1
|
Heller A, Senwitz C, Foerstendorf H, Tsushima S, Holtmann L, Drobot B, Kretzschmar J. Europium(III) Meets Etidronic Acid (HEDP): A Coordination Study Combining Spectroscopic, Spectrometric, and Quantum Chemical Methods. Molecules 2023; 28:molecules28114469. [PMID: 37298946 DOI: 10.3390/molecules28114469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Etidronic acid (1-Hydroxyethylidene-1,1-diphosphonic acid, HEDP, H4L) is a proposed decorporation agent for U(VI). This paper studied its complex formation with Eu(III), an inactive analog of trivalent actinides, over a wide pH range, at varying metal-to-ligand ratios (M:L) and total concentrations. Combining spectroscopic, spectrometric, and quantum chemical methods, five distinct Eu(III)-HEDP complexes were found, four of which were characterized. The readily soluble EuH2L+ and Eu(H2L)2- species with log β values of 23.7 ± 0.1 and 45.1 ± 0.9 are formed at acidic pH. At near-neutral pH, EuHL0s forms with a log β of ~23.6 and, additionally, a most probably polynuclear complex. The readily dissolved EuL- species with a log β of ~11.2 is formed at alkaline pH. A six-membered chelate ring is the key motif in all solution structures. The equilibrium between the Eu(III)-HEDP species is influenced by several parameters, i.e., pH, M:L, total Eu(III) and HEDP concentrations, and time. Overall, the present work sheds light on the very complex speciation in the HEDP-Eu(III) system and indicates that, for risk assessment of potential decorporation scenarios, side reactions of HEDP with trivalent actinides and lanthanides should also be taken into account.
Collapse
Affiliation(s)
- Anne Heller
- Chair of Radiochemistry/Radioecology, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Central Radionuclide Laboratory, Radiation Protection Office, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Senwitz
- Chair of Radiochemistry/Radioecology, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Central Radionuclide Laboratory, Radiation Protection Office, Technische Universität Dresden, 01062 Dresden, Germany
| | - Harald Foerstendorf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Linus Holtmann
- Institute of Radioecology and Radiation Protection, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Björn Drobot
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Jerome Kretzschmar
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| |
Collapse
|
2
|
Zhang J, Wenzel M, Schnaars K, Hennersdorf F, Lindoy LF, Weigand JJ. Highly Tunable 4-Phosphoryl Pyrazolone Receptors for Selective Rare-Earth Separation. Inorg Chem 2023; 62:3212-3228. [PMID: 36752766 DOI: 10.1021/acs.inorgchem.2c04221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Highly selective rare-earth separation has become increasingly important due to the indispensable role of these elements in various cutting-edge technologies including clean energy. However, the similar physicochemical properties of rare-earth elements (REEs) render their separation very challenging, and the development of new selective receptors for these elements is potentially of very considerable economic and environmental importance. Herein, we report the development of a series of 4-phosphoryl pyrazolone receptors for the selective separation of trivalent lanthanum, europium, and ytterbium as the representatives of light, middle, and heavy REEs, respectively. X-ray crystallography studies were employed to obtain solid-state structures across 11 of the resulting complexes, allowing comparative structure-function relationships to be probed, including the effect of lanthanide contraction that occurs along the series from lanthanum to europium to ytterbium and which potentially provides a basis for REE ion separation. In addition, the influence of ligand structure and lipophilicity on lanthanide binding and selectivity was systematically investigated via n-octanol/water distribution and liquid-liquid extraction (LLE) studies. Corresponding stoichiometry relationships between solid and solution states were well established using slope analyses. The results provide new insights into some fundamental lanthanide coordination chemistry from a separation perspective and establish 4-phosphoryl pyrazolone derivatives as potential practical extraction reagents for the selective separation of REEs in the future.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Marco Wenzel
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Kathleen Schnaars
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Felix Hennersdorf
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany
| | - Leonard F Lindoy
- School of Chemistry, F11, University of Sydney, New South Wales 2006, Sydney, Australia
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, Dresden 01062, Germany.,Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
3
|
Abstract
Coordination-induced bond weakening is a phenomenon wherein ligand X-H bond homolysis occurs in concert with the energetically favorable oxidation of a coordinating metal complex. The coupling of these two processes enables thermodynamically favorable proton-coupled electron transfer reductions to form weak bonds upon formal hydrogen atom transfer to substrates. Moreover, systems utilizing coordination-induced bond weakening have been shown to facilitate the dehydrogenation of feedstock molecules including water, ammonia, and primary alcohols under mild conditions. The formation of exceptionally weak substrate X-H bonds via small molecule homolysis is a powerful strategy in synthesis and has been shown to enable nitrogen fixation under mild conditions. Coordination-induced bond weakening has also been identified as an integral process in biophotosynthesis and has promising applications in renewable chemical fuel storage systems. This review presents a discussion of the advances made in the study of coordination-induced bond weakening to date. Because of the broad range of metal and ligand species implicated in coordination-induced bond weakening, each literature report is discussed individually and ordered by the identity of the low-valent metal. We then offer mechanistic insights into the basis of coordination-induced bond weakening and conclude with a discussion of opportunities for further research into the development and applications of coordination-induced bond weakening systems.
