1
|
Sarhan H, Mehesen R, Hamama H, Mahmoud SH. Elemental analysis and micromorphological patterns of tooth/restoration interface of three ion-releasing class V restorations. BMC Oral Health 2024; 24:1221. [PMID: 39407219 PMCID: PMC11481381 DOI: 10.1186/s12903-024-04944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES To evaluate and compare the ion-releasing capability of three different restorative systems at the restoration/tooth interface elemental analysis using energy-dispersive X-ray technique. Additionally, micromorphological patterns of the restoration/tooth interfaces was investigated. MATERIALS AND METHODS Eighteen freshly extracted sound human premolars were collected for the study. The premolars were randomly assigned into 3 groups (n = 6) based on the type of restorative materials used: Giomer (Beautifill II), ion-releasing composite (Activa Presto), and RMGI (Riva Light Cure). Half of the specimens in each group were tested after 24 h (the "immediate group"), while the remaining half were tested after 6 months of storage in deionized water (the "delayed group"). Standardized box-shaped cavities along the cervical area of teeth crowns and restored them with the assigned restorative material following manufacturers' instructions. The specimens were sectioned buccolingually into 2 halves. One half of each specimen was subjected to elemental analysis using energy-dispersive X-ray technique (EDX), while the remaining half was sputter coated and underwent micromorphological analysis of the restoration/tooth interface using a scanning electron microscope (SEM). The collected data from elemental analysis test were tabulated and subjected to statistical analysis. RESULTS The two-way ANOVA test showed significant differences in both phosphorus and calcium levels among the tested restorative systems (p < 0.05). In the immediate subgroup, RMGI recorded the highest phosphorus level (0.1527), followed by the ion-releasing composite (0.1172), while Giomer exhibited the least levels (0.0326) (p < 0.05). The ion-releasing composite group had the highest calcium level (0.2797), followed by RMGI (0.248), and Giomer (0.2385) respectively (p < 0.05). In the delayed subgroups, Giomer recorded the highest phosphorus level (0.1526), followed by the ion-releasing composite (0.1058), and RMGI group (0.0466) respectively (p < 0.05). RMGI had the highest calcium level (0.2801), followed by the ion-releasing composite (0.2659), and Giomer had the lowest level (0.1792) (p < 0.05). The micromorphological analysis of the restoration/tooth interfaces showed good adaptation between the composite and tooth substrate in different restorative groups. CONCLUSIONS The ion-releasing capability of the three restorative systems appears to be comparable. The rate of mineral release and diffusion is affected by time and composition.
Collapse
Affiliation(s)
- Hebatallah Sarhan
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
- Restorative Dentistry Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab Mehesen
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Hamdi Hamama
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| | - Salah Hasab Mahmoud
- Conservative Dentistry Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Tuygunov N, Khairunnisa Z, Yahya NA, Aziz AA, Zakaria MN, Israilova NA, Cahyanto A. Bioactivity and remineralization potential of modified glass ionomer cement: A systematic review of the impact of calcium and phosphate ion release. Dent Mater J 2024; 43:1-10. [PMID: 38220163 DOI: 10.4012/dmj.2023-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This systematic review investigates the effectiveness of calcium and phosphate ions release on the bioactivity and remineralization potential of glass ionomer cement (GIC). Electronic databases, including PubMed-MEDLINE, Scopus, and Web of Science, were systematically searched according to PRISMA guidelines. This review was registered in the PROSPERO database. Five eligible studies on modifying GIC with calcium and phosphate ions were included. The risk of bias was assessed using the RoBDEMAT tool. The incorporation of these ions into GIC enhanced its bioactivity and remineralization properties. It promoted hydroxyapatite formation, which is crucial for remineralization, increased pH and inhibited cariogenic bacteria growth. This finding has implications for the development of more effective dental materials. This can contribute to improved oral health outcomes and the management of dental caries, addressing a prevalent and costly oral health issue. Nevertheless, comprehensive longitudinal investigations are needed to evaluate the clinical efficacy of this GIC's modification.
