1
|
Sarkar P, Gopi P, Pandya P, Paria S, Hossain M, Siddiqui MH, Alamri S, Bhadra K. Insights on the comparative affinity of ribonucleic acids with plant-based beta carboline alkaloid, harmine: Spectroscopic, calorimetric and computational evaluation. Heliyon 2024; 10:e34183. [PMID: 39100473 PMCID: PMC11295990 DOI: 10.1016/j.heliyon.2024.e34183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Small molecules as ligands target multifunctional ribonucleic acids (RNA) for therapeutic engagement. This study explores how the anticancer DNA intercalator harmine interacts various motifs of RNAs, including the single-stranded A-form poly (rA), the clover leaf tRNAphe, and the double-stranded A-form poly (rC)-poly (rG). Harmine showed the affinity to the polynucleotides in the order, poly (rA) > tRNAphe > poly (rC)·poly (rG). While no induced circular dichroism change was detected with poly (rC)poly (rG), significant structural alterations of poly (rA) followed by tRNAphe and occurrence of concurrent initiation of optical activity in the attached achiral molecule of alkaloid was reported. At 25 °C, the affinity further showed exothermic and entropy-driven binding. The interaction also highlighted heat capacity (ΔC o p ) and Gibbs energy contribution from the hydrophobic transfer (ΔG hyd) of binding with harmine. Molecular docking calculations indicated that harmine exhibits higher affinity for poly (rA) compared to tRNAphe and poly (rC)·poly (rG). Subsequent molecular dynamics simulations were conducted to investigate the binding mode and stability of harmine with poly(A), tRNAphe, and poly (rC)·poly (rG). The results revealed that harmine adopts a partial intercalative binding with poly (rA) and tRNAphe, characterized by pronounced stacking forces and stronger binding free energy observed with poly (rA), while a comparatively weaker binding free energy was observed with tRNAphe. In contrast, the stacking forces with poly (rC)·poly (rG) were comparatively less pronounced and adopts a groove binding mode. It was also supported by ferrocyanide quenching analysis. All these findings univocally provide detailed insight into the binding specificity of harmine, to single stranded poly (rA) over other RNA motifs, probably suggesting a self-structure formation in poly (rA) with harmine and its potential as a lead compound for RNA based drug targeting.
Collapse
Affiliation(s)
- Paromita Sarkar
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Samaresh Paria
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Maidul Hossain
- Vidyasagar University, Department of Chemistry, Midnapore 721 102, West Bengal, India
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kakali Bhadra
- University of Kalyani, Department of Zoology, Nadia, W. Bengal, 741235, India
| |
Collapse
|
2
|
Krishnan SR, Roy A, Gromiha MM. Reliable method for predicting the binding affinity of RNA-small molecule interactions using machine learning. Brief Bioinform 2024; 25:bbae002. [PMID: 38261341 PMCID: PMC10805179 DOI: 10.1093/bib/bbae002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Ribonucleic acids (RNAs) play important roles in cellular regulation. Consequently, dysregulation of both coding and non-coding RNAs has been implicated in several disease conditions in the human body. In this regard, a growing interest has been observed to probe into the potential of RNAs to act as drug targets in disease conditions. To accelerate this search for disease-associated novel RNA targets and their small molecular inhibitors, machine learning models for binding affinity prediction were developed specific to six RNA subtypes namely, aptamers, miRNAs, repeats, ribosomal RNAs, riboswitches and viral RNAs. We found that differences in RNA sequence composition, flexibility and polar nature of RNA-binding ligands are important for predicting the binding affinity. Our method showed an average Pearson correlation (r) of 0.83 and a mean absolute error of 0.66 upon evaluation using the jack-knife test, indicating their reliability despite the low amount of data available for several RNA subtypes. Further, the models were validated with external blind test datasets, which outperform other existing quantitative structure-activity relationship (QSAR) models. We have developed a web server to host the models, RNA-Small molecule binding Affinity Predictor, which is freely available at: https://web.iitm.ac.in/bioinfo2/RSAPred/.
