2
|
Goswami DG, Kumar D, Tewari-Singh N, Orlicky DJ, Jain AK, Kant R, Rancourt RC, Dhar D, Inturi S, Agarwal C, White CW, Agarwal R. Topical nitrogen mustard exposure causes systemic toxic effects in mice. ACTA ACUST UNITED AC 2014; 67:161-70. [PMID: 25481215 DOI: 10.1016/j.etp.2014.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
Vesicating agents sulfur mustard (SM) and nitrogen mustard (NM) are reported to be easily absorbed by skin upon exposure causing severe cutaneous injury and blistering. Our studies show that topical exposure of NM (3.2mg) onto SKH-1 hairless mouse skin, not only caused skin injury, but also led to significant body weight loss and 40-80% mortality (120 h post-exposure), suggesting its systemic effects. Accordingly, further studies herein show that NM exposure initiated an increase in circulating white blood cells by 24h (neutrophils, eosinophils and basophils) and thereafter a decrease (neutrophils, lymphocytes and monocytes). NM exposure also reduced both white and red pulp areas of the spleen. In the small intestine, NM exposure caused loss of membrane integrity of the surface epithelium, abnormal structure of glands and degeneration of villi. NM exposure also resulted in the dilation of glomerular capillaries of kidneys, and an increase in blood urea nitrogen/creatinine ratio. Our results here with NM are consistent with earlier reports that exposure to higher SM levels can cause damage to the hematopoietic system, and kidney, spleen and gastrointestinal tract toxicity. These outcomes will add to our understanding of the toxic effects of topical vesicant exposure, which might be helpful towards developing effective countermeasures against injuries from acute topical exposures.
Collapse
Affiliation(s)
- Dinesh G Goswami
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anil K Jain
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Raymond C Rancourt
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepanshi Dhar
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Swetha Inturi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carl W White
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Sueki H, Kligman AM. Cutaneous Toxicity of Chemical Irritants on Hairless Guinea Pigs. J Dermatol 2014; 30:859-70. [PMID: 14739512 DOI: 10.1111/j.1346-8138.2003.tb00340.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 08/05/2003] [Indexed: 12/01/2022]
Abstract
To evaluate the toxicity of irritant chemicals on animal skin, investigators have frequently had to apply high concentrations, owing to the fact that its susceptibility is less than that of human skin. High concentrations are so damaging to tissue that specific effects are obscured on the various layers. The aim of the present study was to elucidate the effects of a variety of irritating chemicals on the skin of hairless guinea pigs. Graded concentrations of these irritating substances were applied to the back for varying periods. Histologic changes were analyzed by light and electron microscopy. The structural alterations varied greatly among the chemicals, reflecting quite different mechanisms of action. Hairless guinea pigs are quite susceptible to chemical injury, especially to their hair follicles and dermal components. The hairless guinea pig appears to be an advantageous model to assess the acute and chronic effects of chemical irritants.
Collapse
Affiliation(s)
- Hirohiko Sueki
- Department of Dermatology Showa University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
4
|
Borcan F, Soica CM, Ganta S, Amiji MM, Dehelean CA, Munteanu MF. Synthesis and preliminary in vivo evaluations of polyurethane microstructures for transdermal drug delivery. Chem Cent J 2012; 6:87. [PMID: 22892194 PMCID: PMC3483215 DOI: 10.1186/1752-153x-6-87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/02/2012] [Indexed: 11/16/2022] Open
Abstract
Background Polymers have been considered as important materials in fabrication of microstructures for various medical purposes including drug delivery. This study evaluates polyurethane as material for hollow microstructures preparation. Results Polyurethane microstructures were obtained by interfacial polyaddition combined with spontaneous emulsification and present slightly acid pH values. Scanning electron microscopy revealed the existence of irregular shapes and agglomerated microstructures. The material is heat resistant up to 280°C. Good results were recorded on murine skin tests in case of polyurethane microstructures based on isophorone diisocyanate. Mesenchymal stem cells viability presents good results for the same sample after 48 hours based on the Alamar Blue test. Conclusions The research revealed the reduced noxiousness of this type of microstructures and consequently the possibility of their use for therapeutic purposes.
