1
|
Rahaman O, Kalimeri M, Melchionna S, Hénin J, Sterpone F. Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains. J Phys Chem B 2014; 119:8939-49. [PMID: 25317828 DOI: 10.1021/jp507571u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this work, we address the question of whether the enhanced stability of thermophilic proteins has a direct connection with internal hydration. Our model systems are two homologous G domains of different stability: the mesophilic G domain of the elongation factor thermal unstable protein from E. coli and the hyperthermophilic G domain of the EF-1α protein from S. solfataricus. Using molecular dynamics simulation at the microsecond time scale, we show that both proteins host water molecules in internal cavities and that these molecules exchange with the external solution in the nanosecond time scale. The hydration free energy of these sites evaluated via extensive calculations is found to be favorable for both systems, with the hyperthermophilic protein offering a slightly more favorable environment to host water molecules. We estimate that, under ambient conditions, the free energy gain due to internal hydration is about 1.3 kcal/mol in favor of the hyperthermophilic variant. However, we also find that, at the high working temperature of the hyperthermophile, the cavities are rather dehydrated, meaning that under extreme conditions other molecular factors secure the stability of the protein. Interestingly, we detect a clear correlation between the hydration of internal cavities and the protein conformational landscape. The emerging picture is that internal hydration is an effective observable to probe the conformational landscape of proteins. In the specific context of our investigation, the analysis confirms that the hyperthermophilic G domain is characterized by multiple states and it has a more flexible structure than its mesophilic homologue.
Collapse
Affiliation(s)
- Obaidur Rahaman
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Simone Melchionna
- ‡CNR-IPCF, Consiglio Nazionale delle Ricerche, Physics Dept., Univ. La Sapienza, P.le A. Moro 2, 00185, Rome, Italy
| | - Jérôme Hénin
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, IBPC, CNRS, UPR9080, Univ. Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
2
|
Rahaman O, Melchionna S, Laage D, Sterpone F. The effect of protein composition on hydration dynamics. Phys Chem Chem Phys 2013; 15:3570-6. [PMID: 23381660 DOI: 10.1039/c3cp44582h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Water dynamics at the surface of two homologous proteins with different thermal resistances is found to be unaffected by the different underlying amino-acid compositions, and when proteins are folded it responds similarly to temperature variations. Upon unfolding the water dynamics slowdown with respect to bulk decreases by a factor of two. Our findings are explained by the dominant topological perturbation induced by the protein on the water hydrogen bond dynamics.
Collapse
Affiliation(s)
- O Rahaman
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | |
Collapse
|
3
|
Sterpone F, Bertonati C, Briganti G, Melchionna S. Key Role of Proximal Water in Regulating Thermostable Proteins. J Phys Chem B 2008; 113:131-7. [DOI: 10.1021/jp805199c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabio Sterpone
- Caspur, via dei Tizii 6B, 00185, Rome, Italy, and Department of Biochemical Sciences “Rossi Fanelli”, SOFT-INFM-CNR and Department of Physics, University of Rome La Sapienza, Ple. Aldo Moro 2, 00185, Rome, Italy
| | - Claudia Bertonati
- Caspur, via dei Tizii 6B, 00185, Rome, Italy, and Department of Biochemical Sciences “Rossi Fanelli”, SOFT-INFM-CNR and Department of Physics, University of Rome La Sapienza, Ple. Aldo Moro 2, 00185, Rome, Italy
| | - Giuseppe Briganti
- Caspur, via dei Tizii 6B, 00185, Rome, Italy, and Department of Biochemical Sciences “Rossi Fanelli”, SOFT-INFM-CNR and Department of Physics, University of Rome La Sapienza, Ple. Aldo Moro 2, 00185, Rome, Italy
| | - Simone Melchionna
- Caspur, via dei Tizii 6B, 00185, Rome, Italy, and Department of Biochemical Sciences “Rossi Fanelli”, SOFT-INFM-CNR and Department of Physics, University of Rome La Sapienza, Ple. Aldo Moro 2, 00185, Rome, Italy
| |
Collapse
|
4
|
Bartish G, Nygård O. Importance of individual amino acids in the Switch I region in eEF2 studied by functional complementation in S. cerevisiae. Biochimie 2008; 90:736-48. [DOI: 10.1016/j.biochi.2008.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
|
5
|
Lombardo B, Raimo G, Bocchini V. Molecular and functional properties of an archaeal phenylalanyl-tRNA synthetase from the hyperthermophile Sulfolobus solfataricus. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:246-52. [PMID: 12007606 DOI: 10.1016/s0167-4838(02)00223-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An archaeal phenylalanyl-tRNA synthetase (FRS) has been purified from the hyperthermophile Sulfolobus solfataricus (Ss). This enzyme is a heterotetramer made of two different subunits whose molecular mass is 56 kDa and 64 kDa, respectively. As thought, SsFRS is essential for the in vitro poly(Phe) synthesis. Interestingly, the enzyme is able to aminoacylate only endogenous tRNA but it does not seem to be a strictly ATP-dependent synthetase. SsFRS interacts with the elongation factor 1alpha isolated from the same source; this caused a significant enhancement of the SstRNA aminoacylation efficiency, thus indicating that, as well as in eukarya, in this archaeon a tRNA channelling mechanism should occur. The overall results presented in this paper show that the archaeal SsFRS behaves as the analogous enzymes isolated from eukaryal sources rather than those from eubacterial organisms.
Collapse
Affiliation(s)
- Barbara Lombardo
- Dipartimento di Biochimica e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini, 5, I-80131, Naples, Italy
| | | | | |
Collapse
|