1
|
Mokhtary P, Pourhashem Z, Mehrizi AA, Sala C, Rappuoli R. Recent Progress in the Discovery and Development of Monoclonal Antibodies against Viral Infections. Biomedicines 2022; 10:biomedicines10081861. [PMID: 36009408 PMCID: PMC9405509 DOI: 10.3390/biomedicines10081861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs), the new revolutionary class of medications, are fast becoming tools against various diseases thanks to a unique structure and function that allow them to bind highly specific targets or receptors. These specialized proteins can be produced in large quantities via the hybridoma technique introduced in 1975 or by means of modern technologies. Additional methods have been developed to generate mAbs with new biological properties such as humanized, chimeric, or murine. The inclusion of mAbs in therapeutic regimens is a major medical advance and will hopefully lead to significant improvements in infectious disease management. Since the first therapeutic mAb, muromonab-CD3, was approved by the U.S. Food and Drug Administration (FDA) in 1986, the list of approved mAbs and their clinical indications and applications have been proliferating. New technologies have been developed to modify the structure of mAbs, thereby increasing efficacy and improving delivery routes. Gene delivery technologies, such as non-viral synthetic plasmid DNA and messenger RNA vectors (DMabs or mRNA-encoded mAbs), built to express tailored mAb genes, might help overcome some of the challenges of mAb therapy, including production restrictions, cold-chain storage, transportation requirements, and expensive manufacturing and distribution processes. This paper reviews some of the recent developments in mAb discovery against viral infections and illustrates how mAbs can help to combat viral diseases and outbreaks.
Collapse
Affiliation(s)
- Pardis Mokhtary
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Department of Biochemistry and Molecular Biology, University of Siena, 53100 Siena, Italy
| | - Zeinab Pourhashem
- Student Research Committee, Pasteur Institute of Iran, Tehran 1316943551, Iran;
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Akram Abouei Mehrizi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| |
Collapse
|
2
|
Yang JX, Tseng JC, Yu GY, Luo Y, Huang CYF, Hong YR, Chuang TH. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14020423. [PMID: 35214155 PMCID: PMC8878135 DOI: 10.3390/pharmaceutics14020423] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host’s response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants’ effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 37611)
| |
Collapse
|
3
|
Kwak C, Nguyen QT, Kim J, Kim TH, Poo H. Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses. J Microbiol Biotechnol 2021; 31:304-316. [PMID: 33263336 PMCID: PMC9705887 DOI: 10.4014/jmb.2011.11029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 μg) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 μg) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Alum Compounds/administration & dosage
- Animals
- Antibodies, Viral/immunology
- Cross Reactions
- Female
- Hemagglutinins, Viral
- Humans
- Immunity, Humoral
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nucleocapsid Proteins/administration & dosage
- Nucleocapsid Proteins/genetics
- Nucleocapsid Proteins/immunology
- Polyglutamic Acid/administration & dosage
- Recombinant Fusion Proteins/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Viral Matrix Proteins/administration & dosage
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Chaewon Kwak
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Quyen Thi Nguyen
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jaemoo Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Tae-Hwan Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Forgacs D, Abreu RB, Sautto GA, Kirchenbaum GA, Drabek E, Williamson KS, Kim D, Emerling DE, Ross TM. Convergent antibody evolution and clonotype expansion following influenza virus vaccination. PLoS One 2021; 16:e0247253. [PMID: 33617543 PMCID: PMC7899375 DOI: 10.1371/journal.pone.0247253] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in high-throughput single cell sequencing have opened up new avenues into the investigation of B cell receptor (BCR) repertoires. In this study, PBMCs were collected from 17 human participants vaccinated with the split-inactivated influenza virus vaccine during the 2016-2017 influenza season. A combination of Immune Repertoire Capture (IRCTM) technology and IgG sequencing was performed on ~7,800 plasmablast (PB) cells and preferential IgG heavy-light chain pairings were investigated. In some participants, a single expanded clonotype accounted for ~22% of their PB BCR repertoire. Approximately 60% (10/17) of participants experienced convergent evolution, possessing public PBs that were elicited independently in multiple participants. Binding profiles of one private and three public PBs confirmed they were all subtype-specific, cross-reactive hemagglutinin (HA) head-directed antibodies. Collectively, this high-resolution antibody repertoire analysis demonstrated the impact evolution can have on BCRs in response to influenza virus vaccination, which can guide future universal influenza prophylactic approaches.
Collapse
Affiliation(s)
- David Forgacs
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Rodrigo B. Abreu
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Giuseppe A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Greg A. Kirchenbaum
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
| | - Elliott Drabek
- Atreca, Inc., South San Francisco, CA, United States of America
| | | | - Dongkyoon Kim
- Atreca, Inc., South San Francisco, CA, United States of America
| | | | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Intragastric delivery of recombinant Lactococcus lactis displaying ectodomain of influenza matrix protein 2 (M2e) and neuraminidase (NA) induced focused mucosal and systemic immune responses in chickens. Mol Immunol 2019; 114:497-512. [PMID: 31518854 DOI: 10.1016/j.molimm.2019.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/25/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023]
Abstract
Compounding with the problem of frequent antigenic shift and occasional drift of the segmented genome of Avian Influenza Virus (AIV), vaccines based on major surface glycoproteins such as haemagglutinin (HA) to counter heterosubtypic AIV infection in chickens remain unsuccessful. In contrast, neuraminidase (NA), the second most abundant surface glycoprotein present in viral capsid is less mutable and, in some instances, successful in eliciting inter-species cross-reactive antibody responses. However, without selective activation of B-cells and T-cells, the ability of NA to induce strong cell mediated immune responses is limited, thus NA based vaccines cannot singularly address the risk of virus escape from host defence. To this end, the highly conserved ectodomain of influenza matrix protein-2 (M2e) has emerged as an attractive cross-protective vaccine target. The present study describes the potential of recombinant Lactococcus lactis (rL. lactis) in expressing functional influenza NA or M2e proteins and conferring effective mucosal and systemic immune responses in the intestine as well as in the upper respiratory airways (trachea) of chickens. In addition, lavages collected from trachea and intestine of birds administered with rL. lactis expressing influenza NA or M2e protein were found to protect MDCK cells against avian influenza type A/PR/8/34 (H1N1) virus challenge. Although minor, the differences in the expression of pro-inflammatory cytokines gene transcripts targeted in this study among the birds administered with either empty or rL. lactis could be attributed to the activation of innate response by L. lactis.
Collapse
|
6
|
Farahmand B, Taheri N, Shokouhi H, Soleimanjahi H, Fotouhi F. Chimeric protein consisting of 3M2e and HSP as a universal influenza vaccine candidate: from in silico analysis to preliminary evaluation. Virus Genes 2018; 55:22-32. [PMID: 30382564 DOI: 10.1007/s11262-018-1609-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 10/22/2018] [Indexed: 01/26/2023]
Abstract
The 23-amino acid ectodomain of influenza virus M2 protein (M2e) is highly conserved among human influenza virus variants and represents an attractive target for developing a universal vaccine. Although this peptide has limited potency and low immunogenicity, the degree of M2e density has been shown to be a critical factor influencing the magnitude of epitope-specific responses. The aim of this study was to design a chimer protein consisting of three tandem repeats of M2e peptide sequence fused to the Leishmania major HSP70 gene and evaluate its characteristics and immunogenicity. The structure of the deduced protein and its stability, aliphatic index, biocomputed half-life and the anticipated immunogenicity were analyzed by bioinformatics software. The oligonucleotides encoding 3M2e and chimer 3M2e-HSP70 were expressed in Escherichia coli and affinity purified. The immunogenicity of the purified recombinant proteins was preliminary examined in mouse model. It was predicted that fusion of HSP70 to the C-terminal of 3M2e peptide led to increased stability, hydropathicity, continuous B cell epitopes and antigenic propensity score of chimer protein. Also, the predominant 3M2e epitopes were not hidden in the chimer protein. The initial in vivo experiment showed that 3M2e-HSP chimer protein stimulates specific immune responses. In conclusion, the results of the current study suggest that 3M2e-HSP chimer protein would be an effective universal subunit vaccine candidate against influenza infection.
Collapse
Affiliation(s)
- Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, Tehran, 1316943551, Iran
| | - Najmeh Taheri
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, Tehran, 1316943551, Iran
| | - Hadiseh Shokouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, Tehran, 1316943551, Iran
| | | | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, 69, Tehran, 1316943551, Iran.
| |
Collapse
|
7
|
Abstract
INTRODUCTION Bacterial flagellin, as a pathogen-associated molecular pattern (PAMP), can activate both innate and adaptive immunity. Its unique structural characteristics endow an effective and flexible adjuvant activity, which allow the design of different types of vaccine strategies to prevent various diseases. This review will discuss recent progress in the mechanism of action of flagellin and its prospects for use as a vaccine adjuvant. AREAS COVERED Herein we summarize various types of information related to flagellin adjuvants from PubMed, including structures, signaling pathways, natural immunity, and extensive applications in vaccines, and it discusses the immunogenicity, safety, and efficacy of flagellin-adjuvanted vaccines in clinical trials. EXPERT COMMENTARY It is widely accepted that as an adjuvant, flagellin can induce an enhanced antigen-specific immune response. Flagellin adjuvants will allow more effective flagellin-based vaccines to enter clinical trials. Furthermore, vaccine formulations containing PAMPs are crucial to exert the maximum potential of vaccine antigens. Therefore, combinations of flagellin-adjuvanted vaccines with other adjuvants that act in a synergistic manner, particularly TLR ligands, represent a promising method for tailoring targeted vaccines to meet specific requirements.