Collapse
Affiliation(s)
- Nozimjon Tuygunov
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
| | - Zahra Khairunnisa
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
| | - Noor Azlin Yahya
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | - Azwatee Abdul Aziz
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | - Myrna Nurlatifah Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| | | | - Arief Cahyanto
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya
- Biomaterials Technology Research Groups, Faculty of Dentistry, University of Malaya
| |
Collapse
|
3
|
Yagi K, Uemura R, Yamamoto H, Ishimoto T, Naito K, Itoh S, Matsuda Y, Okuyama K, Nakano T, Hayashi M. In-air micro-proton-induced X-ray/gamma-ray emission analysis of the acid resistance of root dentin after applying fluoride-containing materials incorporating calcium. Dent Mater J 2021; 40:1142-1150. [PMID: 34024882 DOI: 10.4012/dmj.2020-273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study employed an in-air micro-proton-induced X-ray/gamma-ray emission system to assess the effectiveness of fluoride-containing materials (FCMs) incorporating calcium in preventing root caries. Dentin surfaces of human third molars were coated with one of three FCMs: fluoride-releasing glass-ionomer cement (F7) and experimental materials in which half (P1) or all (P2) of the strontium in F7 was replaced with calcium. Dentin without FCM coating served as the control. Specimens were immersed in saline at 37°C for 1 month, sectioned, and then demineralized. Calcium loss after demineralization was lower in the Ca-substituted groups than in the Ca-unsubstituted groups (p<0.05). Calcium loss was negatively correlated with fluoride uptake (p<0.01). In the F7, P1, and P2 groups, the retraction of the dentin surface was significantly suppressed as compared with the control group. FCMs incorporating calcium improved the acid resistance of root dentin and could help prevent root caries.
Collapse
Affiliation(s)
- Kyoko Yagi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry
| | - Reo Uemura
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry
| | - Hiroko Yamamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry
| | - Takuya Ishimoto
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering
| | - Katsuaki Naito
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry
| | - Shousaku Itoh
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry
| | - Yasuhiro Matsuda
- Division of Clinical Cariology and Endodontology, Health Sciences University of Hokkaido Graduate School of Dentistry
| | - Katsushi Okuyama
- Department of Dental Materials Sciences, Asahi University School of Dentistry
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Osaka University Graduate School of Engineering
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry
| |
Collapse
|
4
|
Kochotwuttinont S, Wayakanon K. Evaluating the Failure of Resin-based Materials on the Proximal Cervical Dentin. Open Dent J 2020. [DOI: 10.2174/1874210602014010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
Resin-based materials are the popular restorative material in dentistry. The majority of these materials are light cured with a major disadvantage: marginal leakage.
Objective:
To evaluate the gap width of different resin-based materials at the cervical dentin when achieved mechanical force.
Methods:
Class II cavities were prepared on extracted premolar teeth with the gingival margin 1 mm below the Cementoenamel Junction (CEJ). In the first three experimental groups, three different lining materials (flowable resin composite, bulk-fill flowable resin composite, and resin-modified glass ionomer cement) were placed at the cervical dentin with a thickness of 1 mm. The rest of the cavities were restored with conventional resin composite. The other two groups were restored with conventional resin composite (control) or high viscosity bulk-fill resin composite, respectively. All groups were thermocycled and underwent vacuum pressure 2.6 KPa for 30 min in a Scanning Electron Microscope (SEM).
Results:
There was no gap formation at the cervical dentin on the external surface when restored with high-viscosity bulk fill resin composite. Almost all gaps occurred at the interface between restorative materials and the hybrid layer. The flowable bulk fill resin composite showed a significantly smaller gap width on both the external and internal surfaces compared to the other groups (p< 0.05). The resin-modified glass ionomer cement showed the largest gaps in the cervical dentin (p < 0.05).
Conclusion:
The different types of resin-based materials demonstrated a different failure of gap width under mechanical force. It clearly occurred at the restorative material-hybrid layer interface.
Collapse
|
5
|
The forgotten merits of GIC restorations: a systematic review. Clin Oral Investig 2020; 24:2189-2201. [DOI: 10.1007/s00784-020-03334-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
Abstract
Objective
To reevaluate proven strengths and weakness of glass ionomer cements (GICs) and to identify agreement versus conflicting evidence in previous reports regarding the transition between GIC and the tooth, and the existence of an “interphase”.
Materials and methods
Relevant electronic databases (PubMed, Embase via Ovid and Medline via Web of science) were searched for publications of evidence relating to the transition zone at the GIC-tooth interphase. Studies were examined and grouped according to characteristics of GIC-tooth attachment area quantified by X-ray and optical microscopy techniques in 2D and 3D.
