, 43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
DNA vaccines have been widely used in laboratory animals and non-human primates over the last decade to induce antibody and cellular immune responses. This approach has shown some promise, in models of infectious diseases of both bacterial and viral origin as well as in tumour models. Clinical trials have shown that DNA vaccines appear safe and well tolerated, but need to be made much more potent to be candidates for preventive immunisation of humans. This review describes recent work to improve the delivery of plasmid DNA vaccines and also to increase the immunogenicity of antigens expressed from the DNA vaccine plasmids, including various formulations and molecular adjuvants. Because DNA vaccines are relatively new and represent a novel vaccine technology, certain safety issues, such as the potential for induction of autoimmune disease and integration into the host genome, must be examined carefully. If potency can be improved and safety established, plasmid DNA vaccines offer advantages in speed, simplicity, and breadth of immune response that may be useful for the immunisation of humans against infectious diseases and cancers.
Collapse
Affiliation(s)
- John Donnelly
- Chiron Corporation, 4560 Horton Street--M/S 4.3, Emeryville, CA 94608, USA
| | | | | |
Collapse
|
18
|
Weiss S. Transfer of eukaryotic expression plasmids to mammalian hosts by attenuated Salmonella spp. Int J Med Microbiol 2003; 293:95-106. [PMID: 12755370 DOI: 10.1078/1438-4221-00248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transkingdom transfer of DNA from bacteria to other organisms, well established for bacteria, yeast and plants, was recently also extended to mammalian host cells. Attenuated intracellular bacteria or non-pathogenic bacteria equipped with adhesion and invasion properties have been demonstrated to transfer eukaryotic expression plasmids in vitro and in vivo. Here the mucosal application of attenuated Salmonella enterica spp. as DNA carrier for the induction of immune responses towards protein antigens encoded by expression plasmids, their use to complement genetic defects or deliver immunotherapeutic proteins is reviewed. Plasmid transfer has been reported for Salmonella typhimurium, S. typhi and S. choleraesuis so far but clearly other Salmonella strains should be able to transfer expression plasmids as well. Transfer of DNA is effected most likely by bacterial death within the host cell resulting from metabolic attenuation. Since these bacteria remain in the phagocytic vacuole it is unclear how the DNA from such dying bacteria is delivered to the nucleus of infected cells. Nevertheless, the efficiency that has been observed was astonishingly high, reaching close to 100% under certain conditions. Gene transfer in vivo was mainly directed towards vaccination strategies either as vaccination against infectious microorganisms or model tumors. Interestingly, in some cases tolerance against autologous antigens could be broken. In general, this type of immunization was more efficacious than either direct application of antigen, vaccination with naked DNA or using the same bacterium as a heterologous carrier expressing the antigen via a prokaryotic promoter. The ease of generating such vehicles for gene transfer combined with technology validated for mass vaccination programs and the efficacy of induction of protective immune responses makes Salmonella as carrier for mucosal DNA vaccination a highly attractive area for further research and development.
Collapse
Affiliation(s)
- Siegfried Weiss
- Molecular Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| |
Collapse
|
19
|
Krusch S, Domann E, Frings M, Zelmer A, Diener M, Chakraborty T, Weiss S. Listeria monocytogenes mediated CFTR transgene transfer to mammalian cells. J Gene Med 2002; 4:655-67. [PMID: 12439857 DOI: 10.1002/jgm.313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Several approaches for gene therapy of cystic fibrosis using viral and non-viral vectors are currently being undertaken. Nevertheless, the present data suggest that vectors currently being used will either have to be further modified or, alternatively, novel vector systems need to be developed. Recently, bacteria have been proven as suitable vehicles for DNA transfer to a wide variety of eukaryotic cells. In this study, we assessed the ability of the facultative intracellular pathogen Listeria monocytogenes to deliver a cDNA encoding the human cystic fibrosis transmembrane conductance regulator (CFTR) to CHO-K1 cells, since these cells have been extensively used for heterologous CFTR expression. METHODS An established in vitro gene transfer system based on antibiotic-mediated lysis of intracellular L. monocytogenes was exploited to transfer eukaryotic expression plasmids. Transient as well as stable CFTR transgene expression was analyzed by microscopical and biochemical methods; functionality was tested by whole-cell patch-clamp recordings. RESULTS L. monocytogenes mediated gene transfer to CHO-K1 cells was facilitated by an improved transfection protocol. In addition, the use of the isogenic mutant L. monocytogenes hlyW491A, engineered to produce a hemolysin variant with low toxigenic activity, greatly enhanced the efficiency of gene transfer. This strain allowed the transfer of functional CFTR to CHO-K1 cells. CONCLUSIONS This is the first demonstration of L. monoyctogenes mediated CFTR transgene transfer. The successful in vitro transfer suggests that L. monocytogenes might be a potential vector for cystic fibrosis gene therapy or alternative applications and deserves further investigation in vitro as well as in vivo.