Collapse
Affiliation(s)
- Baofeng Cui
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Xinsheng Liu
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yuzhen Fang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Peng Zhou
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yongguang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| | - Yonglu Wang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture , Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China.,b Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , China
| |
Collapse
|
8
|
Wang X, Teng D, Guan Q, Mao R, Hao Y, Wang X, Yao J, Wang J. Escherichia coli outer membrane protein F (OmpF): an immunogenic protein induces cross-reactive antibodies against Escherichia coli and Shigella. AMB Express 2017; 7:155. [PMID: 28728309 PMCID: PMC5517391 DOI: 10.1186/s13568-017-0452-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/11/2017] [Indexed: 11/10/2022] Open
Abstract
Diarrhea caused by pathogenic Escherichia coli (E. coli) is one of the most serious infectious diseases in humans and animals. Due to antibiotics resistance and the lack of efficient vaccine, more attention should be paid to find potential versatile vaccine candidates to prevent diseases. In this study, the sequence homology analysis indicated that OmpF from E. coli CVCC 1515 shares a high identity (90−100%) with about half of the E. coli (46.7%) and Shigella (52.8%) strains. Then the recombinant OmpF was supposed to be developed as a versatile vaccine to prevent E. coli infection. OmpF was expressed in E. coli BL21 (DE3) using the auto-induction method. The recombinant OmpF (rOmpF) protein had an average molecular weight of 40 kDa with the purity of 90%. Immunological analysis indicated that the titers of anti-rOmpF sera against rOmpF and whole cells were 1:240,000 and 1:27,000, respectively. The opsonophagocytosis result showed that 72.21 ± 11.39 and 11.04 ± 3.90% of bacteria were killed in the rOmpF immunization and control groups, respectively. The survival ratio of mice immunized with rOmpF ranged between 40 and 60% as observed within 36 h after challenge, indicating mice were partially protected from E. coli CVCC 1515 infection. The expressed rOmpF protein induced an effective immune response, but only provide a weak protection against pathogenic E. coli CVCC 1515 and a small reduction in E. coli CICC 21530 (O157:H7) excretion in a mouse infection model. Native forms of the OmpF antigen may be studied for immunogenicity and potential protective efficacy.
Collapse
|
9
|
Vemula SV, Sayedahmed EE, Sambhara S, Mittal SK. Vaccine approaches conferring cross-protection against influenza viruses. Expert Rev Vaccines 2017; 16:1141-1154. [PMID: 28925296 DOI: 10.1080/14760584.2017.1379396] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Annual vaccination is one of the most efficient and cost-effective strategies to prevent and control influenza epidemics. Most of the currently available influenza vaccines are strong inducers of antibody responses against viral surface proteins, hemagglutinin (HA) and neuraminidase (NA), but are poor inducers of cell-mediated immune responses against conserved internal proteins. Moreover, due to the high variability of viral surface proteins because of antigenic drift or antigenic shift, many of the currently licensed vaccines confer little or no protection against drift or shift variants. Areas covered: Next generation influenza vaccines that can induce humoral immune responses to receptor-binding epitopes as well as broadly neutralizing conserved epitopes, and cell-mediated immune responses against highly conserved internal proteins would be effective against variant viruses as well as a novel pandemic influenza until circulating strain-specific vaccines become available. Here we discuss vaccine approaches that have the potential to provide broad spectrum protection against influenza viruses. Expert commentary: Based on current progress in defining cross-protective influenza immunity, it seems that the development of a universal influenza vaccine is feasible. It would revolutionize the strategy for influenza pandemic preparedness, and significantly impact the shelf-life and protection efficacy of seasonal influenza vaccines.
Collapse
Affiliation(s)
- Sai V Vemula
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| | - Ekramy E Sayedahmed
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| | - Suryaprakash Sambhara
- b Influenza Division , Centers for Disease Control and Prevention , Atlanta , GA , USA
| | - Suresh K Mittal
- a Department of Comparative Pathobiology and Purdue Institute for Immunology , Inflammation and Infectious Disease, Purdue University , West Lafayette , IN , USA
| |
Collapse
|
10
|
Figueiredo DB, Carvalho E, Santos MP, Kraschowetz S, Zanardo RT, Campani G, Silva GG, Sargo CR, Horta ACL, de C Giordano R, Miyaji EN, Zangirolami TC, Cabrera-Crespo J, Gonçalves VM. Production and purification of an untagged recombinant pneumococcal surface protein A (PspA4Pro) with high-purity and low endotoxin content. Appl Microbiol Biotechnol 2016; 101:2305-2317. [PMID: 27889801 DOI: 10.1007/s00253-016-7983-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
Streptococcus pneumoniae is the main cause of pneumonia, meningitis, and other conditions that kill thousands of children every year worldwide. The replacement of pneumococcal serotypes among the vaccinated population has evidenced the need for new vaccines with broader coverage and driven the research for protein-based vaccines. Pneumococcal surface protein A (PspA) protects S. pneumoniae from the bactericidal effect of human apolactoferrin and prevents complement deposition. Several studies indicate that PspA is a very promising target for novel vaccine formulations. Here we describe a production and purification process for an untagged recombinant fragment of PspA from clade 4 (PspA4Pro), which has been shown to be cross-reactive with several PspA variants. PspA4Pro was obtained using lactose as inducer in Phytone auto-induction batch or glycerol limited fed-batch in 5-L bioreactor. The purification process includes two novel steps: (i) clarification using a cationic detergent to precipitate contaminant proteins, nucleic acids, and other negatively charged molecules as the lipopolysaccharide, which is the major endotoxin; and (ii) cryoprecipitation that eliminates aggregates and contaminants, which precipitate at -20 °C and pH 4.0, leaving PspA4Pro in the supernatant. The final process consisted of cell rupture in a continuous high-pressure homogenizer, clarification, anion exchange chromatography, cryoprecipitation, and cation exchange chromatography. This process avoided costly tag removal steps and recovered 35.3 ± 2.5% of PspA4Pro with 97.8 ± 0.36% purity and reduced endotoxin concentration by >99.9%. Circular dichroism and lactoferrin binding assay showed that PspA4Pro secondary structure and biological activity were preserved after purification and remained stable in a wide range of temperatures and pH values.
Collapse
Affiliation(s)
- Douglas B Figueiredo
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, Avenida Prof. Lineu Prestes 2415, Edifício ICB-III, São Paulo, SP, 05508-900, Brazil
| | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
| | - Mauricio P Santos
- Departamento de Engenharia Química, Universidade Federal de São Carlos, Rodovia Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Stefanie Kraschowetz
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, Avenida Prof. Lineu Prestes 2415, Edifício ICB-III, São Paulo, SP, 05508-900, Brazil
| | - Rafaela T Zanardo
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, Avenida Prof. Lineu Prestes 2415, Edifício ICB-III, São Paulo, SP, 05508-900, Brazil
| | - Gilson Campani
- Departamento de Engenharia Química, Universidade Federal de São Carlos, Rodovia Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Gabriel G Silva
- Departamento de Engenharia Química, Universidade Federal de São Carlos, Rodovia Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Cíntia R Sargo
- Departamento de Engenharia Química, Universidade Federal de São Carlos, Rodovia Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Antonio Carlos L Horta
- Departamento de Engenharia Química, Universidade Federal de São Carlos, Rodovia Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Roberto de C Giordano
- Departamento de Engenharia Química, Universidade Federal de São Carlos, Rodovia Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Eliane N Miyaji
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
| | - Teresa C Zangirolami
- Departamento de Engenharia Química, Universidade Federal de São Carlos, Rodovia Washington Luís km 235, São Carlos, SP, 13565-905, Brazil
| | - Joaquin Cabrera-Crespo
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil
| | - Viviane Maimoni Gonçalves
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP, 05503-900, Brazil.
| |
Collapse
|
11
|
Chan J, Babb R, David SC, McColl SR, Alsharifi M. Vaccine-Induced Antibody Responses Prevent the Induction of Interferon Type I Responses Upon a Homotypic Live Virus Challenge. Scand J Immunol 2016; 83:165-73. [DOI: 10.1111/sji.12410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/22/2015] [Indexed: 12/31/2022]
Affiliation(s)
- J. Chan
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - R. Babb
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - S. C. David
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - S. R. McColl
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| | - M. Alsharifi
- Vaccine Research Group; Centre for Molecular Pathology; School of Biological Sciences; The University of Adelaide; Adelaide SA Australia
| |
Collapse
|
12
|
Wang X, Guan Q, Wang X, Teng D, Mao R, Yao J, Wang J. Paving the way to construct a new vaccine against Escherichia coli from its recombinant outer membrane protein C via a murine model. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Meng Q, Liu G, Liu Y, Deng X, Wang W, Xu K, Zheng X, Zhang D, Pang H, Chen H. A broad protection provided by matrix protein 2 (M2) of avian influenza virus. Vaccine 2015; 33:3758-65. [DOI: 10.1016/j.vaccine.2015.05.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/10/2015] [Accepted: 05/19/2015] [Indexed: 12/09/2022]
|
14
|
Simhadri VR, Dimitrova M, Mariano JL, Zenarruzabeitia O, Zhong W, Ozawa T, Muraguchi A, Kishi H, Eichelberger MC, Borrego F. A Human Anti-M2 Antibody Mediates Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) and Cytokine Secretion by Resting and Cytokine-Preactivated Natural Killer (NK) Cells. PLoS One 2015; 10:e0124677. [PMID: 25915748 PMCID: PMC4411161 DOI: 10.1371/journal.pone.0124677] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/16/2015] [Indexed: 11/19/2022] Open
Abstract
The highly conserved matrix protein 2 (M2) is a good candidate for the development of a broadly protective influenza vaccine that induces long-lasting immunity. In animal models, natural killer (NK) cells have been proposed to play an important role in the protection provided by M2-based vaccines through a mechanism of antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated the ability of the human anti-M2 Ab1-10 monoclonal antibody (mAb) to activate human NK cells. They mediated ADCC against M2-expressing cells in the presence of Ab1-10 mAb. Furthermore, NK cell pro-inflammatory cytokine and chemokine secretion is also enhanced when Ab1-10 mAb is present. We also generated cytokine-preactivated NK cells and showed that they still displayed increased effector functions in the presence of Ab1-10 mAb. Thus, our study has demonstrated that human resting and cytokine-preactivated NK cells may have a very important role in the protection provided by anti-M2 Abs.
