1
|
Newmark J, Kounaves SP. Permeation of photochemically-generated gaseous chlorine dioxide on Mars as a significant factor in destroying subsurface organic compounds. Sci Rep 2024; 14:7682. [PMID: 38561442 PMCID: PMC10985076 DOI: 10.1038/s41598-024-57968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
It has been shown that ultraviolet (UV) irradiation is responsible for the destruction of organic compounds on the surface of Mars. When combined with the photochemically-driven production of oxychlorines (ClOx) it can generate highly reactive species that can alter or destroy organic compounds. However, it has been assumed that since UV only penetrates the top few millimeters of the martian regolith, reactive ClOx oxidants are only produced on the surface. Of all the oxychlorine intermediates produced, gaseous chlorine dioxide [ClO2(g)] is of particular interest, being a highly reactive gas with the ability to oxidize organic compounds. Here we report on a set of experiments under Mars ambient conditions showing the production and permeation of ClO2(g) and its reaction with alanine as a test compound. Contrary to the accepted paradigm that UV irradiation on Mars only interacts with a thin layer of surface regolith, our results show that photochemically-generated ClO2(g) can permeate below the surface, depositing ClOx species (mainly Cl- and ClO 3 - ) and destroying organic compounds. With varying levels of humidity and abundant chloride and oxychlorines on Mars, our findings show that permeation of ClO2(g) must be considered as a significant contributing factor in altering, fragmenting, or potentially destroying buried organic compounds on Mars.
Collapse
Affiliation(s)
- Jacob Newmark
- Department of Chemistry, Tufts University, Medford, MA, USA
| | | |
Collapse
|
2
|
Chou L, Grefenstette N, Borges S, Caro T, Catalano E, Harman CE, McKaig J, Raj CG, Trubl G, Young A. Chapter 8: Searching for Life Beyond Earth. ASTROBIOLOGY 2024; 24:S164-S185. [PMID: 38498822 DOI: 10.1089/ast.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The search for life beyond Earth necessitates a rigorous and comprehensive examination of biosignatures, the types of observable imprints that life produces. These imprints and our ability to detect them with advanced instrumentation hold the key to our understanding of the presence and abundance of life in the universe. Biosignatures are the chemical or physical features associated with past or present life and may include the distribution of elements and molecules, alone or in combination, as well as changes in structural components or physical processes that would be distinct from an abiotic background. The scientific and technical strategies used to search for life on other planets include those that can be conducted in situ to planetary bodies and those that could be observed remotely. This chapter discusses numerous strategies that can be employed to look for biosignatures directly on other planetary bodies using robotic exploration including those that have been deployed to other planetary bodies, are currently being developed for flight, or will become a critical technology on future missions. Search strategies for remote observations using current and planned ground-based and space-based telescopes are also described. Evidence from spectral absorption, emission, or transmission features can be used to search for remote biosignatures and technosignatures. Improving our understanding of biosignatures, their production, transformation, and preservation on Earth can enhance our search efforts to detect life on other planets.
Collapse
Affiliation(s)
- Luoth Chou
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Center for Space Sciences and Technology, University of Maryland, Baltimore, Maryland, USA
- Georgetown University, Washington, DC, USA
| | - Natalie Grefenstette
- Santa Fe Institute, Santa Fe, New Mexico, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Tristan Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Enrico Catalano
- Sant'Anna School of Advanced Studies, The BioRobotics Institute, Pisa, Italy
| | | | - Jordan McKaig
- Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Gareth Trubl
- Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Amber Young
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
- Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
3
|
Ribette T, Leroux B, Eddhif B, Allavena A, David M, Sternberg R, Poinot P, Geffroy-Rodier C. Primary Step Towards In Situ Detection of Chemical Biomarkers in the UNIVERSE via Liquid-Based Analytical System: Development of an Automated Online Trapping/Liquid Chromatography System. Molecules 2019; 24:molecules24071429. [PMID: 30978982 PMCID: PMC6480246 DOI: 10.3390/molecules24071429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/16/2022] Open
Abstract
The search for biomarkers in our solar system is a fundamental challenge for the space research community. It encompasses major difficulties linked to their very low concentration levels, their ambiguous origins (biotic or abiotic), as well as their diversity and complexity. Even if, in 40 years’ time, great improvements in sample pre-treatment, chromatographic separation and mass spectrometry detection have been achieved, there is still a need for new in situ scientific instrumentation. This work presents an original liquid chromatographic system with a trapping unit dedicated to the one-pot detection of a large set of non-volatile extra-terrestrial compounds. It is composed of two units, monitored by a single pump. The first unit is an online trapping unit able to trap polar, apolar, monomeric and polymeric organics. The second unit is an online analytical unit with a high-resolution Q-Orbitrap mass spectrometer. The designed single pump system was as efficient as a laboratory dual-trap LC system for the analysis of amino acids, nucleobases and oligopeptides. The overall setup significantly improves sensitivity, providing limits of detection ranging from ppb to ppt levels, thus meeting with in situ enquiries.