Results
Inclusion criteria comprised of in vitro studies that showed images of the conventional GIC-tooth substrate attachments using at least one of the following techniques: SEM, CLSM, or μCT. The search identified 419 studies, from which 33 were included. Ten studies demonstrated the existence of an interphase layer and five studies quantified the layer thickness (1–15 μ). Twenty-nine publications studied different failure modes of the GIC-tooth interphase. Eleven studies described discontinuities inside the GIC bulk.
Conclusion
The GIC-tooth interphase attributes evolve with time. Good attachment is evident even under compromised surface preparation. The GIC-tooth attachment area is resistant to acidic dissolution as compared to both tooth and GIC bulk. In general, studies revealed mostly intact GIC-tooth interphases with only some cracked interphases.
Clinical significance
GIC bonds to the tooth structure and forms an acid resistant attachment zone that might enhance caries inhibition. Due to fluoride release and ease of use, GIC provides a cost effective treatment, ideal for low income or high caries populations.
Collapse
|
6
|
Effect of Two Traditional Polyacrylic Acid Conditioners and 2% Chlorhexidine Digluconate on Cavosurface Microleakage of Glass Ionomer Restorations. J Clin Pediatr Dent 2018; 42:287-291. [PMID: 29750621 DOI: 10.17796/1053-4628-42.4.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES A lack of appropriate adhesiveness is one of the biggest problems in restorative dentistry today and the main cause of microleakage. This is especially true in pediatric dentistry where moisture control is more difficult to achieve. Glass ionomer restorative materials increase adhesion and decrease microleakage given their chemical adhesion to the remaining tooth substance. Pretreatment improves the adhesion quality. The aim of this study was to assess the microleakage of Glass ionomer restorative materials following application of 20% polyacrylic acid, 10% polyacrylic acid or 2% chlorhexidine digluconate in Class V cavities. STUDY DESIGN Two Class V preparations were prepared on the buccal and lingual surfaces of 24 extracted human molars. The gingival wall was set below or above the CEJ. The teeth were divided into 2 groups. Group 1 was treated with 20% polyacrylic acid or 10% polyacrylic acid. Group 2 was treated with 10% polyacrylic acid or 2% chlorhexidine digluconate. Microleakage was evaluated using a light-reflecting stereomicroscope and stain penetration test. RESULTS Two percent chlorhexidine digluconate was as efficient as the other conditioners. No statistically significant differences were found among the three types of conditioners. Dye penetration was significantly greater into dentin than into enamel among all three conditioners in both groups (P<0.001). CONCLUSION Two percent chlorhexidine digluconate, with its known added advantages, can be used as a pretreatment conditioner in GI restorations.
Collapse
|
7
|
Zapletalová Z, Kubínek R, Vůjtek M, Novotný R. Examination of Dentin Surface Using AFM (Our Experience). ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Atomic force microscopy (AFM) as one the technique of Scanning Probe Microscopy is useful for imaging of surface structure. This method can yield three-dimensional high-resolution topographic images of sample surfaces by using a scanning technique for conductors and insulators on atomic scale. It is based upon mapping of atomic-forces on a surface of an investigated sample. The method is useful not only in physics and chemistry; it can be also applied in biological fields. Special construction of AFM scanner enables to follow biological samples in liquid environments. Artifacts caused by dehydration of samples are removed this way. Dentin of human teeth is a vital hydrated tissue. It is strongly sensitive to dehydration and drying that are commonly used in preparation of samples in examinations by Scanning Electron Microscopy (SEM). We describe our experience in examination of dentin surfaces of extracted human third molars using contact method of AFM under moist conditions.