Collapse
Affiliation(s)
- Venkateswara R. Simhadri
- Division of Biotechnology Review and Research-I, Office of Biotechnology Products Review and Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (VS); (FB)
| | - Milena Dimitrova
- Division of Biotechnology Review and Research-I, Office of Biotechnology Products Review and Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - John L. Mariano
- Division of Biotechnology Review and Research-I, Office of Biotechnology Products Review and Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Olatz Zenarruzabeitia
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Basque Country, Spain
- Cell Therapy and Stem Cell Group, Basque Center for Transfusion and Human Tissues, Galdakao, Basque Country, Spain
| | - Weimin Zhong
- Influenza Division, National Center for Immunization and Respiratory Diseases, Center for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Tatsuhiko Ozawa
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama Prefecture, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama Prefecture, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama Prefecture, Japan
| | - Maryna C. Eichelberger
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Francisco Borrego
- Division of Biotechnology Review and Research-I, Office of Biotechnology Products Review and Research, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Basque Country, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Basque Country, Spain
- * E-mail: (VS); (FB)
| |
Collapse
|
15
|
The use of nonhuman primates in research on seasonal, pandemic and avian influenza, 1893-2014. Antiviral Res 2015; 117:75-98. [PMID: 25746173 DOI: 10.1016/j.antiviral.2015.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 02/19/2015] [Accepted: 02/26/2015] [Indexed: 11/22/2022]
Abstract
Attempts to reproduce the features of human influenza in laboratory animals date from the early 1890s, when Richard Pfeiffer inoculated apes with bacteria recovered from influenza patients and produced a mild respiratory illness. Numerous studies employing nonhuman primates (NHPs) were performed during the 1918 pandemic and the following decade. Most used bacterial preparations to infect animals, but some sought a filterable agent for the disease. Since the viral etiology of influenza was established in the early 1930s, studies in NHPs have been supplemented by a much larger number of experiments in mice, ferrets and human volunteers. However, the emergence of a novel swine-origin H1N1 influenza virus in 1976 and the highly pathogenic H5N1 avian influenza virus in 1997 stimulated an increase in NHP research, because these agents are difficult to study in naturally infected patients and cannot be administered to human volunteers. In this paper, we review the published literature on the use of NHPs in influenza research from 1893 through the end of 2014. The first section summarizes observational studies of naturally occurring influenza-like syndromes in wild and captive primates, including serologic investigations. The second provides a chronological account of experimental infections of NHPs, beginning with Pfeiffer's study and covering all published research on seasonal and pandemic influenza viruses, including vaccine and antiviral drug testing. The third section reviews experimental infections of NHPs with avian influenza viruses that have caused disease in humans since 1997. The paper concludes with suggestions for further studies to more clearly define and optimize the role of NHPs as experimental animals for influenza research.
Collapse
|
16
|
Recombinant outer membrane protein A induces a protective immune response against Escherichia coli infection in mice. Appl Microbiol Biotechnol 2015; 99:5451-60. [PMID: 25567514 DOI: 10.1007/s00253-014-6339-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 01/19/2023]
Abstract
Pathogenic Escherichia coli (E. coli) is an important infectious Gram-negative bacterium causing millions of death every year. Outer membrane protein A (OmpA) has been suggested as a potential vaccine candidate for conferring protection against bacterial infection. In this study, a universal vaccine candidate for E. coli infection was developed and evaluated. Bioinformatics analysis revealed the OmpA protein from E. coli shares 96~100%, 90~94%, and 45% identity with Shigella, Salmonella, and Pseudomonas strains, respectively. The ompA gene was cloned from the genomic DNA of E. coli, and then the OmpA protein was expressed in BL21 (DE3) using the auto-induction method. The recombinant OmpA (rOmpA) protein had an average molecular weight of 36 kDa with the purity of 93.5%. Immunological analysis indicated that the titers of anti-rOmpA sera against rOmpA and whole cells were 1:642,000 and 1:140,000, respectively. Moreover, rOmpA not only conferred a high level of immunogenicity to protect mice against the challenge of E. coli, but also generated cross-protection against Shigella and Salmonella. The anti-rOmpA sera could enhance the phagocytic activity of neutrophils against E. coli. The survive ratios of mice immunized with rOmpA and PBS were 50% and 20% after 48 h post-challenge, indicating mice were protected from E. coli infection after immunization with rOmpA. All these results clearly indicate that rOmpA may be a promising candidate for the development of a subunit vaccine to prevent E. coli infection.
Collapse
|
17
|
Lee YN, Lee YT, Kim MC, Hwang HS, Lee JS, Kim KH, Kang SM. Fc receptor is not required for inducing antibodies but plays a critical role in conferring protection after influenza M2 vaccination. Immunology 2014; 143:300-9. [PMID: 24773389 DOI: 10.1111/imm.12310] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/29/2022] Open
Abstract
The ectodomain of matrix protein 2 (M2e) of influenza virus is considered a rational target for a universal influenza A vaccine. To better understand M2e immune-mediated protection, Fc receptor common γ chain deficient (FcRγ(-/-) ) and wild-type mice were immunized with a tandem repeat of M2e presented on virus-like particles (M2e5x VLP). Levels of M2e-specific antibodies that were induced in FcRγ(-/-) mice after immunization with M2e5x VLP were similar to those in wild-type mice. In addition, M2e antibodies induced in FcRγ(-/-) mice were found to be equally protective as those induced in wild-type mice. However, M2e5x VLP-immunized FcRγ(-/-) mice were not well protected, as shown by severe weight loss, higher lung viral titres and interleukin-6 inflammatory cytokine production upon influenza virus challenge compared with M2e5x VLP-immunized wild-type mice. Importantly, FcRγ(-/-) mice that were immunized with inactivated influenza virus induced haemagglutination inhibition activity and were well protected without a significant weight loss. Interestingly, interferon-γ-producing CD4 T and CD8 T cells were found to be prevalent in lungs from M2e5x VLP-immunized FcRγ(-/-) mice, which appeared to be correlated with a faster recovery after infection. These results indicate that Fc receptors play a primary role in conferring M2e-specific antibody-mediated protection whereas T cells may contribute to the recovery at later stages of infection.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ramos EL, Mitcham JL, Koller TD, Bonavia A, Usner DW, Balaratnam G, Fredlund P, Swiderek KM. Efficacy and safety of treatment with an anti-m2e monoclonal antibody in experimental human influenza. J Infect Dis 2014; 211:1038-44. [PMID: 25281755 DOI: 10.1093/infdis/jiu539] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The efficacy of TCN-032, a human monoclonal antibody targeting a conserved epitope on M2e, was explored in experimental human influenza. METHODS Healthy volunteers were inoculated with influenza A/Wisconsin/67/2005 (H3N2) and received a single dose of the study drug, TCN-032, or placebo 24 hours later. Subjects were monitored for symptoms, viral shedding, and safety, including cytokine measurements. Oseltamivir was administered 7 days after inoculation. RESULTS Although the primary objective of reducing the proportion of subjects developing any grade ≥2 influenza symptom or pyrexia, was not achieved, TCN-032-treated subjects showed 35% reduction (P = .047) in median total symptom area under the curve (days 1-7) and 2.2 log reduction in median viral load area under the curve (days 2-7) by quantitative polymerase chain reaction (P = .09) compared with placebo-treated subjects. TCN-032 was safe and well tolerated with no additional safety signals after administration of oseltamivir. Serum cytokine levels (interferon γ, tumor necrosis factor α, and interleukin 8 and 10) were similar in both groups. Genotypic and phenotypic analyses showed no difference between virus derived from subjects after TCN-032 treatment and parental strain. CONCLUSIONS These data indicate that TCN-032 may provide immediate immunity and therapeutic benefit in influenza A infection, with no apparent emergence of resistant virus. TCN-032 was safe with no evidence of immune exacerbation based on serum cytokine expression. Clinicaltrials.gov registry number. NCT01719874.