Collapse
Affiliation(s)
- Thomas Ribette
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR CNRS 7285, Equipe Eau Géochimie Santé, 4 rue Michel Brunet, 86076 Poitiers, France.
| | - Bertrand Leroux
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR CNRS 7285, Equipe Eau Géochimie Santé, 4 rue Michel Brunet, 86076 Poitiers, France.
| | - Balkis Eddhif
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR CNRS 7285, Equipe Eau Géochimie Santé, 4 rue Michel Brunet, 86076 Poitiers, France.
| | - Audrey Allavena
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR CNRS 7285, Equipe Eau Géochimie Santé, 4 rue Michel Brunet, 86076 Poitiers, France.
| | - Marc David
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris Est Creteil, UMR CNRS 7583, 61 avenue du General de Gaulle, 94010 Créteil, France.
| | - Robert Sternberg
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), Université Paris Est Creteil, UMR CNRS 7583, 61 avenue du General de Gaulle, 94010 Créteil, France.
| | - Pauline Poinot
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR CNRS 7285, Equipe Eau Géochimie Santé, 4 rue Michel Brunet, 86076 Poitiers, France.
| | - Claude Geffroy-Rodier
- Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Université de Poitiers, UMR CNRS 7285, Equipe Eau Géochimie Santé, 4 rue Michel Brunet, 86076 Poitiers, France.
| |
Collapse
|
4
|
Wen Y, Yuan X, Qin F, Zhao L, Xiong Z. Development and validation of a hydrophilic interaction ultra-high-performance liquid chromatography-tandem mass spectrometry method for rapid simultaneous determination of 19 free amino acids in rat plasma and urine. Biomed Chromatogr 2018; 33:e4387. [PMID: 30238479 DOI: 10.1002/bmc.4387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/04/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
Determination of amino acids in biofluids is a challenging task because of difficulties deriving from their high polarity and matrix interference. A simple, reliable and high-throughput hydrophilic interaction UHPLC-MS/MS method was developed and validated for the rapid simultaneous determination of 19 free amino acids in rat plasma and urine samples in this paper. Hydrophilic method with a Waters Acquity UPLC BEH Amide column (100 × 2.1 mm,1.7 μm) was used with a gradient mobile phase system of acetonitrile and water both containing 0.2% formic acid. The analysis was performed on a positive electrospray ionization mass spectrometer via multiple reaction monitoring. Samples of 10 μL plasma and 50 μL urine were spiked with three deuterated internal standards, pretreated with 250 μL acetonitrile for one-step protein precipitation and a final dilution of urine samples. Good linearities (r > 0.99) were obtained for all of the analytes with the lower limit of quantification from 0.1 to 1.2 μg/mL. The relative standard deviation of the intra-day and inter-day precisions were within 15.0% and the accuracy ranged from -12.8 to 12.7%. The hydrophilic interaction UHPLC-MS/MS method was rapid, accurate and high-throughput and exhibited better chromatography behaviors than the regular RPLC methods. It was further successfully applied to detect 19 free amino acids in biological matrix.
