1
|
Salazar M, Joly S, Anglada-Escudé G, Ribas L. Epigenetic and physiological alterations in zebrafish subjected to hypergravity. PLoS One 2024; 19:e0300310. [PMID: 38776274 PMCID: PMC11111069 DOI: 10.1371/journal.pone.0300310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 05/24/2024] Open
Abstract
Gravity is one of the most constant environmental factors across Earth's evolution and all organisms are adapted to it. Consequently, spatial exploration has captured the interest in studying the biological changes that physiological alterations are caused by gravity. In the last two decades, epigenetics has explained how environmental cues can alter gene functions in organisms. Although many studies addressed gravity, the underlying biological and molecular mechanisms that occur in altered gravity for those epigenetics-related mechanisms, are mostly inexistent. The present study addressed the effects of hypergravity on development, behavior, gene expression, and most importantly, on the epigenetic changes in a worldwide animal model, the zebrafish (Danio rerio). To perform hypergravity experiments, a custom-centrifuge simulating the large diameter centrifuge (100 rpm ~ 3 g) was designed and zebrafish embryos were exposed during 5 days post fertilization (dpf). Results showed a significant decrease in survival at 2 dpf but no significance in the hatching rate. Physiological and morphological alterations including fish position, movement frequency, and swimming behavior showed significant changes due to hypergravity. Epigenetic studies showed significant hypermethylation of the genome of the zebrafish larvae subjected to 5 days of hypergravity. Downregulation of the gene expression of three epigenetic-related genes (dnmt1, dnmt3, and tet1), although not significant, was further observed. Taken altogether, gravity alterations affected biological responses including epigenetics in fish, providing a valuable roadmap of the putative hazards of living beyond Earth.
Collapse
Affiliation(s)
- Marcela Salazar
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Silvia Joly
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| | - Guillem Anglada-Escudé
- Department of Astrophysics, Institut de Ciències de l’Espai—Consejo Superior de Investigaciones Científicas (ICE-CSIC), UAB Campus at Cerdanyola del Vallès, Barcelona, Spain
- Institut d’Estudis Espacials de Catalunya–IEEC/CERCA, Gran Capità, 2–4, Edifici Nexus, Despatx 201, Barcelona, Spain
| | - Laia Ribas
- Department of Renewable Marine Resources, Institut de Ciències del Mar—Consejo Superior de Investigaciones Científicas (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
2
|
Wang X, Feng Y, Zhang Z, Li C, Han H. Balance dysfunction in large yellow croaker in response to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162444. [PMID: 36842599 DOI: 10.1016/j.scitotenv.2023.162444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is a coastal-dwelling soniferous, commercially important fish species that is sensitive to sound. An understanding of how ocean acidification might affect its auditory system is therefore important for its long-term viability and management as a fisheries resource. We tested the effects of ocean acidification with four CO2 treatments (440 ppm (control), 1000 ppm, 1800 ppm, and 3000 ppm) on the inner ear system of this species. After exposure to acidified water for 50 d, the impacts on the perimeter and mass of the sagitta, asteriscus, and lapillus otoliths were determined. In the acidified water treatments, the shape of sagittal otoliths became more irregular, and the surface became rougher. Similar sound frequency ranges triggered startle responses of fish in all treatments. In the highest CO2 treatment (3000 ppm CO2), significant asymmetry of the left and right lapillus perimeter and weight was apparent. Moreover, in the higher CO2 treatments (1800 ppm and 3000 ppm CO2), the fish were unable to maintain a balanced dorsal-up posture and tilted to one side. This result suggested that the balance functions of the inner ear might be affected by ocean acidification, which may threaten large yellow croaker individuals and populations. The molecular response to acidification was analyzed by RNA-Seq. The differentially expressed genes (DEGs) between right and left sensory epithelia of the utricle in each CO2 treatment group were identified. In higher CO2 concentration groups, nervous system function and regulation of bone mineralization pathways were enriched with DEGs. The comparative transcriptome analyses provide valuable molecular information about how the inner ear system responds to an acidified environment.