Collapse
|
19
|
Dabaghian M, Latify AM, Tebianian M, Nili H, Ranjbar ART, Mirjalili A, Mohammadi M, Banihashemi R, Ebrahimi SM. Vaccination with recombinant 4 × M2e.HSP70c fusion protein as a universal vaccine candidate enhances both humoral and cell-mediated immune responses and decreases viral shedding against experimental challenge of H9N2 influenza in chickens. Vet Microbiol 2014; 174:116-26. [PMID: 25293397 DOI: 10.1016/j.vetmic.2014.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/26/2023]
Abstract
As cellular immunity is essential for virus clearance, it is commonly accepted that no adequate cellular immunity is achieved by all available inactivated HA-based influenza vaccines. Thus, an improved influenza vaccine to induce both humoral and cell-mediated immune responses is urgently required to control LPAI H9N2 outbreaks in poultry farms. M2e-based vaccines have been suggested and developed as a new generation of universal vaccine candidate against influenza A infection. Our previous study have shown that a prime-boost administration of recombinant 4×M2e.HSP70c (r4M2e/H70c) fusion protein compared to conventional HA-based influenza vaccines provided full protection against lethal dose of influenza A viruses in mice. In the present study, the immunogenicity and protective efficacy of (r4M2e/H70c) was examined in chickens. The data reported herein show that protection against H9N2 viral challenge was significantly increased in chickens by injection of r4M2e/H70c compared with injection of conventional HA-based influenza vaccine adjuvanted with MF59 or recombinant 4×M2e (r4M2e) without HSP70c. Oropharyngeal and cloacal shedding of the virus was detected in all of the r4M2e/H70c vaccinated birds at 2 days after challenge, but the titer was low and decreased rapidly to reach undetectable levels at 7 days after challenge. Moreover, comparison of protective efficacy against LPAI H9N2 in birds intramuscularly immunized with r4M2e/H70c likely represented the ability of the M2e-based vaccine in providing cross-protection against heterosubtypic H9N2 challenge and also allowed the host immune system to induce HA-homosubtype neutralizing antibody against H9N2 challenge. This protective immunity might be attributed to enhanced cell-mediated immunity, which is interpreted as increased lymphocytes proliferation, increased levels of Th1-type (IFN-γ) and Th2-type (IL-4) cytokines production and increased CD4(+) to CD8(+) ratios, resulting from the injection of four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (4×M2e) genetically fused to C-terminus of Mycobacterium tuberculosis HSP70 (mHSP70c).
Collapse
Affiliation(s)
- Mehran Dabaghian
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran; Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, PO Box 14155-6453, Tehran, Iran
| | - Ali Mohammad Latify
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Hassan Nili
- Department of Avian Research, School of Veterinary Medicine, Shiraz University, PO Box 1731, Shiraz, Iran
| | | | - Ali Mirjalili
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Mashallah Mohammadi
- Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), PO Box 31975/148, Karaj, Tehran, Iran
| | - Reza Banihashemi
- Department of Medical Immunology, Tarbiyat Modares University, Tehran, Iran
| | - Seyyed Mahmoud Ebrahimi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, PO Box 14155-3651, Tehran, Iran.
| |
Collapse
|
20
|
Attaran H, Nili H, Tebianian M. Immunogenicity and protective efficacy of recombinant M2e.Hsp70c (Hsp70(359-610)) fusion protein against influenza virus infection in mice. Virol Sin 2014; 29:218-27. [PMID: 25160757 DOI: 10.1007/s12250-014-3428-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022] Open
Abstract
New strategies in vaccine development are urgently needed to combat emerging influenza viruses and to reduce the risk of pandemic disease surfacing. Being conserved, the M2e protein, is a potential candidate for universal vaccine development against influenza A viruses. Mycobacterium tuberculosis Hsp70 (mHsp70) is known to cultivate the function of immunogenic antigenpresenting cells, stimulate a strong cytotoxic T lymphocyte (CTL) response, and stop the induction of tolerance. Thus, in this study, a recombinant protein from the extracellular domain of influenza A virus matrix protein 2 (M2e), was fused to the C-terminus of Mycobacterium tuberculosis Hsp70 (Hsp70c), to generate a vaccine candidate. Humoral immune responses, IFN-γ-producing lymphocyte, and strong CTL activity were all induced to confirm the immunogenicity of M2e.Hsp70c (Hsp70(359-610)). And challenge tests showed protection against H1N1 and H9N2 strains in vaccinated groups. Finally these results demonstrates M2e.Hsp70c fusion protein can be a candidate for a universal influenza A vaccine.
Collapse
Affiliation(s)
- Hamidreza Attaran
- Avian Diseases Research Center, Faculty of Veterinary Medicine, University of Shiraz, Shiraz, 71345-1731, Iran,
| | | | | |
Collapse
|
21
|
Intranasal adenovirus-vectored vaccine for induction of long-lasting humoral immunity-mediated broad protection against influenza in mice. J Virol 2014; 88:9693-703. [PMID: 24920793 DOI: 10.1128/jvi.00823-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Influenza vaccines aimed at inducing antibody (Ab) responses against viral surface hemagglutinin (HA) and neuraminidase (NA) provide sterile immunity to infection with the same subtypes. Vaccines targeting viral conserved determinants shared by the influenza A viruses (IAV) offer heterosubtypic immunity (HSI), a broad protection against different subtypes. We proposed that vaccines targeting both HA and the conserved ectodomain of matrix protein 2 (M2e) would provide protection against infection with the same subtype and also HSI against other subtypes. We report here that single intranasal immunization with a recombinant adenovirus (rAd) vector encoding both HA of H5 virus and M2e (rAdH5/M2e) induced significant HA- and M2e-specific Ab responses, along with protection against heterosubtypic challenge in mice. The protection is superior compared to that induced by rAd vector encoding either HA (rAdH5), or M2e (rAdM2e). While protection against homotypic H5 virus is primarily mediated by virus-neutralizing Abs, the cross-protection is associated with Abs directed to conserved stalk HA and M2e that seem to have an additive effect. Consistently, adoptive transfer of antisera induced by rAdH5/M2e provided the best protection against heterosubtypic challenge compared to that provided by antisera derived from mice immunized with rAdH5 or rAdM2e. These results support the development of rAd-vectored vaccines encoding both H5 and M2e as universal vaccines against different IAV subtypes. IMPORTANCE Current licensed influenza vaccines provide protection limited to the infection with same virus strains; therefore, the composition of influenza vaccines has to be revised every year. We have developed a new universal influenza vaccine that is highly efficient in induction of long-lasting cross-protection against different influenza virus strains. The cross-protection is associated with a high level of vaccine-induced antibodies against the conserved stalk domain of influenza virus hemagglutinin and the ectodomain of matrix protein. The vaccine could be used to stimulate cross-protective antibodies for the prevention and treatment of influenza with immediate effect for individuals who fail to respond to or receive the vaccine in due time. The vaccine offers a new tool to control influenza outbreaks, including pandemics.
Collapse
|
22
|
Reperant LA, Rimmelzwaan GF, Osterhaus AD. Advances in influenza vaccination. F1000PRIME REPORTS 2014; 6:47. [PMID: 24991424 PMCID: PMC4047948 DOI: 10.12703/p6-47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Influenza virus infections yearly cause high morbidity and mortality burdens in humans, and the development of a new influenza pandemic continues to threaten mankind as a Damoclean sword. Influenza vaccines have been produced by using egg-based virus growth and passaging techniques that were developed more than 60 years ago, following the identification of influenza A virus as an etiological agent of seasonal influenza. These vaccines aimed mainly at eliciting neutralizing antibodies targeting antigenically variable regions of the hemagglutinin (HA) protein, which requires regular updates to match circulating seasonal influenza A and B virus strains. Given the relatively limited protection induced by current seasonal influenza vaccines, a more universal influenza vaccine that would protect against more—if not all—influenza viruses is among the largest unmet medical needs of the 21st century. New insights into correlates of protection from influenza and into broad B- and T-cell protective anti-influenza immune responses offer promising avenues for innovative vaccine development as well as manufacturing strategies or platforms, leading to the development of a new generation of vaccines. These aim at the rapid and massive production of influenza vaccines that provide broad protective and long-lasting immunity. Recent advances in influenza vaccine research demonstrate the feasibility of a wide range of approaches and call for the initiation of preclinical proof-of-principle studies followed by clinical trials in humans.
Collapse
Affiliation(s)
- Leslie A. Reperant
- Department of Viroscience, Erasmus Medical CentrePO Box 2040, 3000 CA RotterdamThe Netherlands
- Artemis Research Institute for One Health in EuropeYalelaan 1, 3584 CL UtrechtThe Netherlands
| | - Guus F. Rimmelzwaan
- Department of Viroscience, Erasmus Medical CentrePO Box 2040, 3000 CA RotterdamThe Netherlands
| | - Albert D.M.E. Osterhaus
- Department of Viroscience, Erasmus Medical CentrePO Box 2040, 3000 CA RotterdamThe Netherlands
- Artemis Research Institute for One Health in EuropeYalelaan 1, 3584 CL UtrechtThe Netherlands
- Center for Infection Medicine and Zoonoses Research, University of Veterinary MedicineBünteweg 17, 30559 HannoverGermany
| |
Collapse
|
23
|
Chowdhury MYE, Li R, Kim JH, Park ME, Kim TH, Pathinayake P, Weeratunga P, Song MK, Son HY, Hong SP, Sung MH, Lee JS, Kim CJ. Mucosal vaccination with recombinant Lactobacillus casei-displayed CTA1-conjugated consensus matrix protein-2 (sM2) induces broad protection against divergent influenza subtypes in BALB/c mice. PLoS One 2014; 9:e94051. [PMID: 24714362 PMCID: PMC3979752 DOI: 10.1371/journal.pone.0094051] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/11/2014] [Indexed: 01/31/2023] Open
Abstract
To develop a safe and effective mucosal vaccine against pathogenic influenza viruses, we constructed recombinant Lactobacillus casei strains that express conserved matrix protein 2 with (pgsA-CTA1-sM2/L. casei) or without (pgsA-sM2/L. casei) cholera toxin subunit A1 (CTA1) on the surface. The surface localization of the fusion protein was verified by cellular fractionation analyses, flow cytometry and immunofluorescence microscopy. Oral and nasal inoculations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and mucosal IgA. However, the conjugation of cholera toxin subunit A1 induced more potent mucosal, humoral and cell-mediated immune responses. In a challenge test with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird /Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005(H7N3), and A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant pgsA-CTA1-sM2/L. casei provided better protection against lethal challenges than pgsA-sM2/L. casei, pgsA/L. casei and PBS in mice. These results indicate that mucosal immunization with recombinant L. casei expressing CTA1-conjugated sM2 protein on its surface is an effective means of eliciting protective immune responses against diverse influenza subtypes.