Collapse
Affiliation(s)
- Nicholas G Boekell
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Robert A Flowers
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
4
|
Tanabe Y, Nishibayashi Y. Comprehensive insights into synthetic nitrogen fixation assisted by molecular catalysts under ambient or mild conditions. Chem Soc Rev 2021; 50:5201-5242. [PMID: 33651046 DOI: 10.1039/d0cs01341b] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N2 is fixed as NH3 industrially by the Haber-Bosch process under harsh conditions, whereas biological nitrogen fixation is achieved under ambient conditions, which has prompted development of alternative methods to fix N2 catalyzed by transition metal molecular complexes. Since the early 21st century, catalytic conversion of N2 into NH3 under ambient conditions has been achieved by using molecular catalysts, and now H2O has been utilized as a proton source with turnover frequencies reaching the values found for biological nitrogen fixation. In this review, recent advances in the development of molecular catalysts for synthetic N2 fixation under ambient or mild conditions are summarized, and potential directions for future research are also discussed.
Collapse
Affiliation(s)
- Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
5
|
Khoshkhan Z, Mirzaei M, Eshtiagh-Hosseini H, Izadyar M, Mague JT, Korabik M. Two polyoxometalate-based hybrids constructed from trinuclear lanthanoid clusters with single‐molecule magnet behavior. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Electro-Precipitation of Actinides on Boron-Doped Diamond Thin Films for Solid Sources Preparation for High-Resolution Alpha-Particle Spectrometry. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we investigate a novel approach to prepare high-performance alpha-particle solid sources fabricated on diamond thin support layers, offering the properties of diamond such as a low-Z material with corrosion and mechanical hardness. As-prepared solid sources onto boron-doped-diamond (BDD) substrate exhibited high performance of the autoradiography and spectroscopic resolution at the level of other more conventional materials such as stainless steel. A straightforward precipitation process in the Na2SO4 or NaNO3 simple electrolytes under mild experimental conditions with a low current of several mA.cm−2 were successfully developed onto BDD substrates for deposition of single 241Am as well as 239Pu, 241Am, and 244Cm mixed radionuclides. The results demonstrate that solid sources deposited onto such BDD substrates can match the performance of those prepared onto stainless steel substrates with excellent uniformity and high-resolution spectroscopy, together combining the robustness, chemical resilience, and X-ray transparence of the diamond. Alpha-particle spectra exhibiting a low full width at half maximum (FWHM) of 12.5 keV at the energy of 5.485 MeV (241Am) could be practically obtained for BDD substrates.
Collapse
|
7
|
Gujar RB, Verma PK, Ansari SA, Mohapatra PK. Complexation of 2-thenoyltrifluoroacetone (HTTA) with trivalent f-cations in an ionic liquid: solvent extraction and spectroscopy studies. NEW J CHEM 2019. [DOI: 10.1039/c9nj03177d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HTTA forms M(TTA)2+, M(TTA)2+, M(TTA)3° and M(TTA)4− complexes with lanthanides. Complexation is strongly favoured when the salt of TTA− is used.