Collapse
Affiliation(s)
- Sowmya R Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - Arijit Roy
- TCS Research (Life Sciences division), Tata Consultancy Services, Hyderabad 500081, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Department of Computer Science, National University of Singapore, Singapore 117543
| |
Collapse
|
3
|
Singh K, Reddy G. Excited States of apo-Guanidine-III Riboswitch Contribute to Guanidinium Binding through Both Conformational and Induced-Fit Mechanisms. J Chem Theory Comput 2024; 20:421-435. [PMID: 38134376 DOI: 10.1021/acs.jctc.3c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Riboswitches are mRNA segments that regulate gene expression through conformational changes driven by their cognate ligand binding. The ykkC motif forms a riboswitch class that selectively senses a guanidinium ion (Gdm+) and regulates the downstream expression of proteins which aid in the efflux of excess Gdm+ from the cells. The aptamer domain (AD) of the guanidine-III riboswitch forms an H-type pseudoknot with a triple helical domain that binds a Gdm+. We studied the binding of Gdm+ to the AD of the guanidine (ykkC)-III riboswitch using computer simulations to probe the specificity of the riboswitch to Gdm+ binding. We show that Gdm+ binding is a fast process occurring on the nanosecond time scale, with minimal conformational changes to the AD. Using machine learning and Markov-state models, we identified the excited conformational states of the AD, which have a high Gdm+ binding propensity, making the Gdm+ binding landscape complex exhibiting both conformational selection and induced-fit mechanisms. The proposed apo-AD excited states and their role in the ligand-sensing mechanism are amenable to experimental verification. Further, targeting these excited-state conformations in discovering new antibiotics can be explored.
Collapse
Affiliation(s)
- Kushal Singh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 Karnataka, India
| |
Collapse
|
4
|
Acquah FA, Mooers BHM. Targeting RNA Structure to Inhibit Editing in Trypanosomes. Int J Mol Sci 2023; 24:10110. [PMID: 37373258 PMCID: PMC10298474 DOI: 10.3390/ijms241210110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondrial RNA editing in trypanosomes represents an attractive target for developing safer and more efficient drugs for treating infections with trypanosomes because this RNA editing pathway is not found in humans. Other workers have targeted several enzymes in this editing system, but not the RNA. Here, we target a universal domain of the RNA editing substrate, which is the U-helix formed between the oligo-U tail of the guide RNA and the target mRNA. We selected a part of the U-helix that is rich in G-U wobble base pairs as the target site for the virtual screening of 262,000 compounds. After chemoinformatic filtering of the top 5000 leads, we subjected 50 representative complexes to 50 nanoseconds of molecular dynamics simulations. We identified 15 compounds that retained stable interactions in the deep groove of the U-helix. The microscale thermophoresis binding experiments on these five compounds show low-micromolar to nanomolar binding affinities. The UV melting studies show an increase in the melting temperatures of the U-helix upon binding by each compound. These five compounds can serve as leads for drug development and as research tools to probe the role of the RNA structure in trypanosomal RNA editing.