Collapse
Affiliation(s)
- Florin Borcan
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2nd E, Murgu Sq,, Timisoara, 300041, Romania.
| | | | | | | | | | | |
Collapse
|
5
|
Hou H, Li B, Zhang Z, Xue C, Yu G, Wang J, Bao Y, Bu L, Sun J, Peng Z, Su S. Moisture absorption and retention properties, and activity in alleviating skin photodamage of collagen polypeptide from marine fish skin. Food Chem 2012; 135:1432-9. [PMID: 22953877 DOI: 10.1016/j.foodchem.2012.06.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/02/2012] [Accepted: 06/08/2012] [Indexed: 11/18/2022]
Abstract
Collagen polypeptides were prepared from cod skin. Moisture absorption and retention properties of collagen polypeptides were determined at different relative humidities. In addition, the protective effects of collagen polypeptide against UV-induced damage to mouse skin were evaluated. Collagen polypeptides had good moisture absorption and retention properties and could alleviate the damage induced by UV radiation. The action mechanisms of collagen polypeptide mainly involved enhancing immunity, reducing the loss of moisture and lipid, promoting anti-oxidative properties, inhibiting the increase of glycosaminoglycans, repairing the endogenous collagen and elastin protein fibres, and maintaining the ratio of type III to type I collagen.
Collapse
Affiliation(s)
- Hu Hou
- College of Food Science and Engineering, Ocean University of China, No. 5 Yu Shan Road, Qingdao, Shandong Province 266003, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jain AK, Tewari-Singh N, Gu M, Inturi S, White CW, Agarwal R. Sulfur mustard analog, 2-chloroethyl ethyl sulfide-induced skin injury involves DNA damage and induction of inflammatory mediators, in part via oxidative stress, in SKH-1 hairless mouse skin. Toxicol Lett 2011; 205:293-301. [PMID: 21722719 DOI: 10.1016/j.toxlet.2011.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 12/20/2022]
Abstract
Bifunctional alkyalating agent, sulfur mustard (SM)-induced cutaneous injury is characterized by inflammation and delayed blistering. Our recent studies demonstrated that 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM that can be used in laboratory settings, induces oxidative stress. This could be the major cause of the activation of Akt/MAP kinase and AP1/NF-κB pathways that are linked to the inflammation and microvesication, and histopathological alterations in SKH-1 hairless mouse skin. To further establish a link between CEES-induced DNA damage and signaling pathways and inflammatory responses, skin samples from mice exposed to 2 mg or 4 mg CEES for 9-48 h were subjected to molecular analysis. Our results show a strong CEES-induced phosphorylation of H2A.X and an increase in cyclooxygenase-2 (COX-2), inducible NOS (iNOS), and matrix metalloproteinase-9 (MMP-9) levels, indicating the involvement of DNA damage and inflammation in CEES-induced skin injury in male and female mice. Since, our recent studies showed reduction in CEES-induced inflammatory responses by glutathione (GSH), we further assessed the role of oxidative stress in CEES-related DNA damage and the induction of inflammatory molecules. Oral GSH (300 mg/kg) administration 1h before CEES exposure attenuated the increase in both CEES-induced H2A.X phosphorylation (59%) as well as expression of COX-2 (68%), iNOS (53%) and MMP-9 (54%). Collectively, our results indicate that CEES-induced skin injury involves DNA damage and an induction of inflammatory mediators, at least in part via oxidative stress. This study could help in identifying countermeasures that alone or in combination, can target the unveiled pathways for reducing skin injury in humans by SM.
