1
|
Elevating the Levels of Calcium Ions Exacerbate Alzheimer's Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. Int J Mol Sci 2021; 22:ijms22115900. [PMID: 34072743 PMCID: PMC8198078 DOI: 10.3390/ijms22115900] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the tau protein. Although a series of studies have shown that the accumulation of metal ions, including calcium ions (Ca2+), can promote the formation of APs and NFTs, there is no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD. In view of this, the current review summarizes the mechanisms by which Ca2+ is transported into and out of cells and organelles, such as the cell, endoplasmic reticulum, mitochondrial and lysosomal membranes to affect the balance of intracellular Ca2+ levels. In addition, dyshomeostasis of Ca2+ plays an important role in modulating the pathogenesis of AD by influencing the production and aggregation of Aβ peptides and tau protein phosphorylation and the ways that disrupting the metabolic balance of Ca2+ can affect the learning ability and memory of people with AD. In addition, the effects of these mechanisms on the synaptic plasticity are also discussed. Finally, the molecular network through which Ca2+ regulates the pathogenesis of AD is introduced, providing a theoretical basis for improving the clinical treatment of AD.
Collapse
|
2
|
Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, Wu Y, Ren L, Chen J, Li T, Song W. Marginal vitamin A deficiency facilitates Alzheimer's pathogenesis. Acta Neuropathol 2017; 133:967-982. [PMID: 28130638 DOI: 10.1007/s00401-017-1669-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Deposition of amyloid β protein (Aβ) to form neuritic plaques in the brain is the unique pathological hallmark of Alzheimer's disease (AD). Aβ is derived from amyloid β precursor protein (APP) by β- and γ-secretase cleavages and turned over by glia in the central nervous system (CNS). Vitamin A deficiency (VAD) has been shown to affect cognitive functions. Marginal vitamin A deficiency (MVAD) is a serious and widespread public health problem among pregnant women and children in developing countries. However, the role of MVAD in the pathogenesis of AD remains elusive. Our study showed that MVAD is approximately twofold more prevalent than VAD in the elderly, and increased cognitive decline is positively correlated with lower VA levels. We found that MVAD, mostly prenatal MVAD, promotes beta-site APP cleaving enzyme 1 (BACE1)-mediated Aβ production and neuritic plaque formation, and significantly exacerbates memory deficits in AD model mice. Supplementing a therapeutic dose of VA rescued the MVAD-induced memory deficits. Taken together, our study demonstrates that MVAD facilitates AD pathogenesis and VA supplementation improves cognitive deficits. These results suggest that VA supplementation might be a potential approach for AD prevention and treatment.
Collapse
Affiliation(s)
- Jiaying Zeng
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Li Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhe Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Qian Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhen Fan
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Hongpeng Jiang
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yili Wu
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Lan Ren
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jie Chen
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tingyu Li
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Weihong Song
- Children's Nutrition Research Center, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base for Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
5
|
Lee HP, Casadesus G, Zhu X, Lee HG, Perry G, Smith MA, Gustaw-Rothenberg K, Lerner A. All-trans retinoic acid as a novel therapeutic strategy for Alzheimer's disease. Expert Rev Neurother 2010; 9:1615-21. [PMID: 19903021 DOI: 10.1586/ern.09.86] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoic acid, an essential factor derived from vitamin A, has been shown to have a variety of functions including roles as an antioxidant and in cellular differentiation. Since oxidative stress and dedifferentiation of neurons appear to be common pathological elements of a number of neurodegenerative disorders, we speculated that retinoic acid may offer therapeutic promise. In this vein, recent compelling evidence indicates a role of retinoic acid in cognitive activities and anti-amyloidogenic properties. Here, we review the actions of retinoic acid that indicate that it may have therapeutic properties ideally served for the treatment of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Hyun-Pil Lee
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kullenberg J, Rosatini F, Vozzi G, Bianchi F, Ahluwalia A, Domenici C. Optimization of PAM scaffolds for neural tissue engineering: preliminary study on an SH-SY5Y cell line. Tissue Eng Part A 2009; 14:1017-23. [PMID: 18476808 DOI: 10.1089/ten.tea.2007.0163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Engineering neural tissue is one of the most challenging goals of tissue engineering. Neural tissue is highly complex and possesses an organized three-dimensional (3D) distribution that is essential for tissue function. An optimal scaffold for tissue engineering has to provide this distribution until the cells are able to activate their normal functions and develop neural connections with the host tissue. Different strategies such as gene therapy and cell transplantation particularly in retinal tissue have been tested, but so far they have only induced retinal degeneration in animals. The objective of this work was to study neural cell assembly as a function of scaffold features and surface chemistry for application in retinal tissue engineering using microfabricated patterns with a well-defined geometry. Because retinal neurons are known to be arranged in hexagonal arrays, hexagonal scaffolds of poly(DL-lactide-co-glycolide) acid were fabricated using a pressure-assisted microsyringe (PAM) system. The behavior of a model cell, neuroblastoma originating from human retina (SH-SY5Y), was analyzed after seeding on the scaffolds, measuring cell density as a function of line width and length of the scaffold to identify the optimal hexagonal geometry. We also evaluated the influence of scaffold on cell metabolism using the methyl thiazolyl tetrazolium assay and on neurite extension. As far as two-dimensional scaffolds are concerned, the results show that although metabolic activity per cell remains constant, hexagons with sides of 500 microm and line widths of 20 +/- 5 microm are optimum for neural cell adhesion in terms of cell density. On 3D scaffolds, cell metabolism is about three times higher than controls, and the optimum number of layers in the scaffold is three or four.