Collapse
Affiliation(s)
- Francis A. Acquah
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Blaine H. M. Mooers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Laboratory of Biomolecular Structure and Function, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Pavan M, Bassani D, Sturlese M, Moro S. Investigating RNA-protein recognition mechanisms through supervised molecular dynamics (SuMD) simulations. NAR Genom Bioinform 2022; 4:lqac088. [PMID: 36458023 PMCID: PMC9706429 DOI: 10.1093/nargab/lqac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Ribonucleic acid (RNA) plays a key regulatory role within the cell, cooperating with proteins to control the genome expression and several biological processes. Due to its characteristic structural features, this polymer can mold itself into different three-dimensional structures able to recognize target biomolecules with high affinity and specificity, thereby attracting the interest of drug developers and medicinal chemists. One successful example of the exploitation of RNA's structural and functional peculiarities is represented by aptamers, a class of therapeutic and diagnostic tools that can recognize and tightly bind several pharmaceutically relevant targets, ranging from small molecules to proteins, making use of the available structural and conformational freedom to maximize the complementarity with their interacting counterparts. In this scientific work, we present the first application of Supervised Molecular Dynamics (SuMD), an enhanced sampling Molecular Dynamics-based method for the study of receptor-ligand association processes in the nanoseconds timescale, to the study of recognition pathways between RNA aptamers and proteins, elucidating the main advantages and limitations of the technique while discussing its possible role in the rational design of RNA-based therapeutics.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- To whom correspondence should be addressed. Tel: +39 0498275704; Fax: +39 0498275366;
| |
Collapse
|
6
|
Obszynski J, Loidon H, Blanc A, Weibel JM, Pale P. Targeted modifications of neomycin and paromomycin: Towards resistance-free antibiotics? Bioorg Chem 2022; 126:105824. [DOI: 10.1016/j.bioorg.2022.105824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 04/10/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
|
7
|
Ganser LR, Chu CC, Bogerd HP, Kelly ML, Cullen BR, Al-Hashimi HM. Probing RNA Conformational Equilibria within the Functional Cellular Context. Cell Rep 2021; 30:2472-2480.e4. [PMID: 32101729 DOI: 10.1016/j.celrep.2020.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Low-abundance short-lived non-native conformations referred to as excited states (ESs) are increasingly observed in vitro and implicated in the folding and biological activities of regulatory RNAs. We developed an approach for assessing the relative abundance of RNA ESs within the functional cellular context. Nuclear magnetic resonance (NMR) spectroscopy was used to estimate the degree to which substitution mutations bias conformational equilibria toward the inactive ES in vitro. The cellular activity of the ES-stabilizing mutants was used as an indirect measure of the conformational equilibria within the functional cellular context. Compensatory mutations that restore the ground-state conformation were used to control for changes in sequence. Using this approach, we show that the ESs of two regulatory RNAs from HIV-1, the transactivation response element (TAR) and the Rev response element (RRE), likely form in cells with abundances comparable to those measured in vitro, and their targeted stabilization may provide an avenue for developing anti-HIV therapeutics.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Armstrong I, Aldhumani AH, Schopis JL, Fang F, Parsons E, Zeng C, Hossain MI, Bergmeier SC, Hines JV. RNA drug discovery: Conformational restriction enhances specific modulation of the T-box riboswitch function. Bioorg Med Chem 2020; 28:115696. [PMID: 33069065 DOI: 10.1016/j.bmc.2020.115696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Antibacterial drug resistance is a global health concern that requires multiple solution approaches including development of new antibacterial compounds acting at novel targets. Targeting regulatory RNA is an emerging area of drug discovery. The T-box riboswitch is a regulatory RNA mechanism that controls gene expression in Gram-positive bacteria and is an exceptional, novel target for antibacterial drug design. We report the design, synthesis and activity of a series of conformationally restricted oxazolidinone-triazole compounds targeting the highly conserved antiterminator RNA element of the T-box riboswitch. Computational binding energies correlated with experimentally-derived Kd values indicating the predictive capabilities for docking studies within this series of compounds. The conformationally restricted compounds specifically inhibited T-box riboswitch function and not overall transcription. Complex disruption, computational docking and RNA binding specificity data indicate that inhibition may result from ligand binding to an allosteric site. These results highlight the importance of both ligand affinity and RNA conformational outcome for targeted RNA drug design.