Collapse
Affiliation(s)
- Xiaojie Wang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China.
| | - Yaoyi Feng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Zichao Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Chenchen Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Huan Han
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| |
Collapse
|
3
|
Vandenbussche PSP, Spennato G, Pierson PM. Assessment of the use of Oblada melanura (L. 1758) otolith fluctuating asymmetry as environmental disturbance indicator. MARINE ENVIRONMENTAL RESEARCH 2018; 136:48-53. [PMID: 29510876 DOI: 10.1016/j.marenvres.2018.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/13/2018] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Human impact on the environment is of widespread concern. The majority of anthropogenic impacts are centred on coastal ecosystems, so surveying them is an important step in the protection of the marine environment. We have tested Oblada melanura (L. 1758) otoliths' fluctuating asymmetry as a bioindicator in a Mediterranean coastal zone. The French Riviera is characterised by a summer population increase leading in particular to more yachting, and seasonal climatic changes with reduced, more concentrated waterway flows and storm events causing soil erosion. The present three-year study compares nine sites, situated in three zones, and characterised by three types of chemical pollutant states (low; waterway mouth; recreational harbour). For O. melanura juveniles, we have not shown any significant difference in the otoliths' fluctuating symmetry between zones or types of sites. We hypothesize that high stress levels are needed to induce significant fluctuating asymmetry variation.
Collapse
Affiliation(s)
- P S P Vandenbussche
- Université Nice Sophia Antipolis, UCA, CNRS, FRE 3729 ECOMERS, Faculté des Sciences, Parc Valrose, 28 Avenue Valrose, 06108 Nice Cedex 2, France.
| | - G Spennato
- Université Nice Sophia Antipolis, UCA, CNRS, FRE 3729 ECOMERS, Faculté des Sciences, Parc Valrose, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| | - P M Pierson
- Université Nice Sophia Antipolis, UCA, CNRS, FRE 3729 ECOMERS, Faculté des Sciences, Parc Valrose, 28 Avenue Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
4
|
Jamon M. The development of vestibular system and related functions in mammals: impact of gravity. Front Integr Neurosci 2014; 8:11. [PMID: 24570658 PMCID: PMC3916785 DOI: 10.3389/fnint.2014.00011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/20/2014] [Indexed: 12/12/2022] Open
Abstract
This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this dichotomy are discussed.
Collapse
Affiliation(s)
- Marc Jamon
- Faculté de Médecine de la Timone, Institut National de la Santé et de la Recherche Médicale U 1106, Aix-Marseille University Marseille, France
| |
Collapse
|
5
|
Anken RH. On the role of the central nervous system in regulating the mineralisation of inner-ear otoliths of fish. PROTOPLASMA 2006; 229:205-8. [PMID: 17180502 DOI: 10.1007/s00709-006-0219-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 11/20/2005] [Indexed: 05/13/2023]
Abstract
Stato- or otoliths are calcified structures in the organ of balance and equilibrium of vertebrates, the inner ear, where they enhance its sensitivity to gravity. The compact otoliths of fish are composed of the calcium carbonate polymorph aragonite and a small fraction of organic molecules. The latter form a protein skeleton which determines the morphology of an otolith as well as its crystal lattice structure. This short review addresses findings according to which the brain obviously plays a prominent role in regulating the mineralisation of fish otoliths and depends on the gravity vector. Overall, otolith mineralisation has thus been identified to be a unique, neuronally guided biomineralisation process. The following is a hypothetical model for regulation of calcification by efferent vestibular neurons: (1) release of calcium at tight junctions in the macular epithelia, (2) macular carbonic anhydrase activity (which in turn is responsible for carbonate deposition), (3) chemical composition of matrix proteins. The rationale and evidence that support this model are discussed.