Collapse
Affiliation(s)
- Mohammed Y. E. Chowdhury
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Rui Li
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Min-Eun Park
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Tae-Hwan Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Prabuddha Pathinayake
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Prasanna Weeratunga
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | - Man Ki Song
- Laboratory Science Division, International Vaccine Institute, Seoul, Republic of Korea
| | - Hwa-Young Son
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
| | | | | | - Jong-Soo Lee
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (CJK); (JSL)
| | - Chul-Joong Kim
- College of Veterinary Medicine (BK21 Plus Program), Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (CJK); (JSL)
| |
Collapse
|
24
|
Assadian F, Nikbakht G, Niazi S, Khaltabadi RF, Jahantigh M. Immune responses to oral and IM administration of M2e-Hsp70 construct. Vet Res Commun 2014; 38:157-63. [DOI: 10.1007/s11259-014-9599-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
25
|
Monto AS, Ohmit SE. Seasonal influenza vaccines: evolutions and future trends. Expert Rev Vaccines 2014; 8:383-9. [DOI: 10.1586/erv.09.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Zheng M, Luo J, Chen Z. Development of universal influenza vaccines based on influenza virus M and NP genes. Infection 2013; 42:251-62. [PMID: 24178189 DOI: 10.1007/s15010-013-0546-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023]
Abstract
PURPOSE Vaccination is the safest and most effective measure against influenza virus infections. However, traditional influenza vaccines cannot respond effectively to an unforeseen epidemic or pandemic caused by a virus with antigenic drifts or antigenic shifts. Therefore, developing a universal influenza vaccine (UIV) that induces broad-spectrum and long-term immunity has become a major trend in influenza vaccine research and development. METHODS This article reviews the development of UIVs based on these conserved influenza virus proteins. RESULTS AND CONCLUSION The matrix protein (M1, M2) and nucleoprotein (NP) of influenza viruses have highly conserved sequences, and they become the major target antigens of current UIV studies.
Collapse
Affiliation(s)
- M Zheng
- Shanghai Institute of Biological Products, Shanghai, 200052, China
| | | | | |
Collapse
|
27
|
An M2e-based synthetic peptide vaccine for influenza A virus confers heterosubtypic protection from lethal virus challenge. Virol J 2013; 10:227. [PMID: 23834899 PMCID: PMC3716895 DOI: 10.1186/1743-422x-10-227] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 07/04/2013] [Indexed: 12/03/2022] Open
Abstract
Background Vaccination is considered as the most effective preventive method to control influenza. The hallmark of influenza virus is the remarkable variability of its major surface glycoproteins, HA and NA, which allows the virus to evade existing anti-influenza immunity in the target population. So it is necessary to develop a novel vaccine to control animal influenza virus. Also we know that the ectodomain of influenza matrix protein 2 (M2e) is highly conserved in animal influenza A viruses, so a vaccine based on the M2e could avoid several drawbacks of the traditional vaccines. In this study we designed a novel tetra-branched multiple antigenic peptide (MAP) based vaccine, which was constructed by fusing four copies of M2e to one copy of foreign T helper (Th) cell epitope, and then investigated its immune responses. Results Our results show that the M2e-MAP induced strong M2e-specific IgG antibody,which responses following 2 doses immunization in the presence of Freunds’ adjuvant. M2e-MAP vaccination limited viral replication substantially. Also it could attenuate histopathological damage in the lungs of challenged mice and counteracted weight loss. M2e-MAP-based vaccine protected immunized mice against the lethal challenge with PR8 virus. Conclusions Based on these findings, M2e-MAP-based vaccine seemed to provide useful information for the research of M2e-based influenza vaccine. Also it show huge potential to study vaccines for other similarly viruses.
Collapse
|
28
|
Swinkels WJC, Hoeboer J, Sikkema R, Vervelde L, Koets ADP. Vaccination induced antibodies to recombinant avian influenza A virus M2 protein or synthetic M2e peptide do not bind to the M2 protein on the virus or virus infected cells. Virol J 2013; 10:206. [PMID: 23800100 PMCID: PMC3701469 DOI: 10.1186/1743-422x-10-206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 06/17/2013] [Indexed: 11/11/2022] Open
Abstract
Background Influenza viruses are characterized by their highly variable surface proteins HA and NA. The third surface protein M2 is a nearly invariant protein in all Influenza A strains. Despite extensive studies in other animal models, this study is the first to describe the use of recombinant M2 protein and a peptide coding for the extracellular part of the M2 protein (M2e) to vaccinate poultry. Methods Four groups of layer chickens received a prime-boost vaccination with recombinant M2 protein, M2e, a tetrameric construct from M2e peptide bound to streptavidin and a control tetrameric construct formulated with Stimune adjuvant. Results We determined the M2-specific antibody (Ab) responses in the serum before vaccination, three weeks after vaccination and two weeks after booster, at days 21, 42 and 56 of age. The group vaccinated with the M2 protein in combination with Stimune adjuvant showed a significant Ab response to the complete M2 protein as compared to the other groups. In addition an increased Ab response to M2e peptide was found in the group vaccinated with the M2e tetrameric construct. None of the vaccinated animals showed seroconversion to AI in a commercial ELISA. Finally no Ab’s were found that bound to M2 expressed on in vitro AI infected MDCK cells. Conclusion Although Ab’s are formed against the M2 protein and to Streptavidin bound M2e peptide in a tetrameric conformation these Ab’s do not recognize of M2 on the virus or on infected cells.
Collapse
Affiliation(s)
- Willem J C Swinkels
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 Utrecht CL, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
A Novel Lactococcal Vaccine Expressing a Peptide from the M2 Antigen of H5N2 Highly Pathogenic Avian Influenza A Virus Prolongs Survival of Vaccinated Chickens. Vet Med Int 2013; 2013:316926. [PMID: 23766929 PMCID: PMC3674685 DOI: 10.1155/2013/316926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
A cost-effective and efficacious influenza vaccine for use in commercial poultry farms would help protect against avian influenza outbreaks. Current influenza vaccines for poultry are expensive and subtype specific, and therefore there is an urgent need to develop a universal avian influenza vaccine. We have constructed a live bacterial vaccine against avian influenza by expressing a conserved peptide from the ectodomain of M2 antigen (M2e) on the surface of Lactococcus lactis (LL). Chickens were vaccinated intranasally with the lactococcal vaccine (LL-M2e) or subcutaneously with keyhole-limpet-hemocyanin conjugated M2e (KLH-M2e). Vaccinated and nonvaccinated birds were challenged with high pathogenic avian influenza virus A subtype H5N2. Birds vaccinated with LL-M2e or KLH-M2e had median survival times of 5.5 and 6.0 days, respectively, which were significantly longer than non-vaccinated birds (3.5 days). Birds vaccinated subcutaneously with KLH-M2e had a lower mean viral burden than either of the other two groups. However, there was a significant correlation between the time of survival and M2e-specific serum IgG. The results of these trials show that birds in both vaccinated groups had significantly (P < 0.05) higher median survival times than non-vaccinated birds and that this protection could be due to M2e-specific serum IgG.
