1
|
Hauslage J, Görög M, Krause L, Schüler O, Schäfer M, Witten A, Kesseler L, Böhmer M, Hemmersbach R. ARABIDOMICS-A new experimental platform for molecular analyses of plants in drop towers, on parabolic flights, and sounding rockets. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:034504. [PMID: 32259966 DOI: 10.1063/1.5120573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
Plants represent an essential part of future life support systems that will enable human space travel to distant planets and their colonization. Therefore, insights into changes and adaptations of plants in microgravity are of great importance. Despite considerable efforts, we still know very little about how plants respond to microgravity environments on the molecular level, partly due to a lack of sufficient hardware and flight opportunities. The plant Arabidopsis thaliana, the subject of this study, represents a well-studied model organism in gravitational biology, particularly for the analysis of transcriptional and metabolic changes. To overcome the limitations of previous plant hardware that often led to secondary effects and to allow for the extraction not only of RNA but also of phytohormones and proteins, we developed a new experimental platform, called ARABIDOMICS, for exposure and fixation under altered gravity conditions. Arabidopsis seedlings were exposed to hypergravity during launch and microgravity during the free-fall period of the MAPHEUS 5 sounding rocket. Seedlings were chemically fixed inflight at defined time points, and RNA and phytohormones were subsequently analyzed in the laboratory. RNA and phytohormones extracted from the fixed biological samples were of excellent quality. Changes in the phytohormone content of jasmonate, auxin, and several cytokinins were observed in response to hypergravity and microgravity.
Collapse
Affiliation(s)
- Jens Hauslage
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Mark Görög
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Lars Krause
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Oliver Schüler
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Martin Schäfer
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, 07745 Jena, Germany
| | - Anika Witten
- Core Facility Genomics of the Medical Faculty, Westfälische Wilhelms-University, Münster, Germany
| | - Leona Kesseler
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| | - Maik Böhmer
- Institute for Molecular Biosciences, Goethe University Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Ruth Hemmersbach
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
| |
Collapse
|
2
|
Johnson CM, Subramanian A, Pattathil S, Correll MJ, Kiss JZ. Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. AMERICAN JOURNAL OF BOTANY 2017; 104:1219-1231. [PMID: 28827451 PMCID: PMC5821596 DOI: 10.3732/ajb.1700079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/16/2017] [Indexed: 05/20/2023]
Abstract
PREMISE OF THE STUDY Plants will play an important role in the future of space exploration as part of bioregenerative life support. Thus, it is important to understand the effects of microgravity and spaceflight on gene expression in plant development. METHODS We analyzed the transcriptome of Arabidopsis thaliana using the Biological Research in Canisters (BRIC) hardware during Space Shuttle mission STS-131. The bioinformatics methods used included RMA (robust multi-array average), MAS5 (Microarray Suite 5.0), and PLIER (probe logarithmic intensity error estimation). Glycome profiling was used to analyze cell wall composition in the samples. In addition, our results were compared to those of two other groups using the same hardware on the same mission (BRIC-16). KEY RESULTS In our BRIC-16 experiments, we noted expression changes in genes involved in hypoxia and heat shock responses, DNA repair, and cell wall structure between spaceflight samples compared to the ground controls. In addition, glycome profiling supported our expression analyses in that there was a difference in cell wall components between ground control and spaceflight-grown plants. Comparing our studies to those of the other BRIC-16 experiments demonstrated that, even with the same hardware and similar biological materials, differences in results in gene expression were found among these spaceflight experiments. CONCLUSIONS A common theme from our BRIC-16 space experiments and those of the other two groups was the downregulation of water stress response genes in spaceflight. In addition, all three studies found differential regulation of genes associated with cell wall remodeling and stress responses between spaceflight-grown and ground control plants.
Collapse
Affiliation(s)
- Christina M. Johnson
- Miami University, Department of Biology 212 Pearson Hall, Oxford, Ohio 45056 USA
| | - Aswati Subramanian
- Miami University, Department of Biology 212 Pearson Hall, Oxford, Ohio 45056 USA
| | - Sivakumar Pattathil
- University of Georgia Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, Georgia 30602 USA
- Mascoma, LLC (Lallemand Inc.) 67 Etna Road Lebanon, New Hampshire 03766 USA
| | - Melanie J. Correll
- University of Florida, Department of Agricultural and Biological Engineering 209 Frazier Rogers Hall, Gainesville, Florida 32611 USA
| | - John Z. Kiss
- University of North Carolina at Greensboro, Department of Biology, Greensboro, North Carolina 27412 USA
- Author for correspondence ()
| |
Collapse
|
3
|
Karouia F, Peyvan K, Pohorille A. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth. Biotechnol Adv 2017; 35:905-932. [PMID: 28433608 DOI: 10.1016/j.biotechadv.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022]
Abstract
Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis.