Collapse
Affiliation(s)
- Ralf H Anken
- Zoological Institute, University of Hohenheim, Stuttgart, Federal Republic of Germany.
| |
Collapse
|
6
|
Anken RH, Beier M, Rahmann H. Hypergravity decreases carbonic anhydrase-reactivity in inner ear maculae of fish. ACTA ACUST UNITED AC 2004; 301:815-9. [PMID: 15449341 DOI: 10.1002/jez.a.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous investigations revealed that fish inner ear otolith growth depends on the amplitude and the direction of gravity. Both otolith total size, otolith bilateral size-asymmetry and the total and bilateral calcium-incorporation are also affected by gravity. Hypergravity, e.g., slows down otolith growth and diminishes bilateral otolith asymmetry as compared to 1 g control specimens raised in parallel. Since the enzyme carbonic anhydrase (CA) plays a prominent role in otolithic calcification, the reactivity of inner ear CA during otolith growth under hypergravity was investigated. CA-reactivity was demonstrated histochemically and densitometrically on sections of inner ear maculae of larval cichlid fish (Oreochromis mossambicus), that were kept for 6 hrs in a 3 g hypergravity centrifuge. The total unilateral macular CA-reactivity and the bilateral difference in CA between the left and the right maculae were significantly lower in 3 g animals than in 1g controls. The result is in complete agreement with previous studies indicating that a regulatory mechanism, which adjusts otolith size and asymmetry towards the gravity vector, acts via activation/deactivation of macular CA.
Collapse
Affiliation(s)
- Ralf H Anken
- Zoological Institute, University of Stuttgart-Hohenheim, D-70593, Germany.
| | | | | |
Collapse
|
7
|
Schönleber J, Anken RH. Efficacy of an ototoxic aminoglycoside (gentamicin) on the differentiation of the inner ear of cichlid fish. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 33:1416-1420. [PMID: 15806708 DOI: 10.1016/j.asr.2003.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous investigations revealed that the growth of fish inner ear otoliths depends on the amplitude and the direction of gravity, thus suggesting the existence of a (negative) feedback mechanism. In the course of these experiments, it was shown that altered gravity both affected otolith size (and thus the provision of the proteinacious matrix) as well as the incorporation of calcium. It is hitherto unknown, as of whether sensory hair cells are involved either in the regulation of otolith growth or in the provision of otolithic material (such as protein or inorganic components) or even both. The ototoxic aminoglycoside gentamicin (GM) damages hair cells in many vertebrates (and is therefore used for the treatment of Meniere's disease in humans). The present study was thus designed to determine as of whether vestibular sensory cells are needed for otolith growth by applying GM in order to induce a (functionally relevant) loss of these cells. Developing cichlid fish Oreochromis mossambicus were therefore immersed in 120 mg/l GM for 10 or 21 days. At the beginning and at the end of the experimental periods, the fish were incubated in the calcium-tracer alizarin complexone (AC). After the experiment, otoliths were dissected and the area grown during GM-exposure (i.e., the area enclosed by the two AC labellings) was determined planimetrically. The results showed that incubating the animals in a GM-solution had no effect on otolith growth, but the development of otolith asymmetry was affected. Ultrastructural examinations of the sensory hair cells revealed that they had obviously not been affected by GM-treatment (no degenerative morphological features observed). Overall, the present results suggest that hair cells are not affected by GM concerning their possible role in (general) otolith growth, but that these cells indeed might have transitionally been impaired by GM resulting in a decreased capacity of regulating otolith symmetry.
Collapse
Affiliation(s)
- J Schönleber
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
8
|
Edelmann E, Anken RH, Rahmann H. Swimming behaviour and calcium incorporation into inner ear otoliths of fish after vestibular nerve transection. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 33:1390-1394. [PMID: 15803634 DOI: 10.1016/j.asr.2003.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Previous investigations on neonate swordtail fish (Xiphophorus helleri) revealed that otolithic calcium incorporation (visualized using the calcium tracer alizarin complexone) and thus otolith growth had ceased after nerve transection, supporting a hypothesis according to which the gravity-dependent otolith growth is regulated neuronally. Subsequent investigations on larval cichlid fish (Oreochromis mossambicus) yielded contrasting results, repeatedly depending on the particular batch of cichlids investigated. Like most neonate swordtails, Type I cichlids revealed a stop of calcium incorporation after unilateral vestibular nerve transection. Their behaviour after transection was normal, and the otolithic calcium incorporation in controls of the same batch was symmetric. In Type II cichlids, however, vestibular nerve transection had no effect on otolithic calcium incorporation. They behaved kinetotically after transection (this kind of kinetosis was qualitatively similar to the swimming behaviour exhibited by larval cichlids during microgravity in the course of parabolic aircraft flights). The otolithic calcium incorporation in control animals was asymmetric. These results show that the effects of vestibular nerve transection as well as the efficacy of the mechanism, which regulates otolith growth/otolithic calcium incorporation, are--depending on the particular batch of animals--genetically predispositioned. In conclusion, the regulation of otolithic calcium incorporation is guided neuronally, in part via the vestibular nerve and, in part, via a further pathway, which remains to be addressed in the course of future investigations.