Collapse
|
30
|
Kim EH, Lee JH, Pascua PNQ, Song MS, Baek YH, Kwon HI, Park SJ, Lim GJ, Decano A, Chowdhury MY, Seo SK, Song MK, Kim CJ, Choi YK. Prokaryote-expressed M2e protein improves H9N2 influenza vaccine efficacy and protection against lethal influenza A virus in mice. Virol J 2013; 10:104. [PMID: 23551908 PMCID: PMC3621599 DOI: 10.1186/1743-422x-10-104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 03/22/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Influenza vaccines are prepared annually based on global epidemiological surveillance data. However, since there is no method by which to predict the influenza strain that will cause the next pandemic, the demand to develop new vaccination strategies with broad cross-reactivity against influenza viruses are clearly important. The ectodomain of the influenza M2 protein (M2e) is an attractive target for developing a vaccine with broad cross-reactivity. For these reasons, we investigated the efficacy of an inactivated H9N2 virus vaccine (a-H9N2) mixed with M2e (1xM2e or 4xM2e) proteins expressed in Escherichia coli, which contains the consensus of sequence the extracellular domain of matrix 2 (M2e) of A/chicken/Vietnam/27262/09 (H5N1) avian influenza virus, and investigated its humoral immune response and cross-protection against influenza A viruses. RESULTS Mice were intramuscularly immunized with a-H9N2, 1xM2e alone, 4xM2e alone, a-H9N2/1xM2e, or a-H9N2/4xM2e. Three weeks post-vaccination, mice were challenged with lethal homologous (A/ chicken /Korea/ma163/04, H9N2) or heterosubtypic virus (A/Philippines/2/82, H3N2 and A/aquatic bird/Korea/maW81/05, H5N2). Our studies demonstrate that the survival of mice immunized with a-H9N2/1xM2e or with a-H9N2/4xM2e (100% survival) was significantly higher than that of mouse-adapted H9N2 virus-infected mice vaccinated with 1xM2e alone or with 4xM2e alone (0% survival). We also evaluated the protective efficacy of the M2e + vaccine against infection with mouse-adapted H5N2 influenza virus. Protection from death in the control group (0% survival) was similar to that of the 1×M2e alone and 4xM2e alone-vaccinated groups (0% survival). Only 40% of mice vaccinated with vaccine alone survived challenge with H5N2, while the a-H9N2/1×M2e and a-H9N2/4×M2e groups showed 80% and 100% survival following mouse-adapted H5N2 challenge, respectively. We also examined cross-protection against human H3N2 virus and found that the a-H9N2/1×M2e group displayed partial cross-protection against H3N2 (40% survival), whereas vaccine alone, 1×M2e alone, 4×M2e alone, or H9N2/1×M2e groups showed incomplete protection (0% survival) in response to challenge with a lethal dose of human H3N2 virus. CONCLUSIONS Taken together, these results suggest that prokaryote-expressed M2e protein improved inactivated H9N2 virus vaccine efficacy and achieved cross-protection against lethal influenza A virus infection in mice.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Microbiology Department, College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong Heungduk-Ku, Cheongju 361-763, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran. Virology 2012; 430:63-72. [PMID: 22595444 DOI: 10.1016/j.virol.2012.04.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/10/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022]
Abstract
Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS-PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0-33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.
Collapse
|
32
|
Staneková Z, Mucha V, Sládková T, Blaškovičová H, Kostolanský F, Varečková E. Epitope specificity of anti-HA2 antibodies induced in humans during influenza infection. Influenza Other Respir Viruses 2012; 6:389-95. [PMID: 22236105 DOI: 10.1111/j.1750-2659.2011.00328.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The conserved, fusion-active HA2 glycopolypeptide (HA2) subunit of influenza A hemagglutinin comprises four distinct antigenic sites. Monoclonal antibodies (MAbs) recognizing three of these sites are broadly cross-reactive and protective. OBJECTIVES This study aimed to establish whether antibodies specific to these three antigenic sites were elicited during a natural influenza infection or by vaccination of humans. METHODS Forty-five paired acute and convalescent sera from individuals with a confirmed influenza A (subtype H3) infection were examined for the presence of HA2-specific antibodies. The fraction of antibodies specific to three particular antigenic sites (designated IIF4, FC12, and CF2 here) was investigated using competitive enzyme immunoassay. RESULTS Increased levels of antibodies specific to an ectodomain of HA2 (EHA2: N-terminal residues 23-185 of HA2) were detected in 73% of tested convalescent sera (33/45), while an increased level of antibodies specific to the HA2 fusion peptide (N-terminal residues 1-38) was induced in just 15/45 individuals (33%). Competitive assays confirmed that antibodies specific to the IIF4 epitope (within HA2 residues 125-175) prevailed in 86% (13/15) over those specific to the other two epitopes during infection. However, only a negligible increase in HA2-specific antibodies was detectable following vaccination with a current subunit vaccine. CONCLUSIONS We observed that the antigenic site localized within N-terminal HA2 residues 125-175 was more immunogenic than that within residues 1-38 (HA2 fusion protein), although both are weak natural immunogens. We suggest that new anti-influenza vaccines should include HA2 (or specific epitopes localized within this glycopolypeptide) to enhance their cross-protective efficacy.
Collapse
Affiliation(s)
- Zuzana Staneková
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
33
|
A Novel Vaccine Using Nanoparticle Platform to Present Immunogenic M2e against Avian Influenza Infection. INFLUENZA RESEARCH AND TREATMENT 2012; 2011:126794. [PMID: 23074652 PMCID: PMC3447297 DOI: 10.1155/2011/126794] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/24/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022]
Abstract
Using peptide nanoparticle technology, we have designed two novel vaccine constructs representing M2e in monomeric (Mono-M2e) and tetrameric (Tetra-M2e) forms. Groups of specific pathogen free (SPF) chickens were immunized intramuscularly with Mono-M2e or Tetra-M2e with and without an adjuvant. Two weeks after the second boost, chickens were challenged with 107.2 EID50 of H5N2 low pathogenicity avian influenza (LPAI) virus. M2e-specific antibody responses to each of the vaccine constructs were tested by ELISA. Vaccinated chickens exhibited increased M2e-specific IgG responses for each of the constructs as compared to a non-vaccinated group. However, the vaccine construct Tetra-M2e elicited a significantly higher antibody response when it was used with an adjuvant. On the other hand, virus neutralization assays indicated that immune protection is not by way of neutralizing antibodies. The level of protection was evaluated using quantitative real time PCR at 4, 6, and 8 days post-challenge with H5N2 LPAI by measuring virus shedding from trachea and cloaca. The Tetra-M2e with adjuvant offered statistically significant (P < 0.05) protection against subtype H5N2 LPAI by reduction of the AI virus shedding. The results suggest that the self-assembling polypeptide nanoparticle shows promise as a potential platform for a development of a vaccine against AI.
Collapse
|
34
|
Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One 2011; 6:e27953. [PMID: 22140491 PMCID: PMC3227615 DOI: 10.1371/journal.pone.0027953] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/28/2011] [Indexed: 12/12/2022] Open
Abstract
Background The ectodomain of matrix protein 2 (M2e) of influenza A virus is a rationale target antigen candidate for the development of a universal vaccine against influenza as M2e undergoes little sequence variation amongst human influenza A strains. Vaccine-induced M2e-specific antibodies (Abs) have been shown to display significant cross-protective activity in animal models. M2e-based vaccine constructs have been shown to be more protective when administered by the intranasal (i.n.) route than after parenteral injection. However, i.n. administration of vaccines poses rare but serious safety issues associated with retrograde passage of inhaled antigens and adjuvants through the olfactory epithelium. In this study, we examined whether the sublingual (s.l.) route could serve as a safe and effective alternative mucosal delivery route for administering a prototype M2e-based vaccine. The mechanism whereby s.l. immunization with M2e vaccine candidate induces broad protection against infection with different influenza virus subtypes was explored. Methods and Results A recombinant M2 protein with three tandem copies of the M2e (3M2eC) was expressed in Escherichia coli. Parenteral immunizations of mice with 3M2eC induced high levels of M2e-specific serum Abs but failed to provide complete protection against lethal challenge with influenza virus. In contrast, s.l. immunization with 3M2eC was superior for inducing protection in mice. In the latter animals, protection was associated with specific Ab responses in the lungs. Conclusions The results demonstrate that s.l. immunization with 3M2eC vaccine induced airway mucosal immune responses along with broad cross-protective immunity to influenza. These findings may contribute to the understanding of the M2-based vaccine approach to control epidemic and pandemic influenza infections.
Collapse
|
35
|
Kang SM, Song JM, Compans RW. Novel vaccines against influenza viruses. Virus Res 2011; 162:31-8. [PMID: 21968298 DOI: 10.1016/j.virusres.2011.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/23/2011] [Accepted: 09/24/2011] [Indexed: 01/08/2023]
Abstract
Killed and live attenuated influenza virus vaccines are effective in preventing and curbing the spread of influenza epidemics when the strains present in the vaccines are closely matched with the predicted epidemic strains. These vaccines are primarily targeted to induce immunity to the variable major target antigen, hemagglutinin (HA) of influenza virus. However, current vaccines are not effective in preventing the emergence of new pandemic or highly virulent viruses. New approaches are being investigated to develop universal influenza virus vaccines as well as to apply more effective vaccine delivery methods. Conserved vaccine targets including the influenza M2 ion channel protein and HA stalk domains are being developed using recombinant technologies to improve the level of cross protection. In addition, recent studies provide evidence that vaccine supplements can provide avenues to further improve current vaccies.
