1
|
Chou CK, Yang YT, Yang HC, Liang SS, Wang TN, Kuo PL, Wang HMD, Tsai EM, Chiu CC. The Impact of Di(2-ethylhexyl)phthalate on Cancer Progression. Arch Immunol Ther Exp (Warsz) 2017; 66:183-197. [PMID: 29209738 DOI: 10.1007/s00005-017-0494-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/18/2017] [Indexed: 12/11/2022]
Abstract
Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer, mainly serves as an additive to render polyvinyl chloride (PVC) soft and flexible. PVC plastics have become ubiquitous in our modern society. Yet, the leaching of DEHP from PVC-based consumables ultimately results in the deposition in certain tissues via inadvertent applications. Health risks for human populations exposed to DEHP has been assumed by studies on rodents and other species, including the DEHP-induced developmental dysregulation, reproductive impairments, tumorigenesis, and diseases in a transgenerational manner. In this review, we comprehensively summarize the accumulated literature regarding the multifaceted roles of DEHP in the activation of the nuclear receptors, the alteration of the redox homeostasis, epigenetic modifications and the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Chon-Kit Chou
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ya-Ting Yang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ho-Chun Yang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tsu-Nai Wang
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.,Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung, 402, Taiwan
| | - Eing-Mei Tsai
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Headquarters of Research Centers, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan. .,Department of Medical Research, Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
3
|
Rusyn I, Corton JC. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat Res 2011; 750:141-158. [PMID: 22198209 DOI: 10.1016/j.mrrev.2011.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 12/28/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a peroxisome proliferator agent that is widely used as a plasticizer to soften polyvinylchloride plastics and non-polymers. Both occupational (e.g., by inhalation during its manufacture and use as a plasticizer of polyvinylchloride) and environmental (medical devices, contamination of food, or intake from air, water and soil) routes of exposure to DEHP are of concern for human health. There is sufficient evidence for carcinogenicity of DEHP in the liver in both rats and mice; however, there is little epidemiological evidence on possible associations between exposure to DEHP and liver cancer in humans. Data are available to suggest that liver is not the only target tissue for DEHP-associated toxicity and carcinogenicity in both humans and rodents. The debate regarding human relevance of the findings in rats or mice has been informed by studies on the mechanisms of carcinogenesis of the peroxisome proliferator class of chemicals, including DEHP. Important additional mechanistic information became available in the past decade, including, but not limited to, sub-acute, sub-chronic and chronic studies with DEHP in peroxisome proliferator-activated receptor (PPAR) α-null mice, as well as experiments utilizing several transgenic mouse lines. Activation of PPARα and the subsequent downstream events mediated by this transcription factor represent an important mechanism of action for DEHP in rats and mice. However, additional data from animal models and studies in humans exposed to DEHP from the environment suggest that multiple molecular signals and pathways in several cell types in the liver, rather than a single molecular event, contribute to the cancer in rats and mice. In addition, the toxic and carcinogenic effects of DEHP are not limited to liver. The International Agency for Research on Cancer working group concluded that the human relevance of the molecular events leading to cancer elicited by DEHP in several target tissues (e.g., liver and testis) in rats and mice can not be ruled out and DEHP was classified as possibly carcinogenic to humans (Group 2B).