Collapse
Affiliation(s)
- E Edelmann
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|
9
|
Anken RH, Hilbig R. A drop-tower experiment to determine the threshold of gravity for inducing motion sickness in fish. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 34:1592-7. [PMID: 15880897 DOI: 10.1016/j.asr.2004.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1 g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behavior as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM drop-tower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish (Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9 g. Videographed controls will be housed outside of the centrifuge receiving 0 g. Based on the video-recordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between: (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests, which were undertaken to elucidate the feasibility of the proposal (especially concerning the question, if some 4.7 s of microgravity are sufficient to induce kinetotic behavior in larval fish).
Collapse
Affiliation(s)
- R H Anken
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany.
| | | |
Collapse
|
10
|
Beier M, Anken RH, Rahmann H. Effect of hypergravity on carboanhydrase reactivity in inner ear ionocytes of developing cichlid fish. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2004; 33:1386-1389. [PMID: 15803633 DOI: 10.1016/j.asr.2003.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has been shown earlier that hypergravity slows down inner ear otolith growth in developing fish. Otolith growth in terms of mineralization mainly depends on the enzyme carboanhydrase (CA), which is responsible for the provision of the pH-value necessary for calcium carbonate deposition. Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (3 g, hg; 6 h) during development and separated into normally and kinetotically swimming individuals following the transfer to 1 g (i.e., stopping the centrifuge; kinetotically behaving fish performed spinning movements). Subsequently, CA was histochemically demonstrated in inner ear ionocytes (cells involved in the endolymphatic ion exchange) and enzyme reactivity was determined densitometrically. It was found that both the total macular CA-reactivity as well as the difference in reactivities between the left and the right maculae (asymmetry) were significantly lower (1) in experimental animals as compared to the 1 g controls and (2) in normally swimming hg-animals as compared to the kinetotically behaving hg-fish. The results are in complete agreement with earlier studies, according to which hypergravity induces a decrease of otolith growth and the otolithic calcium incorporation (visualized using the calcium-tracer alizarin complexone) of kinetotically swimming hg-fish was higher as compared to normally behaving hyper-g animals. The present study thus strongly supports the concept that a regulatory mechanism, which adjusts otolith size and asymmetry as well as otolithic calcium carbonate incorporation towards the gravity vector, acts via activation/deactivation of macular CA.