Collapse
Affiliation(s)
- Fathi Karouia
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA; NASA Ames Research Center, Flight Systems Implementation Branch, Moffett Field, CA 94035, USA.
| | | | - Andrew Pohorille
- University of California San Francisco, Department of Pharmaceutical Chemistry, San Francisco, CA 94158, USA; NASA Ames Research Center, Exobiology Branch, MS239-4, Moffett Field, CA 94035, USA.
| |
Collapse
|
4
|
Vandenbrink JP, Kiss JZ. Space, the final frontier: A critical review of recent experiments performed in microgravity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 243:115-9. [PMID: 26795156 PMCID: PMC5739877 DOI: 10.1016/j.plantsci.2015.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 05/18/2023]
Abstract
Space biology provides an opportunity to study plant physiology and development in a unique microgravity environment. Recent space studies with plants have provided interesting insights into plant biology, including discovering that plants can grow seed-to-seed in microgravity, as well as identifying novel responses to light. However, spaceflight experiments are not without their challenges, including limited space, limited access, and stressors such as lack of convection and cosmic radiation. Therefore, it is important to design experiments in a way to maximize the scientific return from research conducted on orbiting platforms such as the International Space Station. Here, we provide a critical review of recent spaceflight experiments and suggest ways in which future experiments can be designed to improve the value and applicability of the results generated. These potential improvements include: utilizing in-flight controls to delineate microgravity versus other spaceflight effects, increasing scientific return via next-generation sequencing technologies, and utilizing multiple genotypes to ensure results are not unique to one genetic background. Space experiments have given us new insights into plant biology. However, to move forward, special care should be given to maximize science return in understanding both microgravity itself as well as the combinatorial effects of living in space.
Collapse
Affiliation(s)
| | - John Z Kiss
- Department of Biology, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
5
|
Johnson CM, Subramanian A, Edelmann RE, Kiss JZ. Morphometric analyses of petioles of seedlings grown in a spaceflight experiment. JOURNAL OF PLANT RESEARCH 2015; 128:1007-1016. [PMID: 26376793 DOI: 10.1007/s10265-015-0749-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/17/2015] [Indexed: 06/05/2023]
Abstract
Gravity is a constant unidirectional stimulus on Earth, and gravitropism in plants involves three phases: perception, transduction, and response. In shoots, perception takes place within the endodermis. To investigate the cellular machinery of perception in microgravity, we conducted a spaceflight study with Arabidopsis thaliana seedlings, which were grown in microgravity in darkness using the Biological Research in Canisters (BRIC) hardware during space shuttle mission STS-131. In the 14-day-old etiolated plants, we studied seedling development and the morphological parameters of the endodermal cells in the petiole. Seedlings from the spaceflight experiment (FL) were compared to a ground control (GC), which both were in the BRIC flight hardware. In addition, to assay any potential effects from growth in spaceflight hardware, we performed another control by growing seedlings in Petri dishes in standard laboratory conditions (termed the hardware control, HC). Seed germination was significantly lower in samples grown in flight hardware (FL, GC) compared to the HC. In terms of cellular parameters of endodermal cells, the greatest differences also were between seedlings grown in spaceflight hardware (FL, GC) compared to those grown outside of this hardware (HC). Specifically, the endodermal cells were significantly smaller in seedlings grown in the BRIC system compared to those in the HC. However, a change in the shape of the cell, suggesting alterations in the cell wall, was one parameter that appears to be a true microgravity effect. Taken together, our results suggest that caution must be taken when interpreting results from the increasingly utilized BRIC spaceflight hardware system and that it is important to perform additional ground controls to aid in the analysis of spaceflight experiments.