Collapse
Affiliation(s)
- Anil K Jain
- Department of Pharmaceutical Sciences, University of Colorado Denver School of Pharmacy, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Moon SH, Seo KI, Han WS, Suh DH, Cho KH, Kim JJ, Eun HC. Pathological findings in cumulative irritation induced by SLS and croton oil in hairless mice. Contact Dermatitis 2001; 44:240-5. [PMID: 11260241 DOI: 10.1034/j.1600-0536.2001.044004240.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is known that the pathological features of acute irritant contact dermatitis are specific according to the irritant. However, in chronic irritant contact dermatitis, it is not clear whether specific patterns exist. To investigate whether the specific pathology of acute irritant contact dermatitis is sustained in chronic irritant contact dermatitis, sodium lauryl sulfate (SLS) and croton oil were applied 3x a week for 2 weeks on the dorsal skin of hairless mice using Finn Chambers. The pathologic changes induced by irritants at various concentrations were evaluated using H&E and Luna's staining, as well as immunohistochemistry for 5-bromo-2-deoxyuridine (BrdU), keratin 6 and loricrin. Our results showed that epidermal hyperplasia and inflammatory infiltration were relatively marked in the groups treated with higher concentrations of irritants. These features were more prominent in the 1% croton oil treated group than in the 0.25% SLS treated group. However, lower concentrations of irritants resulted in very similar histological changes, characterized by epidermal hyperplasia with minimal inflammatory infiltration, irrespective of the chemical. Our results suggest that the histological responses to irritants vary with concentration in cumulative irritation, as in acute irritation, but repetitive mild irritation may evoke common histological changes, characterized by epidermal hyperplasia with minimal inflammatory infiltration, irrespective of the chemical used.
Collapse
Affiliation(s)
- S H Moon
- Department of Dermatology, Seoul National University College of Medicine, 28 Yungun-Dong, Chongno-Gu, Seoul 110-744, Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Weber SU, Thiele JJ, Cross CE, Packer L. Vitamin C, uric acid, and glutathione gradients in murine stratum corneum and their susceptibility to ozone exposure. J Invest Dermatol 1999; 113:1128-32. [PMID: 10594762 DOI: 10.1046/j.1523-1747.1999.00789.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The stratum corneum has been recognized as the main cutaneous oxidation target of atmospheric ozone (O3), a major part of photochemical smog. This study reports the presence and distribution of vitamin C, glutathione, and uric acid in murine stratum corneum, and evaluates their susceptibility to acute environmental exposure to O3. Based on tape stripping and a modified extraction method with high performance liquid chromatography electrochemical analysis, we detected vitamin C (208.0 +/- 82.5 pmol per 10 consecutive pooled tapes), glutathione (283.7 +/-96.3), and uric acid (286.4 +/-47.1) in murine stratum corneum as compared with only 16.5 +/- 1.4 pmol alpha-tocopherol. Vitamin C, glutathione (both p < 00.001), and urate (p < 0.01) were found to exhibit a gradient with the lowest concentrations in the outer layers and a steep increase in the deeper layers. To investigate the effect of O3 exposure on hydrophilic antioxidants, we exposed SKH-1 hairless mice to O3 concentrations of 0, 0.8, 1, and 10 p.p.m., and stratum corneum was analyzed before and after exposure. Whereas mock exposure with 0 p.p. m. for 2 h had no significant effect, O3 doses of 1 p.p.m. for 2 h and above showed depletion of all three antioxidants. Vitamin C was decreased to 80% +/- 15% of its pretreatment content (p < 0.05), GSH to 41% +/- 24% (p < 0.01), and uric acid to 44% +/- 28% (p < 0.01). This report demonstrates the previously unrecognized role of hydrophilic antioxidants in the stratum corneum and provides further evidence that O3 induces oxidative stress in this outer skin layer.
Collapse
Affiliation(s)
- S U Weber
- Department of Molecular and Cell Biology, University of California, Berkeley, USA.
| | | | | | | |
Collapse
|