Collapse
|
8
|
Hamama H, Yiu C, Burrow MF. Effect of chemomechanical caries removal on bonding of resin-modified glass ionomer cement adhesives to caries-affected dentine. Aust Dent J 2015; 60:190-9. [PMID: 25989193 DOI: 10.1111/adj.12318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study evaluated the effect of: (1) chemomechanical caries removal (CMCR); (2) dentine surface treatments and (3) dentine substrates on adhesion of resin-modified glass ionomer cement (RMGIC) adhesives. METHODS One hundred and twenty permanent molars exhibiting moderate cavitation on the occlusal surface into dentine were used. Seventy-five carious molars were used for bond strength testing; the remaining 45 for micromorphological evaluation of the bonded interface. Caries was excavated with NaOCl-based CMCR (Carisolv), enzyme-based CMCR (Papacarie), or conventional rotary caries removal methods. Dentine surface treatment was performed using 37% phosphoric acid, 25-30% PAA or 20% PAA + 3% AlCl3 . RESULTS Three-way ANOVA revealed that all three factors 'caries removal methods', 'dentine surface treatments' and 'dentine substrates' did not significantly affect bond strength (p > 0.05). Scanning electron microscopy micrographs showed that the acid-base resistant layer was thicker in caries-affected dentine compared to sound dentine. CONCLUSIONS NaOCl- and enzyme-based CMCR methods have no adverse effect on adhesion of RMGIC adhesives to sound and caries-affected dentine. Dentine surface treatment with 37% phosphoric acid for 5 s has no negative effect on bonding of RMGIC adhesives to dentine compared with using polyacrylic acid for 10 s. RMGIC adhesives bonded well to both sound and caries-affected dentine.
Collapse
Affiliation(s)
- Hhh Hamama
- Aesthetic and Restorative Dentistry Department, Faculty of Dentistry, Mansoura University, Egypt
| | - Cky Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - M F Burrow
- Melbourne Dental School, The University of Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Hamama HH, Burrow MF, Yiu C. Effect of dentine conditioning on adhesion of resin-modified glass ionomer adhesives. Aust Dent J 2014; 59:193-200. [PMID: 24861394 DOI: 10.1111/adj.12169] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of this study was to investigate the use of phosphoric acid as a surface treatment compared to traditional conditioning agents to dentine bonded with resin-modified glass ionomer (RMGIC) adhesives. METHODS Forty human molars were utilized in microtensile bond strength testing, while another 16 were used for evaluation of the bonded interface with scanning electron microscopy. Three RMGIC adhesives were evaluated: Fuji Bond LC (GC Corp); Riva Bond LC (SDI Ltd); and Ketac N100 (3M-ESPE). Surface treatments were 37% phosphoric acid (5 s) or 25-30% polyacrylic acid (PAA) (10 s), or the manufacturer's method - Fuji Bond LC: Cavity Conditioner (20% PAA + 3% AlCl3 10 s) or Ketac N100 primer: Ketac Nano priming agent (15 s). Teeth were finished with 600-grit SiC paper, surfaces treated and bonded with RMGIC adhesive and stored in distilled water for 24 h then subjected to microtensile bond strength testing. RESULTS Two-way analysis of variance (ANOVA) revealed adhesion was affected by the 'type of RMGIC adhesive' and 'method of dentine surface treatment' (p < 0.05). The microtensile bond strength of Ketac N100 primer groups was lower than Fuji Bond LC and Riva Bond LC (p < 0.05). CONCLUSIONS For RMGIC adhesives a brief etch with phosphoric acid does not adversely effect short-term bond strengths, but is no better than traditional conditioning with PAA.
Collapse
Affiliation(s)
- H H Hamama
- Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
10
|
Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater 2013; 30:50-61. [PMID: 24113131 PMCID: PMC3885799 DOI: 10.1016/j.dental.2013.08.202] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/05/2013] [Indexed: 01/06/2023]
Abstract
Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal.