Collapse
Affiliation(s)
| | | | | | - John Z Kiss
- Biology Department and the Graduate School, University of Mississippi-Oxford, Oxford, MS, 38677, USA.
| |
Collapse
|
6
|
A tissue retrieval and postharvest processing regimen for rodent reproductive tissues compatible with long-term storage on the international space station and postflight biospecimen sharing program. BIOMED RESEARCH INTERNATIONAL 2015; 2015:475935. [PMID: 25654107 PMCID: PMC4309301 DOI: 10.1155/2015/475935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022]
Abstract
Collection and processing of tissues to preserve space flight effects from animals after return to Earth is challenging. Specimens must be harvested with minimal time after landing to minimize postflight readaptation alterations in protein expression/translation, posttranslational modifications, and expression, as well as changes in gene expression and tissue histological degradation after euthanasia. We report the development of a widely applicable strategy for determining the window of optimal species-specific and tissue-specific posteuthanasia harvest that can be utilized to integrate into multi-investigator Biospecimen Sharing Programs. We also determined methods for ISS-compatible long-term tissue storage (10 months at −80°C) that yield recovery of high quality mRNA and protein for western analysis after sample return. Our focus was reproductive tissues. The time following euthanasia where tissues could be collected and histological integrity was maintained varied with tissue and species ranging between 1 and 3 hours. RNA quality was preserved in key reproductive tissues fixed in RNAlater up to 40 min after euthanasia. Postfixation processing was also standardized for safe shipment back to our laboratory. Our strategy can be adapted for other tissues under NASA's Biospecimen Sharing Program or similar multi-investigator tissue sharing opportunities.
Collapse
|
7
|
Zupanska AK, Denison FC, Ferl RJ, Paul AL. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. AMERICAN JOURNAL OF BOTANY 2013; 100:235-48. [PMID: 23258370 DOI: 10.3732/ajb.1200343] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PREMISE OF THE STUDY Gravity has been a major force throughout the evolution of terrestrial organisms, and plants have developed exquisitely sensitive, regulated tropisms and growth patterns that are based on the gravity vector. The nullified gravity during spaceflight allows direct assessment of gravity roles. The microgravity environments provided by the Space Shuttle and International Space Station have made it possible to seek novel insights into gravity perception at the organismal, tissue, and cellular levels. Cell cultures of Arabidopsis thaliana perceive and respond to spaceflight, even though they lack the specialized cell structures normally associated with gravity perception in intact plants; in particular, genes for a specific subset of heat shock proteins (HSPs) and factors (HSFs) are induced. Here we ask if similar changes in HSP gene expression occur during nonspaceflight changes in gravity stimulation. METHODS Quantitative RT-qPCR was used to evaluate mRNA levels for Hsp17.6A and Hsp101 in cell cultures exposed to four conditions: spaceflight (mission STS-131), hypergravity (centrifugation at 3 g or 16 g), sustained two-dimensional clinorotation, and transient milligravity achieved on parabolic flights. KEY RESULTS We showed that HSP genes were induced in cells only in response to sustained clinorotation. Transient microgravity intervals in parabolic flight and various hypergravity conditions failed to induce HSP genes. CONCLUSIONS We conclude that nondifferentiated cells do indeed sense their gravity environment and HSP genes are induced only in response to prolonged microgravity or simulated microgravity conditions. We hypothesize that HSP induction upon microgravity indicates a role for HSP-related proteins in maintaining cytoskeletal architecture and cell shape signaling.