Collapse
Affiliation(s)
- Ian Armstrong
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Ali H Aldhumani
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Jia L Schopis
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Fang Fang
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Eric Parsons
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Chunxi Zeng
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| | - Md Ismail Hossain
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA
| | - Stephen C Bergmeier
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Edison Biotechnology Institute, Konneker Laboratories, Ohio University, Athens, OH 45701, USA
| | - Jennifer V Hines
- Department of Chemistry & Biochemistry, Clippinger Laboratory, Ohio University, Athens, OH 45701, USA; Molecular & Cellular Biology Program, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
9
|
Identification of RNA-Binding Proteins as Targetable Putative Oncogenes in Neuroblastoma. Int J Mol Sci 2020; 21:ijms21145098. [PMID: 32707690 PMCID: PMC7403987 DOI: 10.3390/ijms21145098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a common childhood cancer with almost a third of those affected still dying, thus new therapeutic strategies need to be explored. Current experimental therapies focus mostly on inhibiting oncogenic transcription factor signalling. Although LIN28B, DICER and other RNA-binding proteins (RBPs) have reported roles in neuroblastoma development and patient outcome, the role of RBPs in neuroblastoma is relatively unstudied. In order to elucidate novel RBPs involved in MYCN-amplified and other high-risk neuroblastoma subtypes, we performed differential mRNA expression analysis of RBPs in a large primary tumour cohort (n = 498). Additionally, we found via Kaplan–Meier scanning analysis that 685 of the 1483 tested RBPs have prognostic value in neuroblastoma. For the top putative oncogenic candidates, we analysed their expression in neuroblastoma cell lines, as well as summarised their characteristics and existence of chemical inhibitors. Moreover, to help explain their association with neuroblastoma subtypes, we reviewed candidate RBPs’ potential as biomarkers, and their mechanistic roles in neuronal and cancer contexts. We found several highly significant RBPs including RPL22L1, RNASEH2A, PTRH2, MRPL11 and AFF2, which remain uncharacterised in neuroblastoma. Although not all RBPs appear suitable for drug design, or carry prognostic significance, we show that several RBPs have strong rationale for inhibition and mechanistic studies, representing an alternative, but nonetheless promising therapeutic strategy in neuroblastoma treatment.
Collapse
|
10
|
Botti V, Urbanelli L, Sagini K, Tarpani L, Cesaretti A, Fortuna CG, Elisei F. Quaternized styryl-azinium fluorophores as cellular RNA-binders. Photochem Photobiol Sci 2020; 19:362-370. [PMID: 32147676 DOI: 10.1039/c9pp00465c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The capability of three quaternized styryl-azinium iodides to bind cellular RNA has been tested by means of Fluorescence Confocal Microscopy imaging of stained MCF-7 cells treated with RNase. Their association constants have been estimated through spectrophotometric and fluorimetric titrations with tRNA and compared to their affinity toward DNA. Transient absorption spectroscopy with femtosecond resolution confirmed the binding of the investigated compounds with tRNA and shed new light on the excited state dynamics of their complexes, by revealing a significant lengthening of the lifetime of S1 upon complexation, which parallels the fluorescence quantum yield enhancement.
Collapse
Affiliation(s)
- Valentina Botti
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, 06126, Perugia, Italy
| | - Krizia Sagini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, 06126, Perugia, Italy
| | - Luigi Tarpani
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Cosimo G Fortuna
- Department of Chemical Sciences, University of Catania, viale Andrea Doria 6, 95125, Catania, Italy
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and Center of Excellence on Innovative Nanostructured Materials (CEMIN), University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| |
Collapse
|
11
|
Bissaro M, Sturlese M, Moro S. Exploring the RNA-Recognition Mechanism Using Supervised Molecular Dynamics (SuMD) Simulations: Toward a Rational Design for Ribonucleic-Targeting Molecules? Front Chem 2020; 8:107. [PMID: 32175307 PMCID: PMC7057144 DOI: 10.3389/fchem.2020.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 11/30/2022] Open
Abstract
Although proteins have represented the molecular target of choice in the development of new drug candidates, the pharmaceutical importance of ribonucleic acids has gradually been growing. The increasing availability of structural information has brought to light the existence of peculiar three-dimensional RNA arrangements, which can, contrary to initial expectations, be recognized and selectively modulated through small chemical entities or peptides. The application of classical computational methodologies, such as molecular docking, for the rational development of RNA-binding candidates is, however, complicated by the peculiarities characterizing these macromolecules, such as the marked conformational flexibility, the singular charges distribution, and the relevant role of solvent molecules. In this work, we have thus validated and extended the applicability domain of SuMD, an all-atoms molecular dynamics protocol that allows to accelerate the sampling of molecular recognition events on a nanosecond timescale, to ribonucleotide targets of pharmaceutical interest. In particular, we have proven the methodological ability by reproducing the binding mode of viral or prokaryotic ribonucleic complexes, as well as that of artificially engineered aptamers, with an impressive degree of accuracy.