Collapse
|
11
|
Banomyong D, Palamara JE, Burrow MF, Messer HH. Effect of dentin conditioning on dentin permeability and micro-shear bond strength. Eur J Oral Sci 2007; 115:502-9. [DOI: 10.1111/j.1600-0722.2007.00483.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Kubínek R, Zapletalová Z, Vůjtek M, Novotný R, Kolářová H, Chmelíčková H, Peřina J. Sealing of open dentinal tubules by laser irradiation: AFM and SEM observations of dentine surfaces. J Mol Recognit 2007; 20:476-82. [DOI: 10.1002/jmr.856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Peliz MIL, Duarte S, Dinelli W. Scanning Electron Microscope Analysis of Internal Adaptation of Materials Used for Pulp Protection under Composite Resin Restorations. J ESTHET RESTOR DENT 2005; 17:118-28. [PMID: 16036128 DOI: 10.1111/j.1708-8240.2005.tb00098.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE The aim of this study was to evaluate the interfacial microgap with different materials used for pulp protection. The null hypothesis tested was that the combination of calcium hydroxide, resin-modified glass ionomer, and dentin adhesive used as pulp protection in composite restorations would not result in a greater axial gap than that obtained with hybridization only. MATERIALS AND METHODS Standardized Class V preparations were performed in buccal and lingual surfaces of 60 caries-free, extracted human third molars. The prepared teeth were randomly assessed in six groups: (1) Single Bond (SB) (3M ESPE, St. Paul, MN, USA); (2) Life (LF) (Kerr Co., Romulus, MI, USA) + SB; (3) LF + Vitrebond (VT) (3M ESPE) + SB; (4) VT + SB; (5) SB + VT; (6) SB + VT + SB. They were restored with microhybrid composite resin Filtek Z250 (3M ESPE), according to the manufacturer's instructions. However, to groups 5 and 6, the dentin bonding adhesive was applied prior to the resin-modified glass ionomer. The specimens were then thermocycled, cross-sectioned through the center of the restoration, fixed, and processed for scanning electron microscopy. The specimens were mounted on stubs and sputter coated. The internal adaptation of the materials to the axial wall was analyzed under SEM with x1,000 magnification. RESULTS The data obtained were analyzed with nonparametric tests (Kruskal-Wallis, p < or = .05). The null hypothesis was rejected. Calcium hydroxide and resin-modified glass ionomer applied alone or in conjunction with each other (p < .001) resulted in statistically wider microgaps than occurred when the dentin was only hybridized prior to the restoration.
Collapse
Affiliation(s)
- Maria Inez Lemos Peliz
- Department of Prevention and Oral Rehabilitation, Federal University of Goiás, Goiânia, Brazil
| | | | | |
Collapse
|
14
|
Burrow MF, Thomas D, Swain MV, Tyas MJ. Analysis of tensile bond strengths using Weibull statistics. Biomaterials 2004; 25:5031-5. [PMID: 15109865 DOI: 10.1016/j.biomaterials.2004.01.060] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2003] [Accepted: 01/26/2004] [Indexed: 11/20/2022]
Abstract
Tensile strength tests of restorative resins bonded to dentin, and the resultant strengths of interfaces between the two, exhibit wide variability. Many variables can affect test results, including specimen preparation and storage, test rig design and experimental technique. However, the more fundamental source of variability, that associated with the brittle nature of the materials, has received little attention. This paper analyzes results from micro-tensile tests on unfilled resins and adhesive bonds between restorative resin composite and dentin in terms of reliability using the Weibull probability of failure method. Results for the tensile strengths of Scotchbond Multipurpose Adhesive (3M) and Clearfil LB Bond (Kuraray) bonding resins showed Weibull moduli (m) of 6.17 (95% confidence interval, 5.25-7.19) and 5.01 (95% confidence interval, 4.23-5.8). Analysis of results for micro-tensile tests on bond strengths to dentin gave moduli between 1.81 (Clearfil Liner Bond 2V) and 4.99 (Gluma One Bond, Kulzer). Material systems with m in this range do not have a well-defined strength. The Weibull approach also enables the size dependence of the strength to be estimated. An example where the bonding area was changed from 3.1 to 1.1 mm diameter is shown. Weibull analysis provides a method for determining the reliability of strength measurements in the analysis of data from bond strength and tensile tests on dental restorative materials.
Collapse
Affiliation(s)
- Michael F Burrow
- School of Dental Science, The University of Melbourne, Victoria 3010, Melbourne, Australia.