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | - J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
6
|
Rusyn I, Peters JM, Cunningham ML. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit Rev Toxicol 2006; 36:459-79. [PMID: 16954067 PMCID: PMC2614359 DOI: 10.1080/10408440600779065] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The industrial plasticizer di-(2-ethylhexyl)phthalate (DEHP) is used in manufacturing of a wide variety of polyvinyl chloride (PVC)-containing medical and consumer products. DEHP belongs to a class of chemicals known as peroxisome proliferators (PPs). PPs are a structurally diverse group of compounds that share many (but perhaps not all) biological effects and are characterized as non-genotoxic rodent carcinogens. This review focuses on the effect of DEHP in liver, a primary target organ for the pleiotropic effects of DEHP and other PPs. Specifically, liver parenchymal cells, identified herein as hepatocytes, are a major cell type that are responsive to exposure to PPs, including DEHP; however, other cell types in the liver may also play a role. The PP-induced increase in the number and size of peroxisomes in hepatocytes, so called 'peroxisome proliferation' that results in elevation of fatty acid metabolism, is a hallmark response to these compounds in the liver. A link between peroxisome proliferation and tumor formation has been a predominant, albeit questioned, theory to explain the cause of a hepatocarcinogenic effect of PPs. Other molecular events, such as induction of cell proliferation, decreased apoptosis, oxidative DNA damage, and selective clonal expansion of the initiated cells have been also been proposed to be critically involved in PP-induced carcinogenesis in liver. Considerable differences in the metabolism and molecular changes induced by DEHP in the liver, most predominantly the activation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)alpha, have been identified between species. Both sexes of rats and mice develop adenomas and carcinomas after prolonged feeding with DEHP; however, limited DEHP-specific human data are available, even though exposure to DEHP and other phthalates is common in the general population. This likely constitutes the largest gap in our knowledge on the potential for DEHP to cause liver cancer in humans. Overall, it is believed that the sequence of key events that are relevant to DEHP-induced liver carcinogenesis in rodents involves the following events whereby the combination of the molecular signals and multiple pathways, rather than a single hallmark event (such as induction of PPARalpha and peroxisomal genes, or cell proliferation) contribute to the formation of tumors: (i) rapid metabolism of the parental compound to primary and secondary bioactive metabolites that are readily absorbed and distributed throughout the body; (ii) receptor-independent activation of hepatic macrophages and production of oxidants; (iii) activation of PPARalpha in hepatocytes and sustained increase in expression of peroxisomal and non-peroxisomal metabolism-related genes; (iv) enlargement of many hepatocellular organelles (peroxisomes, mitochondria, etc.); (v) rapid but transient increase in cell proliferation, and a decrease in apoptosis; (vi) sustained hepatomegaly; (vii) chronic low-level oxidative stress and accumulation of DNA damage; (viii) selective clonal expansion of the initiated cells; (ix) appearance of the pre-neoplastic nodules; (x) development of adenomas and carcinomas.
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, 27599-7431, USA.
| | | | | |
Collapse
|
7
|
Sérée E, Villard PH, Pascussi JM, Pineau T, Maurel P, Nguyen QB, Fallone F, Martin PM, Champion S, Lacarelle B, Savouret JF, Barra Y. Evidence for a new human CYP1A1 regulation pathway involving PPAR-alpha and 2 PPRE sites. Gastroenterology 2004; 127:1436-45. [PMID: 15521013 DOI: 10.1053/j.gastro.2004.08.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND AIMS Cytochrome P450 1A1 catalyzes the degradation of endobiotics (estradiol, fatty acids, and so on) and the bioactivation of numerous environmental procarcinogens, such as arylamines and polycyclic aromatic hydrocarbons, that are found in food. Several peroxisome proliferators and arachidonic acid derivatives enhance cytochrome P450 1A1 activity, but the mechanisms involved remain unknown. The aim of this work was to study the role of peroxisome proliferator-activated receptors in cytochrome P450 1A1 gene induction. METHODS The role of peroxisome proliferator-activated receptor transcription factors in cytochrome P450 1A1 induction was assessed by means of enzymatic activities, quantitative real-time polymerase chain reaction, gene reporter assays, mutagenesis, and electrophoretic mobility shift assay. RESULTS We show that peroxisome proliferator-activated receptor-alpha agonists (WY-14643, bezafibrate, clofibrate, and phthalate) induce human cytochrome P450 1A1 gene expression, whereas 2,4-thiazolidinedione, a specific peroxisome proliferator-activated receptor-gamma agonist, represses it. The induction of cytochrome P450 1A1 transcripts by WY-14643 was associated with a marked increase of ethoxyresorufin O -deethylase activity (10-fold at 200 mumol/L). Transfection of peroxisome proliferator-activated receptor-alpha complementary DNA enhanced cytochrome P450 1A1 messenger RNA induction by WY-14643, although WY-14643 failed to activate xenobiotic responsive element sequences. Two peroxisome proliferator response element sites were located at positions -931/-919 and -531/-519 of the cytochrome P450 1A1 promoter. Their inactivation by directed mutagenesis suppressed the inductive effect of WY-14643 on cytochrome P450 1A1 promoter activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay experiments showed that the 2 cytochrome P450 1A1 peroxisome proliferator response element sites bind the peroxisome proliferator-activated receptor-alpha/retinoid X receptor-alpha heterodimer. CONCLUSIONS We describe here a new cytochrome P450 1A1 induction pathway involving peroxisome proliferator-activated receptor-alpha and 2 peroxisome proliferator response element sites, indicating that peroxisome proliferator-activated receptor-alpha ligands, which are common environmental compounds, may be involved in carcinogenesis.
Collapse
Affiliation(s)
- E Sérée
- FRE Centre National de la Recherche Scientifique, Faculté de Pharmacie, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|