Collapse
Affiliation(s)
- Yongqing Wen
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Xuemei Yuan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Feng Qin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Longshan Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| | - Zhili Xiong
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
5
|
Pinkerton DK, Reaser BC, Berrier KL, Synovec RE. Determining the Probability of Achieving a Successful Quantitative Analysis for Gas Chromatography–Mass Spectrometry. Anal Chem 2017; 89:9926-9933. [DOI: 10.1021/acs.analchem.7b02230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- David K. Pinkerton
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Brooke C. Reaser
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Kelsey L. Berrier
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Robert E. Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Armenta JM, Cortes DF, Pisciotta JM, Shuman JL, Blakeslee K, Rasoloson D, Ogunbiyi O, Sullivan DJ, Shulaev V. Sensitive and rapid method for amino acid quantitation in malaria biological samples using AccQ.Tag ultra performance liquid chromatography-electrospray ionization-MS/MS with multiple reaction monitoring. Anal Chem 2010; 82:548-58. [PMID: 20038084 PMCID: PMC2829832 DOI: 10.1021/ac901790q] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An AccQ*Tag ultra performance liquid chromatography-electrospray ionization-tandem mass spectrometry (AccQ*Tag-UPLC-ESI-MS/MS) method for fast, reproducible, and sensitive amino acid quantitation in biological samples, particularly, the malaria parasite Plasmodium falciparum is presented. The Waters Acquity TQD UPLC/MS system equipped with a photodiode array (PDA) detector was used for amino acid separation and detection. The method was developed and validated using amino acid standard mixtures containing acidic, neutral, and basic amino acids. For MS analysis, the optimum cone voltage implemented, based on direct infusion analysis of a few selected AccQ*Tag amino acids with multiple reaction monitoring, varied from 29 to 39 V, whereas the collision energy varied from 15 to 35 V. Calibration curves were built using both internal and external standardization. Typically, a linear response for all amino acids was observed at concentration ranges of 3 x 10(-3)-25 pmol/muL. For some amino acids, concentration limits of detection were as low as 1.65 fmol. The coefficients of variation for retention times were within the range of 0.08-1.08%. The coefficients of variation for amino acid quantitation, determined from triplicate UPLC-MS/MS runs, were below 8% on the average. The developed AccQ*Tag-UPLC-ESI-MS/MS method revealed good technical and biological reproducibility when applied to P. falciparum and human red blood cells samples. This study should provide a valuable insight into the performance of UPLC-ESI-MS/MS for amino acid quantitation using AccQ*Tag derivatization.
Collapse
Affiliation(s)
- Jenny M. Armenta
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Diego F. Cortes
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - John M. Pisciotta
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore MD 21205
| | - Joel L. Shuman
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Kenneth Blakeslee
- Waters Corporation, MedStar Building, Suite 103, 5565 Sterrett Place, Columbia, MD 21044
| | - Dominique Rasoloson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore MD 21205
| | - Oluwatosin Ogunbiyi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore MD 21205
| | - David J. Sullivan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore MD 21205
| | - Vladimir Shulaev
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
7
|
Pietrogrande MC, Zampolli MG, Dondi F, Szopa C, Sternberg R, Buch A, Raulin F. In situ analysis of the Martian soil by gas chromatography: Decoding of complex chromatograms of organic molecules of exobiological interest. J Chromatogr A 2005; 1071:255-61. [PMID: 15865201 DOI: 10.1016/j.chroma.2004.08.126] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gas chromatography-mass spectrometry (GC-MS) will be used in future space exploration missions, in order to seek organic molecules at the surface of Mars, and especially potential chemical indicators of life. Carboxylic acids are among the most expected organic species at the surface of Mars, and they could be numerous in the analysed samples. For this reason, a chemometric method was applied to support the interpretation of chromatograms of carboxylic acid mixtures. The method is based on AutoCovariance Function (ACVF) in order to extract information on the sample--number and chemical structure of the components--and on separation performance. The procedure was applied to standard samples containing targeted compounds which are among the most expected to be present in the Martian soil: n-alkanoic and benzene dicarboxylic acids. ACVF was computed on the obtained chromatograms and plotted versus retention time: peaks of the ACVF plot can be related to specific molecular structures and are diagnostic for chemical identification of compounds.
Collapse
Affiliation(s)
- M C Pietrogrande
- Department of Chemistry, University of Ferrara, Via L. Borsari, 46, 44100 Ferrara, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Rodier C, Laurent C, Szopa C, Sternberg R, Raulin F. Chirality and the origin of life: in situ enantiomeric separation for future space missions. Chirality 2002; 14:527-32. [PMID: 12112349 DOI: 10.1002/chir.10090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Two different methods of derivatization were studied in order to select and optimize one for the in situ enantiomeric separation of amino acids present in Martian samples. The method, using DMF-DMA [N,N-dimethylformamide dimethyl acetal], is simple and easily automated. However, byproducts of the reaction interfere in the gas chromatograms and mass spectrometry detection is needed for in situ analysis. The chloroformate derivatization has several advantages, including the use of achiral robust capillary column, room temperature reaction, and short analysis. The choice of the definitive derivatization method will depend on the energy and time devoted to the analysis of amino acids in the next Mars exploration missions.
Collapse
Affiliation(s)
- C Rodier
- LISA, UMR 7583 CNRS, Université Paris 7 and Paris 12, Créteil, France
| | | | | | | | | |
Collapse
|