| | | | | | | |
Collapse
|
15
|
Yiu CKY, Tay FR, King NM, Pashley DH, Carvalho RM, Carrilho MRO. Interaction of resin-modified glass-ionomer cements with moist dentine. J Dent 2004; 32:521-30. [PMID: 15304297 DOI: 10.1016/j.jdent.2004.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES The objective of this study was to report on a novel phenomenon that occurs when resin-modified glass-ionomer cements (RMGICs) are bonded to moist human dentine. METHODS Dentine surfaces from extracted third molars were abraded with 180-grit SiC paper. Ten teeth were prepared for each of the two RMGICs tested (Fuji II LC, GC Corp. and Photac-Fil Quick, 3M ESPE). RMGIC buildups were made according to the manufacturers' instructions. After storage at 37 degrees C, 100% humidity for 24 h, the bonded specimens were cut occlusogingivally into 0.9 x 0.9 mm beams. Dentine surfaces bonded with the two RMGICs were examined along the fractured RMGIC/dentine interfaces. Additional beams fractured within the RMGICS and at 3 mm away from the interfaces were used as controls. The fractured beams were examined using scanning electron microscopy (SEM), field emission-environmental SEM (FE-ESEM) and transmission electron microscopy (TEM). RESULTS SEM and FE-ESEM revealed numerous solid spherical bodies along the RMGIC/dentine interfaces. By contrast, no spherical bodies could be identified within the RMGIC fractured 3 mm distant from the bonded interface. TEM and energy dispersive X-ray analyses performed on carbon-coated ultrathin sections showed that these solid spherical bodies consisted of a thin aluminum and silicon-rich periphery and an amorphous hydrocarbon core within the air voids of the original resin matrix. CONCLUSION The spherical bodies probably represent a continuation of GI reaction and poly(HEMA) hydrogel formation that results from water diffusion from the underlying moist dentine. Their existence provides evidence for the permeation of water through RMGIC/dentine interfaces.
Collapse
Affiliation(s)
- C K Y Yiu
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, Prince Philip Dental Hospital, University of Hong Kong, 34 Hospital Road, Hong Kong, SAR, China
| | | | | | | | | | | |
Collapse
|
16
|
Yiu CKY, Tay FR, King NM, Pashley DH, Sidhu SK, Neo JCL, Toledano M, Wong SL. Interaction of glass-ionomer cements with moist dentin. J Dent Res 2004; 83:283-9. [PMID: 15044500 DOI: 10.1177/154405910408300403] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glass-ionomer cements (GICs) are regarded as aqueous gels made up of polyalkenoic acid salts containing ion-leachable glass fillers. The consequence of water permeation across the GIC-dentin interface is unknown. This study used SEM, field-emission/environmental SEM (FE-ESEM), and TEM to examine the ultrastructure of GIC-bonded moist dentin. Dentin surfaces bonded with 6 auto-cured GICs were examined along the fractured GIC-dentin interfaces. Additional specimens fractured 3 mm away from the interfaces were used as controls. SEM revealed spherical bodies along GIC-dentin interfaces that resembled hollow eggshells. FE-SEM depicted similar bodies with additional solid cores. Energy-dispersive x-ray analysis and TEM showed that the spherical bodies consisted of a silicon-rich GIC phase that was absent from the air-voids in the controls. The GIC inclusions near dentin surfaces result from a continuation of the GI reaction, within air-voids of the original polyalkenoate matrix, that occurred upon water diffusion from moist dentin.
Collapse
Affiliation(s)
- C K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Burrow MF, Bokas J, Tanumiharja M, Tyas MJ. Microtensile bond strengths to caries-affected dentine treated with Carisolv. Aust Dent J 2003; 48:110-4. [PMID: 14649400 DOI: 10.1111/j.1834-7819.2003.tb00018.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Little information is available regarding the bonding performance of adhesive restorative materials to caries-affected dentine after the use of Carisolv. The aim of this study was to compare the microtensile bond strengths of two resin-based adhesives, a conventional glass ionomer cement and resin modified glass ionomer cement to 'normal' dentine and caries-affected dentine after Carisolv treatment. METHODS Specimens were prepared using molar teeth with small carious lesions. Caries was removed with the Carisolv solution and the whole surface was bonded with either SE Bond, One Coat Bond, Fuji IX or Fuji II LC. After 24 hours, specimens were prepared for the microtensile bond strength test and stressed in tension at 1 mm/min until rupture of the bond. Mean bond strengths and mode of failure were determined and analysed with the LSD test and chi square test respectively. RESULTS The results showed no statistical difference for SE Bond, One Coat Bond or Fuji IX, but a difference was observed for the resin-modified GIC, Fuji II LC. CONCLUSIONS It was concluded that carious dentine treated with Carisolv did not affect the adhesion of the adhesive restorative materials tested in this study with the exception of Fuji II LC.
Collapse
Affiliation(s)
- M F Burrow
- School of Dental Science, The University of Melbourne, Victoria.
| | | | | | | |
Collapse
|