Collapse
Affiliation(s)
- Stefan Krusch
- Division of Cell Biology and Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
Unkmeir A, Kämmerer U, Stade A, Hübner C, Haller S, Kolb-Mäurer A, Frosch M, Dietrich G. Lipooligosaccharide and polysaccharide capsule: virulence factors of Neisseria meningitidis that determine meningococcal interaction with human dendritic cells. Infect Immun 2002; 70:2454-62. [PMID: 11953382 PMCID: PMC127941 DOI: 10.1128/iai.70.5.2454-2462.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this work we analyzed the roles of meningococcal lipooligosaccharide (LOS) and capsule expression in the interaction of Neisseria meningitidis with human dendritic cells (DC). Infection of DC with serogroup B wild-type meningococci induced a strong burst of the proinflammatory cytokines and chemokines tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-8. In contrast, a serogroup B mutant strain lacking LOS expression barely led to cytokine induction, demonstrating that meningococcal LOS is the main mediator of the proinflammatory response in human DC. Sialylation of meningococcal LOS did not influence cytokine secretion by DC. However, we found the phagocytosis of N. meningitidis by human DC to be inhibited by LOS sialylation. In addition, the expression of the meningococcal serogroup A, B, and C capsules dramatically reduced DC adherence of N. meningitidis and phagocytosis to some extent. Hence, LOS sialylation and capsule expression are independent mechanisms protecting N. meningitidis from the phagocytic activity of human DC.
Collapse
Affiliation(s)
- Alexandra Unkmeir
- Institut für Hygiene und Mikrobiologie, Universität Würzburg. Universitätsklinik für Frauenheilkunde. Dermatologische Universitätsklinik, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Al-Mariri A, Tibor A, Lestrate P, Mertens P, De Bolle X, Letesson JJ. Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infect Immun 2002; 70:1915-23. [PMID: 11895955 PMCID: PMC127831 DOI: 10.1128/iai.70.4.1915-1923.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella is a facultative intracellular parasite that causes brucellosis in animals and humans. The protective immune response against Brucella involves both humoral and cell-mediated immunity. In previous studies, we demonstrated that the T-dominant Brucella antigens bacterioferritin (BFR) and P39 administered either as CpG adjuvant recombinant proteins or as naked-DNA plasmids induced a specific Th1-biased immune response in mice. In order to improve the protection conferred by the BFR and P39 vaccines and to evaluate the additive role of antilipopolysaccharide (anti-LPS) antibodies, we used live attenuated Yersinia enterocolitica serotypes O:3 and O:9 as delivery vectors for naked-DNA plasmids encoding these BFR and P39 antigens. Following two intragastric immunizations in BALB/c mice, the Yersinia vectors harboring a DNA vaccine encoding BFR or P39 induced antigen-specific serum immunoglobulin and Th1-type responses (both lymphocyte proliferation and gamma interferon production) among splenocytes. Moreover, as expected, antibodies recognizing Brucella abortus 544 lipopolysaccharide were detected in O:9-immunized mice but not in O:3-treated animals. Animals immunized with O:9 organisms carrying pCI or with O:9 organisms alone were found to be significantly resistant to infection by B. abortus 544. Our data demonstrated that pCI plasmids encoding BFR or P39 and delivered with live attenuated strains of Yersinia O:3 or O:9 can trigger Th1-type responses. The fact than only O:9 vectors induced a highly significant protective immunity against B. abortus 544 infection pointed out the crucial role of anti-LPS antibodies in protection. The best protection was conferred by a serotype O:9 strain carrying pCIP39, confirming the importance of the P39 T-cell antigen in this mechanism.
Collapse
Affiliation(s)
- Ayman Al-Mariri
- Unité de Recherche en Biologie Moléculaire, Laboratoire d'Immunologie et de Microbiologie, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Gentschev I, Dietrich G, Spreng S, Pilgrim S, Stritzker J, Kolb-Mäurer A, Goebel W. Delivery of protein antigens and DNA by attenuated intracellular bacteria. Int J Med Microbiol 2002; 291:577-82. [PMID: 11890559 DOI: 10.1078/1438-4221-00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On the basis of attenuated intracellular bacteria, we have developed two delivery systems for either heterologous proteins or DNA vaccine vectors. The first system utilizes attenuated strains of Gram-negative bacteria which are engineered to secrete heterologous antigens via the alpha-hemolysin secretion system (type I) of Escherichia coli. The second system is based on attenuated suicide strains of Listeria monocytogenes, which are used for the direct delivery of eukaryotic antigen expression vectors into professional antigen-presenting cells (APC) like macrophages and dendritic cells in vitro and can be also used in animal models.
Collapse
|
23
|
Abstract
There is currently intense research activity aimed at the development of new delivery systems for vaccines. The goal is to identify optimal methods for presenting target antigens to the immune system in a manner that will elicit immune responses appropriate for protection against, or treatment of, a specific disease. Several different approaches to this general goal have been developed, some are empirical and remain poorly understood, others are more rational, being based, for example, on mimicking natural infections in vivo or on targeting particular features of the immune system. This article will review three categories of delivery systems: (i) adjuvants and formulations; (ii) antigen vectors, including live attenuated micro-organisms and synthetic vectors; and (iii) novel devices for vaccine administration. The review will be restricted to late stage developments in the field of human vaccination.
Collapse
Affiliation(s)
- Philippe Moingeon
- Aventis Pasteur SA, Research and Development, Marcy l'Etoile, France
| | | | | |
Collapse
|