Collapse
Affiliation(s)
- Agata K Zupanska
- Horticultural Science Department, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
8
|
Paul AL, Zupanska AK, Ostrow DT, Zhang Y, Sun Y, Li JL, Shanker S, Farmerie WG, Amalfitano CE, Ferl RJ. Spaceflight transcriptomes: unique responses to a novel environment. ASTROBIOLOGY 2012; 12:40-56. [PMID: 22221117 PMCID: PMC3264962 DOI: 10.1089/ast.2011.0696] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 10/08/2011] [Indexed: 05/20/2023]
Abstract
The spaceflight environment presents unique challenges to terrestrial biology, including but not limited to the direct effects of gravity. As we near the end of the Space Shuttle era, there remain fundamental questions about the response and adaptation of plants to orbital spaceflight conditions. We address a key baseline question of whether gene expression changes are induced by the orbital environment, and then we ask whether undifferentiated cells, cells presumably lacking the typical gravity response mechanisms, perceive spaceflight. Arabidopsis seedlings and undifferentiated cultured Arabidopsis cells were launched in April, 2010, as part of the BRIC-16 flight experiment on STS-131. Biologically replicated DNA microarray and averaged RNA digital transcript profiling revealed several hundred genes in seedlings and cell cultures that were significantly affected by launch and spaceflight. The response was moderate in seedlings; only a few genes were induced by more than 7-fold, and the overall intrinsic expression level for most differentially expressed genes was low. In contrast, cell cultures displayed a more dramatic response, with dozens of genes showing this level of differential expression, a list comprised primarily of heat shock-related and stress-related genes. This baseline transcriptome profiling of seedlings and cultured cells confirms the fundamental hypothesis that survival of the spaceflight environment requires adaptive changes that are both governed and displayed by alterations in gene expression. The comparison of intact plants with cultures of undifferentiated cells confirms a second hypothesis: undifferentiated cells can detect spaceflight in the absence of specialized tissue or organized developmental structures known to detect gravity.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Horticultural Sciences and Genetics Institute, University of Florida, Gainesville, Florida
| | | | | | | | - Yijun Sun
- University of Florida, Gainesville, Florida
| | | | | | | | | | - Robert J. Ferl
- Interdisciplinary Center for Biotechnology and Research, Horticultural Sciences and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
9
|
Millar KDL, Johnson CM, Edelmann RE, Kiss JZ. An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. ASTROBIOLOGY 2011; 11:787-97. [PMID: 21970704 PMCID: PMC3233217 DOI: 10.1089/ast.2011.0699] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In plants, sensitive and selective mechanisms have evolved to perceive and respond to light and gravity. We investigated the effects of microgravity on the growth and development of Arabidopsis thaliana (ecotype Landsberg) in a spaceflight experiment. These studies were performed with the Biological Research in Canisters (BRIC) hardware system in the middeck region of the space shuttle during mission STS-131 in April 2010. Seedlings were grown on nutrient agar in Petri dishes in BRIC hardware under dark conditions and then fixed in flight with paraformaldehyde, glutaraldehyde, or RNAlater. Although the long-term objective was to study the role of the actin cytoskeleton in gravity perception, in this article we focus on the analysis of morphology of seedlings that developed in microgravity. While previous spaceflight studies noted deleterious morphological effects due to the accumulation of ethylene gas, no such effects were observed in seedlings grown with the BRIC system. Seed germination was 89% in the spaceflight experiment and 91% in the ground control, and seedlings grew equally well in both conditions. However, roots of space-grown seedlings exhibited a significant difference (compared to the ground controls) in overall growth patterns in that they skewed to one direction. In addition, a greater number of adventitious roots formed from the axis of the hypocotyls in the flight-grown plants. Our hypothesis is that an endogenous response in plants causes the roots to skew and that this default growth response is largely masked by the normal 1 g conditions on Earth.
Collapse
|
10
|
Kern VD, Schwuchow JM, Reed DW, Nadeau JA, Lucas J, Skripnikov A, Sack FD. Gravitropic moss cells default to spiral growth on the clinostat and in microgravity during spaceflight. PLANTA 2005; 221:149-57. [PMID: 15660206 DOI: 10.1007/s00425-004-1467-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 11/24/2004] [Indexed: 05/11/2023]
Abstract
In addition to shoots and roots, the gravity (g)-vector orients the growth of specialized cells such as the apical cell of dark-grown moss protonemata. Each apical cell of the moss Ceratodon purpureus senses the g-vector and adjusts polar growth accordingly producing entire cultures of upright protonemata (negative gravitropism). The effect of withdrawing a constant gravity stimulus on moss growth was studied on two NASA Space Shuttle (STS) missions as well as during clinostat rotation on earth. Cultures grown in microgravity (spaceflight) on the STS-87 mission exhibited two successive phases of non-random growth and patterning, a radial outgrowth followed by the formation of net clockwise spiral growth. Also, cultures pre-aligned by unilateral light developed clockwise hooks during the subsequent dark period. The second spaceflight experiment flew on STS-107 which disintegrated during its descent on 1 February 2003. However, most of the moss experimental hardware was recovered on the ground, and most cultures, which had been chemically fixed during spaceflight, were retrieved. Almost all intact STS-107 cultures displayed strong spiral growth. Non-random culture growth including clockwise spiral growth was also observed after clinostat rotation. Together these data demonstrate the existence of default non-random growth patterns that develop at a population level in microgravity, a response that must normally be overridden and masked by a constant g-vector on earth.