Collapse
Affiliation(s)
- Rajesh B. Gujar
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Trombay
- Mumbai – 400085
- India
| | - Parveen K. Verma
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Trombay
- Mumbai – 400085
- India
| | - Seraj A. Ansari
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Trombay
- Mumbai – 400085
- India
| | | |
Collapse
|
8
|
Kolmar SS, Mayer JM. SmI 2(H 2O) n Reduction of Electron Rich Enamines by Proton-Coupled Electron Transfer. J Am Chem Soc 2017; 139:10687-10692. [PMID: 28718640 PMCID: PMC5812026 DOI: 10.1021/jacs.7b03667] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Samarium diiodide in the presence of water and THF (SmI2(H2O)n) has in recent years become a versatile and useful reagent, mainly for reducing carbonyl-type substrates. This work reports the reduction of several enamines by SmI2(H2O)n. Mechanistic experiments implicate a concerted proton-coupled electron transfer (PCET) pathway, based on various pieces of evidence against initial outer-sphere electron transfer, proton transfer, or substrate coordination. A thermochemical analysis indicates that the C-H bond formed in the rate-determining step has a bond dissociation free energy (BDFE) of ∼32 kcal mol-1. The O-H BDFE of the samarium aquo ion is estimated to be 26 kcal mol-1, which is among the weakest known X-H bonds of stable reagents. Thus, SmI2(H2O)n should be able to form very weak C-H bonds. The reduction of these highly electron rich substrates by SmI2(H2O)n shows that this reagent is a very strong hydrogen atom donor as well as an outer-sphere reductant.
Collapse
Affiliation(s)
- Scott S. Kolmar
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
9
|
Marsh DA, Goberna-Ferrón S, Baumeister MK, Zakharov LN, Nyman M, Johnson DW. Ln polyoxocations: yttrium oxide solution speciation & solution deposited thin films. Dalton Trans 2017; 46:947-955. [DOI: 10.1039/c6dt03733j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The lanthanide hexamer (Ln6) is a reactive hydrolysis product of simple lanthanide nitrates.Ln6dissolved in coordinating solvents converts toLn16, a hydrolysis product intermediate betweenLn6and Ln2O3. X-ray scattering of solutions reveals Ln3+-radius-dependent reaction pathways.
Collapse
Affiliation(s)
- David A. Marsh
- Department of Chemistry & Biochemistry and Materials Science Institute
- University of Oregon
- Eugene
- USA
| | | | - Mary K. Baumeister
- Department of Chemistry & Biochemistry and Materials Science Institute
- University of Oregon
- Eugene
- USA
| | | | - May Nyman
- Department of Chemistry
- Oregon State University
- Corvallis
- USA
| | - Darren W. Johnson
- Department of Chemistry & Biochemistry and Materials Science Institute
- University of Oregon
- Eugene
- USA
| |
Collapse
|
10
|
Gujar RB, Mohapatra PK. Amazing selectivity for Am(iii) uptake by composite graphene oxide-PES polymeric beads prepared by phase inversion. RSC Adv 2015. [DOI: 10.1039/c4ra14826f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel polyethersulphone (PES) based polymeric beads containing graphene oxide (GO), prepared by a phase inversion technique for the first time, were evaluated for actinide ion uptake from acidic feed solutions.
Collapse
|
11
|
|
12
|
|
13
|
Jiménez-Reyes M, Solache-Ríos M, Rojas-Hernández A. Application of the Specific Ion Interaction Theory → the Solubility Product and First Hydrolysis Constant of Europium. J SOLUTION CHEM 2006. [DOI: 10.1007/s10953-006-9363-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Bouyer F, Sanson N, Destarac M, Gérardin C. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nanoparticles. NEW J CHEM 2006. [DOI: 10.1039/b516368d] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Mohapatra PK, Manchanda VK. Laboratory studies on the adsorption behavior of americium. J Radioanal Nucl Chem 1992. [DOI: 10.1007/bf02037435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Jones DJ, Rozière J, Olivera-Pastor P, Rodrìguez-Castellòn E, Jimènez-Lòpez A. Local environment of intercalated lanthanide ions in vermiculite. ACTA ACUST UNITED AC 1991. [DOI: 10.1039/ft9918703077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Manchanda V, Mohapatra P. Complexation of europium(III) and americium(III) with ionizable macrocyclic ligands. Polyhedron 1990. [DOI: 10.1016/s0277-5387(00)86778-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|