Collapse
Affiliation(s)
- Johanna Kullenberg
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Xue S, Jia L, Jia J. Hypoxia and reoxygenation increased BACE1 mRNA and protein levels in human neuroblastoma SH-SY5Y cells. Neurosci Lett 2006; 405:231-5. [PMID: 16901640 DOI: 10.1016/j.neulet.2006.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/30/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
Ischemic cerebrovascular diseases, usually involved in hypoxia and reoxygenation, have been reported to increase the risk of dementia such as Alzheimer's disease (AD). beta-site amyloid protein precursor (APP)-cleaving enzymes (BACE1) have been identified to participate in the secretion of beta-amyloid peptides (Abeta), and its expressive alteration would contribute to the AD neuropathology. We have investigated the effect of hypoxia (0% O(2), 24h) and reoxygenation (0h, 12h and 24h after 24h hypoxia) on BACE1 mRNA and protein levels in human neuroblastoma SH-SY5Y cells. At the same time, we also examined the effect of hypoxia and reoxygenation on APP mRNA and protein levels. We demonstrated that hypoxia and reoxygenation did not alter APP mRNA and protein level, However compared to those of controls, BACE1 mRNA levels were up-regulated by 31.5% (P=0.028) and 35.1% (P=0.005) at 12h and 24h and the protein levels increased to 22%(P=0.021), 42% (P=0.000) and 51.5% (P=0.000) at 0h, 12h and 24h after reoxygenation, respectively. Thus by up-regulating of BACE1 mRNA and protein level in the neuronal cell, hypoxia may be a linkage in the pathophysiology between cerebravascular diseases and AD.
Collapse
Affiliation(s)
- Sufang Xue
- Department of Neurology, Xuanwu Hospital of the Capital University of Medical Sciences, Neurodegenerative Lab of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | | | | |
Collapse
|
8
|
Husson M, Enderlin V, Delacourte A, Ghenimi N, Alfos S, Pallet V, Higueret P. Retinoic acid normalizes nuclear receptor mediated hypo-expression of proteins involved in β-amyloid deposits in the cerebral cortex of vitamin A deprived rats. Neurobiol Dis 2006; 23:1-10. [PMID: 16531051 DOI: 10.1016/j.nbd.2006.01.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 01/19/2006] [Accepted: 01/27/2006] [Indexed: 11/26/2022] Open
Abstract
Recent data have revealed that disruption of vitamin A signaling observed in Alzheimer's disease (AD) leads to a deposition of beta-amyloid (Abeta). The aim of this study was to precise the role of vitamin A and its nuclear receptors (RAR) in the processes leading to the Abeta deposits. Thus, the effect of vitamin A depletion and subsequent administration of retinoic acid (RA, the active metabolite of vitamin A) on the expression of RARbeta, and of proteins involved in amyloidogenic pathway, e.g., amyloid precursor protein (APP), beta-secretase enzyme (BACE), and APP carboxy-terminal fragment (APP-CTF) was examined in the whole brain, hippocampus, striatum, and cerebral cortex of rats. Rats fed a vitamin A-deprived diet for 13 weeks exhibited decreased amount of RARbeta, APP695, BACE, and of APP-CTF in the whole brain and in the cerebral cortex. Administration of RA is able to restore all expression. The results suggest that fine regulation of vitamin A mediated gene expression seems fundamental for the regulation of APP processing.
Collapse
Affiliation(s)
- Marianne Husson
- Unité de Nutrition et Signalisation Cellulaire (E.A. MENRT; USC INRA) ISTAB, Université Bordeaux 1, Avenue des Facultés, 33405 Talence cedex, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Züchner T, Perez-Polo JR, Schliebs R. Beta-secretase BACE1 is differentially controlled through muscarinic acetylcholine receptor signaling. J Neurosci Res 2004; 77:250-7. [PMID: 15211591 DOI: 10.1002/jnr.20152] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The beta-amyloid peptides derived by proteolytic cleavage from the amyloid precursor protein (APP) play a major role in the pathogenesis of Alzheimer's disease (AD) by forming aggregated, fibrillary complexes that have been shown to be neurotoxic. The beta-site APP-cleaving enzyme (BACE1) has been identified as the key enzyme leading to beta-amyloid formation, and cholinergic mechanisms have been shown to control APP processing. The present study sought to determine whether BACE1 expression is controlled by muscarinic acetylcholine receptor (mAChR) subtypes in the neuroblastoma cell line SK-SH-SY5Y. Stimulation of cells with the M1/M3-selective mAChR agonist talsaclidine for 1 hr resulted in a dose-dependent increase in BACE1 expression up to twofold over basal levels. Similar effects of BACE1 up-regulation were observed when protein kinase C was directly activated by phorbol esters. However, when the MAP kinases MEK/ERK were inhibited, BACE1 expression was no longer up-regulated by the activation of M1-mAChR. In contrast, BACE1 expression was suppressed by stimulation of M2-mediated pathways via selective M2-agonist binding or direct activation of adenylate cyclase with forskolin, an effect that was prevented by inhibiting protein kinase A. These results may explain the observed deterioration of AD patients after initial improvements with AChE inhibitor or M1-mAChR agonist treatment.
Collapse
Affiliation(s)
- Thole Züchner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Leipzig, Germany
| | | | | |
Collapse
|