Collapse
Affiliation(s)
- S M Kang
- Center for Inflammation, Immunity & Infection, Department of Biology, Georgia State University, 100 Piedmont Avenue, 7th Floor 718, Atlanta, GA 30303, United States.
| | | | | |
Collapse
|
36
|
Mancini N, Solforosi L, Clementi N, De Marco D, Clementi M, Burioni R. A potential role for monoclonal antibodies in prophylactic and therapeutic treatment of influenza. Antiviral Res 2011; 92:15-26. [DOI: 10.1016/j.antiviral.2011.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/19/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
37
|
Ozawa T, Jin A, Tajiri K, Takemoto M, Okuda T, Shiraki K, Kishi H, Muraguchi A. Characterization of a fully human monoclonal antibody against extracellular domain of matrix protein 2 of influenza A virus. Antiviral Res 2011; 91:283-7. [PMID: 21726583 DOI: 10.1016/j.antiviral.2011.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 06/13/2011] [Accepted: 06/20/2011] [Indexed: 02/08/2023]
Abstract
The extra-cellular domain of the influenza virus matrix protein 2 (M2e) is highly conserved between influenza A virus strains compared to hemagglutinin and neuraminidase, and has long been viewed as a potential and universal vaccine target. M2e induces no or only weak and transient immune responses following infection, making it difficult to detect M2e-specific antibodies producing B-cells in human peripheral blood lymphocytes. Recently, using a single-cell manipulation method, immunospot array assay on a chip (ISAAC), we obtained an M2e-specific human antibody (Ab1-10) from the peripheral blood of a healthy volunteer. In this report, we have demonstrate that Ab1-10 reacted not only to seasonal influenza A viruses, but also to pandemic (H1N1) 2009 virus (2009 H1N1) and highly pathogenic avian influenza A virus, and that the antibody-bound M2e of 2009 H1N1 inactivated the virus with high affinity (∼10(-10)M). More importantly, it inhibited 2009 H1N1 viral propagation in vitro. These results suggest that Ab1-10 might be a potential candidate for antibody therapeutics for a wide range of influenza A viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Birds
- Enzyme-Linked Immunospot Assay
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/growth & development
- Influenza Vaccines/biosynthesis
- Influenza Vaccines/immunology
- Influenza in Birds/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/virology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Lab-On-A-Chip Devices
- Molecular Sequence Data
- Protein Structure, Tertiary
- Single-Cell Analysis
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/immunology
Collapse
Affiliation(s)
- Tatsuhiko Ozawa
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The swine, influenza, H1N1 outbreak in 2009 highlighted the inadequacy of the currently used antibody-based vaccine strategies as a preventive measure for combating influenza pandemics. The ultimate goal for successful control of newly arising influenza outbreaks is to design a single-shot vaccine that will provide long-lasting immunity against all strains of influenza A virus. A large amount of data from animal studies has indicated that the cross-reactive cytotoxic T (Tc) cell response against conserved influenza virus epitopes may be the key immune response needed for a universal influenza vaccine. However, decades of research have shown that the development of safe T-cell-based vaccines for influenza is not an easy task. Here, I discuss the overlooked but potentially highly advantageous inactivation method, namely, γ-ray irradiation, as a mean to reach the Holy Grail of influenza vaccinology.
Collapse
Affiliation(s)
- Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208-3479, USA.
| |
Collapse
|
39
|
Turley CB, Rupp RE, Johnson C, Taylor DN, Wolfson J, Tussey L, Kavita U, Stanberry L, Shaw A. Safety and immunogenicity of a recombinant M2e–flagellin influenza vaccine (STF2.4xM2e) in healthy adults. Vaccine 2011; 29:5145-52. [DOI: 10.1016/j.vaccine.2011.05.041] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
|
40
|
Adler-Moore J, Munoz M, Kim H, Romero J, Tumpey T, Zeng H, Petro C, Ernst W, Kosina S, Jimenez G, Fujii G. Characterization of the murine Th2 response to immunization with liposomal M2e influenza vaccine. Vaccine 2011; 29:4460-8. [PMID: 21545821 DOI: 10.1016/j.vaccine.2011.04.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
While the current influenza vaccine strategy is dependent on eliciting neutralizing antibodies to the hemagglutinin (H or HA) surface glycoprotein, antigenic drifts and occasional antigenic shifts necessitate constant surveillance and annual updates to the vaccine components. The ectodomain of the matrix 2 (M2e) channel protein has been proposed as a universal vaccine candidate, although it has not yet been shown to elicit neutralizing antibodies. Utilizing a liposome-based vaccine technology, an M2e vaccine (L-M2e-HD/MPL) was tested and shown to stimulate the production of anti-M2e antibodies which precipitated with whole virus and inhibited viral cell lysis by multiple type A strains of influenza virus using a novel in vitro assay. The anti-M2e antibodies also conferred complete protection following passive transfer from L-M2e-HD/MPL vaccinated mice to naïve mice challenged with H1N1 virus. Significantly higher levels of IL-4 compared to IFN-γ were secreted by the splenocytes of L-M2e-HD/MPL vaccinated mice incubated with M2e. In addition, depletion of CD4 cells or CD4 cells plus CD8 cells from L-M2e-HD/MPL vaccinated mice using monoclonal antibodies markedly decreased the level of protection of the vaccine when compared to just CD8 depletion of L-M2e-HD/MPL vaccinated mice. These results suggest that the protective immune response elicited by this vaccine is mediated primarily by a Th2 mechanism.
Collapse
Affiliation(s)
- Jill Adler-Moore
- California State Polytechnic University Pomona, 3801 West Temple Ave, Pomona, CA 91768, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhong W, He J, Tang X, Liu F, Lu X, Zeng H, Vafai A, Fu TM, Katz JM, Hancock K. Development and evaluation of an M2-293FT cell-based flow cytometric assay for quantification of antibody response to native form of matrix protein 2 of influenza A viruses. J Immunol Methods 2011; 369:115-24. [PMID: 21570401 DOI: 10.1016/j.jim.2011.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 04/21/2011] [Accepted: 04/26/2011] [Indexed: 11/15/2022]
Abstract
Matrix protein 2 (M2) of influenza A viruses is an attractive target for the development of broadly cross-protective influenza vaccines and therapeutic antibodies. The available evidence suggests that antibodies reactive to the natural tetrameric form of M2 proteins, rather than those to synthetic peptides of M2 ectodomain (M2e), best correlate with M2-mediated immune protection. However, the current ability to quantify strain-specific and/or subtype-cross-reactive M2 antibodies against the natural form of M2 antigens from influenza A viruses of different host origin is limited. In the present study, we generated a panel of 293FT transfected cell lines stably expressing full-length tetrameric forms of M2 molecules from human, avian and the swine-origin 2009 pandemic H1N1 influenza A virus, respectively, and developed an M2-293FT cell line-based flow cytometric assay (M2-FCA). Side-by-side comparison of M2-FCA with a synthetic M2e peptide-based indirect ELISA (M2e-ELISA) reveals that M2-FCA is highly efficient in quantifying both M2e sequence-specific and cross-reactive antibodies to the native form of M2 antigens. In contrast, promiscuity was evident when specificity and cross-reactivity of anti-M2 antibodies were assessed by M2e-ELISA. These results demonstrate that M2-FCA represents a rapid, simple and sensitive method to quantitatively assess specificity and cross-reactivity of anti-M2 antibodies after infection or vaccination.
Collapse
Affiliation(s)
- Weimin Zhong
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Antigenic changes in influenza virus occur gradually, owing to mutations (antigenic drift), and abruptly, owing to reassortment among subtypes (antigenic shift). Availability of strain-matched vaccines often lags behind these changes, resulting in a shortfall in public health. In animal models, cross-protection by vaccines based on conserved antigens does not completely prevent infection, but greatly reduces morbidity, mortality, virus replication and, thus, viral shedding and spread. Such immunity is especially effective and long-lasting with mucosal administration. Cross-protective immunity in humans is controversial, but is suggested by some epidemiological findings. 'Universal' vaccines protective against all influenza A viruses might substantially reduce severity of infection and limit spread of disease during outbreaks. These vaccines could be used 'off the shelf' early in an outbreak or pandemic, before strain-matched vaccines are available.
Collapse
Affiliation(s)
- Suzanne L Epstein
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA.
| | | |
Collapse
|
43
|
Song JM, Wang BZ, Park KM, Van Rooijen N, Quan FS, Kim MC, Jin HT, Pekosz A, Compans RW, Kang SM. Influenza virus-like particles containing M2 induce broadly cross protective immunity. PLoS One 2011; 6:e14538. [PMID: 21267073 PMCID: PMC3022578 DOI: 10.1371/journal.pone.0014538] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 11/25/2010] [Indexed: 12/29/2022] Open
Abstract
Background Current influenza vaccines based on the hemagglutinin protein are strain specific and do not provide good protection against drifted viruses or emergence of new pandemic strains. An influenza vaccine that can confer cross-protection against antigenically different influenza A strains is highly desirable for improving public health. Methodology/Principal Findings To develop a cross protective vaccine, we generated influenza virus-like particles containing the highly conserved M2 protein in a membrane-anchored form (M2 VLPs), and investigated their immunogenicity and breadth of cross protection. Immunization of mice with M2 VLPs induced anti-M2 antibodies binding to virions of various strains, M2 specific T cell responses, and conferred long-lasting cross protection against heterologous and heterosubtypic influenza viruses. M2 immune sera were found to play an important role in providing cross protection against heterosubtypic virus and an antigenically distinct 2009 pandemic H1N1 virus, and depletion of dendritic and macrophage cells abolished this cross protection, providing new insight into cross-protective immune mechanisms. Conclusions/Significance These results suggest that presenting M2 on VLPs in a membrane-anchored form is a promising approach for developing broadly cross protective influenza vaccines.