Collapse
Affiliation(s)
- Maicol Bissaro
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Mattia Sturlese
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Stefano Moro
- Molecular Modeling Section, Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
12
|
Nuthanakanti A, Ahmed I, Khatik SY, Saikrishnan K, Srivatsan SG. Probing G-quadruplex topologies and recognition concurrently in real time and 3D using a dual-app nucleoside probe. Nucleic Acids Res 2020; 47:6059-6072. [PMID: 31106340 PMCID: PMC6614846 DOI: 10.1093/nar/gkz419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
Comprehensive understanding of structure and recognition properties of regulatory nucleic acid elements in real time and atomic level is highly important to devise efficient therapeutic strategies. Here, we report the establishment of an innovative biophysical platform using a dual-app nucleoside analog, which serves as a common probe to detect and correlate different GQ structures and ligand binding under equilibrium conditions and in 3D by fluorescence and X-ray crystallography techniques. The probe (SedU) is composed of a microenvironment-sensitive fluorophore and an excellent anomalous X-ray scatterer (Se), which is assembled by attaching a selenophene ring at 5-position of 2'-deoxyuridine. SedU incorporated into the loop region of human telomeric DNA repeat fluorescently distinguished subtle differences in GQ topologies and enabled quantify ligand binding to different topologies. Importantly, anomalous X-ray dispersion signal from Se could be used to determine the structure of GQs. As the probe is minimally perturbing, a direct comparison of fluorescence data and crystal structures provided structural insights on how the probe senses different GQ conformations without affecting the native fold. Taken together, our dual-app probe represents a new class of tool that opens up new experimental strategies to concurrently investigate nucleic acid structure and recognition in real time and 3D.
Collapse
Affiliation(s)
- Ashok Nuthanakanti
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Ishtiyaq Ahmed
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Saddam Y Khatik
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
- Correspondence may also be addressed to Kayarat Saikrishnan.
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
- To whom correspondence should be addressed. Tel: +91 2025908086;
| |
Collapse
|
13
|
Ganser LR, Kelly ML, Patwardhan NN, Hargrove AE, Al-Hashimi HM. Demonstration that Small Molecules can Bind and Stabilize Low-abundance Short-lived RNA Excited Conformational States. J Mol Biol 2019; 432:1297-1304. [PMID: 31863746 DOI: 10.1016/j.jmb.2019.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/23/2019] [Accepted: 12/04/2019] [Indexed: 11/26/2022]
Abstract
Many promising RNA drug targets have functions that require the formation of RNA-protein complexes, but inhibiting RNA-protein interactions can prove difficult using small molecules. Regulatory RNAs have been shown to transiently form excited conformational states (ESs) that remodel local aspects of secondary structure. In some cases, the ES conformation has been shown to be inactive and to be poorly recognized by protein binding partners. In these cases, specifically targeting and stabilizing the RNA ES using a small molecule provides a rational structure-based strategy for inhibiting RNA activity. However, this requires that a small molecule discriminates between two conformations of the same RNA to preferentially bind and stabilize the short-lived low-abundance ES relative to the long-lived more abundant ground state (GS). Here, we tested the feasibility of this approach by designing a mutant that inverts the conformational equilibrium of the HIV-1 transactivation response element (TAR) RNA, such that the native GS conformation becomes a low-abundance ES. Using this mutant and NMR chemical shift mapping experiments, we show that argininamide, a ligand mimic of TAR's cognate protein binding partner Tat, is able to restore a native-like conformation by preferentially binding and stabilizing the transient and low-populated ES. A synthetic small molecule optimized to bind the TAR GS also partially stabilized the ES, whereas an aminoglycoside molecule that binds RNAs nonspecifically did not preferentially stabilize the ES to a similar extent. These results support the feasibility of inhibiting RNA activity using small molecules that preferentially bind and stabilize the ES.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | | | - Amanda E Hargrove