Collapse
Affiliation(s)
- Volker D Kern
- Department of Plant Cellular and Molecular Biology, Ohio State University, 318 W. 12th Ave., Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kern VD, Smith JD, Schwuchow JM, Sack FD. Amyloplasts that sediment in protonemata of the moss Ceratodon purpureus are nonrandomly distributed in microgravity. PLANT PHYSIOLOGY 2001; 125:2085-94. [PMID: 11299388 PMCID: PMC88864 DOI: 10.1104/pp.125.4.2085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2000] [Revised: 09/29/2000] [Accepted: 12/11/2000] [Indexed: 05/19/2023]
Abstract
Little is known about whether or how plant cells regulate the position of heavy organelles that sediment toward gravity. Dark-grown protonemata of the moss Ceratodon purpureus displays a complex plastid zonation in that only some amyloplasts sediment along the length of the tip cell. If gravity is the major force determining the position of amyloplasts that sediment, then these plastids should be randomly distributed in space. Instead, amyloplasts were clustered in the subapical region in microgravity. Cells rotated on a clinostat on earth had a roughly similar non-random plastid distribution. Subapical clusters were also found in ground controls that were inverted and kept stationary, but the distribution profile differed considerably due to amyloplast sedimentation. These findings indicate the existence of as yet unknown endogenous forces and mechanisms that influence amyloplast position and that are normally masked in stationary cells grown on earth. It is hypothesized that a microtubule-based mechanism normally compensates for g-induced drag while still allowing for regulated amyloplast sedimentation.
Collapse
Affiliation(s)
- V D Kern
- Department of Plant Biology, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
12
|
Kern VD, Sack FD. Effects of spaceflight (STS-87) on tropisms and plastid positioning in protonemata of the moss Ceratodon purpureus. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:941-949. [PMID: 11596637 DOI: 10.1016/s0273-1177(01)00158-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Apical cells of moss protonemata represent a single-celled system that perceives and reacts to light (positive and negative phototropism) and to gravity (negative gravitropism). Phototropism completely overrides gravitropism when apical cells are laterally irradiated with relatively high red light intensities, but below a defined light intensity threshold gravitropism competes with the phototropic reaction. A 16 day-long exposure to microgravity conditions demonstrated that gravitropism is allowed when protonemata are laterally illuminated with light intensities below 140 nmol m-2s-1. Protonemata that were grown in darkness in microgravity expressed an endogenous tendency to grow in arcs so that the overall culture morphology resembled a clockwise spiral. However this phenomenon only was observed in cultures that had reached a critical age and/or size. Organelle positioning in dark-grown apical cells was significantly altered in microgravity. Gravisensing most likely involves the sedimentation of starch-filled amyloplasts in a well-defined area of the tip cell. Amyloplasts that at 1-g are sedimented were clustered at the apical part of the sedimentation zone in microgravity. Clustering observed in microgravity or during clino-rotation significantly differs from sedimentation-induced plastid aggregations after inversion of tip cells at 1-g.
Collapse
Affiliation(s)
- V D Kern
- Department of Plant Biology, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
13
|
Khorkavtsiv OY, Kardash OR. Gravity-dependent reactions of the moss Pohlia nutans protonemata. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2001; 27:989-993. [PMID: 11596645 DOI: 10.1016/s0273-1177(01)00190-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In darkness, protonemata of Pohlia nutans (Hedw.) grew negatively gravitropically (upwards). However, not all filaments became gravitropic immediately after transfer to darkness. Some of them (~20%) for several days grew in different directions with respect to gravity. The apical cells of those protonemata predominantly contained multiple chloroplasts. The intensity of chlorophyll fluorescence rapidly decreased in the apical cells of such protonemata while starch content increased in comparison with upright growing protonemata. Light, especially in the red and blue part of the spectrum, inhibited protonemal gravitropism. Red light induced stronger inhibitory effects than blue light. Red light of 1.0 to 1.5 micromoles m-2 s-1 intensity induced bud differentiation in apical cells on almost all side branches of main protonemal filaments. Bright fluorescence of F-actin bundles in the tip of apical protonematal cells and a delicately fluorescing network enclosing plastids basal to the tip in a sedimentation zone were visualized. Bright fluorescence of actin as local patches and fine prominent axially oriented bundles was observed in cells of gametophore buds.
Collapse
Affiliation(s)
- O Y Khorkavtsiv
- Institute of Ecology of the Carpathians, Ukrainian National Academy of Sciences, Lviv, Ukraine
| | | |
Collapse
|