Collapse
Affiliation(s)
- Jae-Min Song
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kyoung-Mi Park
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Medisch Centrum, Amsterdam, The Netherlands
| | - Fu-Shi Quan
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Min-Chul Kim
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Hyun-Tak Jin
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (RWC); (SMK)
| | - Sang-Moo Kang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (RWC); (SMK)
| |
Collapse
|
44
|
Zhang X, Liu M, Liu C, Du J, Shi W, Sun E, Li H, Li J, Zhang Y. Vaccination with different M2e epitope densities confers partial protection against H5N1 influenza A virus challenge in chickens. Intervirology 2011; 54:290-9. [PMID: 21228535 DOI: 10.1159/000319440] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/25/2010] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Currently, research is focused on universal influenza vaccines based on various ectodomains of the influenza matrix protein 2 (M2e). Such vaccines are tested mostly using mouse-adapted influenza viruses and in mouse or ferret models. The aim of this study was to investigate in a chicken model the protective efficacy of vaccines based on avian-type M2e at different epitope densities. METHODS On the basis of the optimized avian-type M2e gene, recombinant plasmids that contained tandem copies of different M2e were constructed and expressed in Escherichia coli. The expression and immunogenicity of the proteins were confirmed by SDS-PAGE and Western blot, as well as immunofluorescence assay and enzyme-linked immunosorbent assay. Animals were immunized with fusion proteins emulsified with an appropriate adjuvant and then infected with highly pathogenic influenza virus of A/chicken/Guangdong/04 (H5N1). Antibody levels, survival rate and weight loss were investigated. RESULTS Multiple copies of M2e were highly expressed; higher epitope density engendered better protection but there was not a linear increase. Among the fusion proteins, the MBP-3·M2e fusion protein showed the best protective efficacy. CONCLUSIONS This study has provided evidence that the immune response to avian-type M2e-based subunit vaccines was greater in chickens than that in mice. In addition, higher M2e epitope density can yield better protection, but not in a linear fashion.
Collapse
Affiliation(s)
- Xintao Zhang
- Animal Influenza Laboratory of the Ministry of Agriculture, and State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
El Bakkouri K, Descamps F, De Filette M, Smet A, Festjens E, Birkett A, Van Rooijen N, Verbeek S, Fiers W, Saelens X. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. THE JOURNAL OF IMMUNOLOGY 2010; 186:1022-31. [PMID: 21169548 DOI: 10.4049/jimmunol.0902147] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ectodomain of matrix protein 2 (M2e) of influenza A virus is an attractive target for a universal influenza A vaccine: the M2e sequence is highly conserved across influenza virus subtypes, and induced humoral anti-M2e immunity protects against a lethal influenza virus challenge in animal models. Clinical phase I studies with M2e vaccine candidates have been completed. However, the in vivo mechanism of immune protection induced by M2e-carrier vaccination is unclear. Using passive immunization experiments in wild-type, FcRγ(-/-), FcγRI(-/-), FcγRIII(-/-), and (FcγRI, FcγRIII)(-/-) mice, we report in this study that Fc receptors are essential for anti-M2e IgG-mediated immune protection. M2e-specific IgG1 isotype Abs are shown to require functional FcγRIII for in vivo immune protection but other anti-M2e IgG isotypes can rescue FcγRIII(-/-) mice from a lethal challenge. Using a conditional cell depletion protocol, we also demonstrate that alveolar macrophages (AM) play a crucial role in humoral M2e-specific immune protection. Additionally, we show that adoptive transfer of wild-type AM into (FcγRI, FcγRIII)(-/-) mice restores protection by passively transferred anti-M2e IgG. We conclude that AM and Fc receptor-dependent elimination of influenza A virus-infected cells are essential for protection by anti-M2e IgG.
Collapse
Affiliation(s)
- Karim El Bakkouri
- Department for Molecular Biomedical Research, Flanders Institute of Biotechnology (VIB), B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Influenza A viruses: why focusing on M2e-based universal vaccines. Virus Genes 2010; 42:1-8. [PMID: 21082230 DOI: 10.1007/s11262-010-0547-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/21/2010] [Indexed: 12/11/2022]
Abstract
The threat of highly virulent avian influenza, such as H5N1 and swine-origin H1N1 influenza viruses, bring out an urgent need to develop a universal influenza vaccine, which may provide cross-protection against different strain of influenza A viruses. The extra-domain of influenza M2 protein (M2e), which is almost completely conserved among all subtypes of influenza A viruses, is considered as a promising candidate target for the development of a broad-spectrum recombinant influenza A vaccine. The results of several preclinical studies with M2e protein, with or without carriers, have already proved the successful protection of M2e-based vaccinated animal model against lethal challenge of heterologous and homologous influenza A viruses. Recently, the results of Phase I/II clinical trail studies with M2e-based vaccines have raised hopes for considering these vaccines against seasonal and pandemic influenza A strains. Hence, it is expected that more and more effective and safe universal influenza vaccines based on M2e will be developed for prevention of seasonal and pandemic influenza in the near future.
Collapse
|
47
|
Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010; 28:7690-8. [DOI: 10.1016/j.vaccine.2010.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/01/2023]
|
48
|
Abstract
Traditionally, inactivated influenza vaccines have all been treated as virtually identical, at least in terms of recommendations for use. This has mostly been the case since their development over 60 years ago. The concept, still often quoted, that they are 70-90% protective against laboratory-confirmed clinical influenza comes from multiple studies carried out with different preparations in the US military; studies which ended in 1969 [1]. During this period, there were only gradual advances in improved potency and purity of the vaccines, so that it was appropriate to consider them as being comparable. However, we are currently witnessing a change, which started slowly, but is now accelerating, in which very different types of vaccine are becoming available. This has already begun in some parts of the world, but will soon be universal. The process is being accelerated by questions concerning the actual effectiveness of the current vaccines in specific risk groups. In this paper, we will take a look at the developments in the formulation of the vaccine to address the needs that have been identified. We will also consider different strategies for vaccine use which might be applied to traditional or future vaccines to improve population protection.
Collapse
Affiliation(s)
- Arnold S Monto
- Dept of Epidemiology, University of Michigan School of Public Health, Ann Arbor, 48109-2029, USA.
| |
Collapse
|
49
|
Neutralizing epitopes of influenza virus hemagglutinin: target for the development of a universal vaccine against H5N1 lineages. J Virol 2010; 84:11822-30. [PMID: 20844051 DOI: 10.1128/jvi.00891-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nature of influenza virus to randomly mutate and evolve into new types with diverse antigenic determinants is an important challenge in the control of influenza infection. Particularly, variations within the amino acid sequences of major neutralizing epitopes of influenza virus hemagglutinin (HA) hindered the development of universal vaccines against H5N1 lineages. Based on distribution analyses of the identified major neutralizing epitopes of hemagglutinin, we selected three vaccine strains that cover the entire variants in the neutralizing epitopes among the H5N1 lineages. HA proteins of selected vaccine strains were expressed on the baculovirus surface (BacHA), and the preclinical efficacy of the vaccine formulations was evaluated in a mouse model. The combination of three selected vaccine strains could effectively neutralize viruses from clades 1, 2.1, 2.2, 4, 7, and 8 of influenza H5N1 viruses. In contrast, a vaccine formulation containing only adjuvanted monovalent BacHA (mono-BacHA) or a single strain of inactivated whole viral vaccine was able to neutralize only clade 1 (homologous), clade 2.1, and clade 8.0 viruses. Also, the trivalent BacHA vaccine was able to protect 100% of the mice against challenge with three different clades (clade 1.0, clade 2.1, and clade 7.0) of H5N1 strains compared to mono-BacHA or inactivated whole viral vaccine. The present findings provide a rationale for the development of a universal vaccine against H5N1 lineages. Furthermore, baculoviruses displaying HA will serve as an ideal choice for a vaccine in prepandemic or pandemic situations and expedite vaccine technology without the requirement of high-level-biocontainment facilities or tedious protein purification processes.
Collapse
|
50
|
Abstract
The genetic attributes of the influenza virus lead to unique problems in vaccination. First, a highly mutable RNA genome, resulting in sequential antigenic variation, could potentially manifest as a vaccine failure or epidemic influenza. Second, a segmented genome that engenders the virus with the capacity for genetic reassortment and the introduction of new antigens into a host population could possibly result in a pandemic. The core problem in combating influenza is the need for continual vaccine revision and induction of broader heterovariant immunity. Current vaccines – the conventional inactivated vaccine and the live attenuated vaccine – rely on technology of strain selection and production methods that is decades old. The immunity induced by these vaccines is dominated by the response to hemagglutinin (HA) and, therefore, the vaccines are most effective when there is sufficient antigenic relatedness between the vaccine strain HA and the circulating wild-type virus HA. Consequently, these vaccines are susceptible to failure when an antigenically distinct virus emerges after the selection of the vaccine candidate strain. New vaccine strategies need to include immunization with other viral antigens in addition to HA, thereby broadening the immune response against influenza. Inclusion of the more slowly evolving neuraminidase and/or M2e in a vaccine against influenza could reduce the vulnerability to antigenic changes, and conserved antigens from internal proteins – nucleoprotein and M1 – delivered to induce T-cell helper and cytotoxic T cells, could ensure the presence of activated T cells that facilitate clearance of pandemic strains. Alternative production technologies, such as recombinant baculovirus and yeast, and different delivery methods, such as virus-like particles, should be explored to decrease vaccine production times and reduce reliance on embryonated eggs.
Collapse
Affiliation(s)
- Bert E Johansson
- Center of Excellence of Infectious Diseases & Department of Pediatrics, Texas Tech University Health Sciences Center, Paul H Foster School of Medicine, MSB1 5001 El Paso Dr, El Paso, TX 79922, USA
| | - Maryna C Eichelberger
- Division of Viral Products, Center for Biologics Evaluation & Research, Food & Drug Administration, Building 29A room 1D24, 8800 Rockville Pike, Bethesda, MD 20852, USA
| |
Collapse
|