Collapse
Affiliation(s)
- M Beier
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|
11
|
Anken RH, Hilbig R. Determination of the threshold of gravity for inducing kinetosis in fish: a drop-tower experiment. MICROGRAVITY SCIENCE AND TECHNOLOGY 2004; 15:52-57. [PMID: 15770785 DOI: 10.1007/bf02870958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has been repeatedly shown earlier that some fish of a given batch reveal motion sickness (a kinetosis) at the transition from 1 g to microgravity. In the course of parabolic aircraft flight experiments, it has been demonstrated that kinetosis susceptibility is correlated with asymmetric inner ear otoliths (i.e., differently weighed statoliths on the right and the left side of the head) or with genetically predispositioned malformed cells within the sensory epithelia of the inner ear. Hitherto, the threshold of gravity perception for inducing kinetotic behaviour as well as the relative importance of asymmetric otoliths versus malformed epithelia for kinetosis susceptibility has yet not been determined. The following experiment using the ZARM drop-tower facility in Bremen, Germany, is proposed to be carried out in order to answer the aforementioned questions. Larval cichlid fish (Oreochromis mossambicus) will be kept in a camcorder-equipped centrifuge during the microgravity phases of the drops and thus receive various gravity environments ranging from 0.1 to 0.9 g. Videographed controls will be housed outside of the centrifuge receiving 0 g. Based on the videorecordings, animals will be grouped into kinetotically and normally swimming samples. Subsequently, otoliths will be dissected and their size and asymmetry will be measured. Further investigations will focus on the numerical quantification of inner ear supporting and sensory cells as well as on the quantification of inner ear carbonic anhydrase reactivity. A correlation between (1) the results to be obtained concerning the g-loads inducing kinetosis and (2) the corresponding otolith asymmetry/morphology of sensory epithelia/carbonic anhydrase reactivity will further contribute to the understanding of the origin of kinetosis susceptibility. Besides an outline of the proposed principal experiments, the present study reports on a first series of drop-tower tests which were undertaken to elucidate the feasibility of the proposal (especially concerning the question, if some 4.7 s of microgravity are sufficient to induce kinetotic behaviour in larval fish).
Collapse
Affiliation(s)
- R H Anken
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany.
| | | |
Collapse
|
12
|
Beier M, Anken RH, Rahmann H. Susceptibility to abnormal (kinetotic) swimming fish correlates with inner ear carbonic anhydrase-reactivity. Neurosci Lett 2002; 335:17-20. [PMID: 12457732 DOI: 10.1016/s0304-3940(02)01151-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Larval cichlid fish (Oreochromis mossambicus) were kept at hypergravity (hg; centrifuge) for 6 h. Following the transfer to 1 g (i.e. stopping the centrifuge), animals were separated into normally and abnormally (kinetotic) swimming individuals (the latter were swimming kinetotically, i.e. performing spinning movements). Subsequently, carbonic anhydrase- (CA-) reactivity was histochemically demonstrated and densitometrically determined in inner ear maculae. It was found that both the total macular CA-reactivity as well as the difference in reactivates between left and right maculae were significantly lower in normally swimming hg-animals as compared to the kinetotically behaving hg-fish (P<0.0001). This result is in complete agreement with closely related studies carried out on the calcium incorporation of inner ear otoliths and indicates that a regulatory mechanism, which adjusts otolithic calcium carbonate incorporation towards the gravity vector, acts via activation/deactivation of macular CA.
Collapse
Affiliation(s)
- Marion Beier
- Zoological Institute, University of Stuttgart-Hohenheim, Garbenstr. 30, D-70593 Stuttgart, Germany
| | | | | |
Collapse
|
13
|
Beier M, Anken RH, Rahmann H. Influence of hypergravity on fish inner ear otoliths: II. Incorporation of calcium and kinetotic behaviour. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2002; 30:727-731. [PMID: 12528672 DOI: 10.1016/s0273-1177(02)00387-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Larval siblings of cichlid fish (Oreochromis mossambicus) were subjected to hypergravity (hg; 3 g, 14 days) during development. Following the transfer to 1 g (i.e., stopping the centrifuge) they were separated into normally and kinetotically swimming individuals (the latter performed spinning movements). During hg, the animals were maintained in aquarium water containing alizarin-complexone (AC), a fluorescent calcium tracer. Densitometric measurements of AC uptake into inner ear otoliths (optical density of AC/micrometers2) revealed that the kinetotic individuals had incorporated significantly more AC/calcium than the normally behaving fish. Since the amount of otolithic calcium can be taken as an approximation for otolith weight, the present results indicate that the otoliths of kinetotically swimming samples were heavier than those of the normally behaving larvae, thus exhibiting a higher absolute weight asymmetry of the otoliths between the right vs. the left side of the body. This supports an earlier concept according to which otolith (or statolith) asymmetry is the cause for kinetoses such as human static space sickness.
Collapse
Affiliation(s)
- M Beier
- Zoological Institute, University of Stuttgart-Hohenheim, Stuttgart, Germany
| | | | | |
Collapse
|