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA; Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Ganguly A, Das S. Compaction-induced strengthening of intercalation within RNA double helices at high ionic strength of the medium: Spectral elucidation and anomalous thermodynamics. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Basu A, Suresh Kumar G. Interaction of proflavine with the RNA polynucleotide polyriboadenylic acid-polyribouridylic acid: photophysical and calorimetric studies. J Biomol Struct Dyn 2019; 38:1590-1597. [PMID: 31057051 DOI: 10.1080/07391102.2019.1615001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The binding of proflavine, an acriflavine derivative, with the RNA polynucletodide polyadenylic acid-polyuridylic acid is investigated here to understand the structural and thermodynamic basis of the binding process. Such binding data are crucial for designing viable theraperutic agents. Spectroscopic studies clearly suggest a strong binding interaction between proflavine and polyadenylic acid-polyuridylic acid leading to efficient energy transfer between the poly AU base pairs and proflavine. The stoichiometry of proflavine polyadenylic acid-polyuridylic acid binding was independently estimated by continuous variation analysis of Job. An intercalative binding model is envisaged for the binding from hydrodynamic studies. Circular dichroism experiments revealed that the binding induced conformational changes in the RNA, and also led to induction of optical activity in the bound dye molecules. The binding affinity of the complex was deduced to be (6.57 ± 0.75) 105 M-1 at (298.15 ± 0.10) K from isothermal titration calorimetry experiment. Positive entropy and negative enthalpy changes characterized the complexation. The binding was observed to be weaker both at higher temperatures and increased [Na+]. The affinity of binding decreased with increasing [Na+]. When the Gibbs energy was parsed between polyelectrolytic and nonpolyelectropytic components, it surprisingly revealed a higher role for the non-polyelectrolytic forces. These results present new data for developing RNA targeted ligands.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anirban Basu
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.,Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
16
|
Umuhire Juru A, Patwardhan NN, Hargrove AE. Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNA-Small Molecule Interactions. ACS Chem Biol 2019; 14:824-838. [PMID: 31042354 DOI: 10.1021/acschembio.8b00945] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The implication of RNA in multiple cellular processes beyond protein coding has revitalized interest in the development of small molecules for therapeutically targeting RNA and for further probing its cellular biology. However, the process of rationally designing such small molecule probes is hampered by the paucity of information about fundamental molecular recognition principles of RNA. In this Review, we summarize two important and often underappreciated aspects of RNA-small molecule recognition: RNA conformational dynamics and the biophysical properties of interactions of small molecules with RNA, specifically thermodynamics and kinetics. While conformational flexibility is often said to impede RNA ligand development, the ability of small molecules to influence the RNA conformational landscape can have a significant effect on the cellular functions of RNA. An analysis of the conformational landscape of RNA and the interactions of individual conformations with ligands can thus guide the development of new small molecule probes, which needs to be investigated further. Additionally, while it is common practice to quantify the binding affinities ( Ka or Kd) of small molecules for biomacromolecules as a measure of their activity, further biophysical characterization of their interaction can provide a deeper understanding. Studies that focus on the thermodynamic and kinetic parameters for interaction between RNA and ligands are next discussed. Finally, this Review provides the reader with a perspective on how such in-depth analysis of biophysical characteristics of the interaction of RNA and small molecules can impact our understanding of these interactions and how they will benefit the future design of small molecule probes.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Neeraj N. Patwardhan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Amanda E. Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Unveiling the druggable RNA targets and small molecule therapeutics. Bioorg Med Chem 2019; 27:2149-2165. [PMID: 30981606 PMCID: PMC7126819 DOI: 10.1016/j.bmc.2019.03.057] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
The increasing appreciation for the crucial roles of RNAs in infectious and non-infectious human diseases makes them attractive therapeutic targets. Coding and non-coding RNAs frequently fold into complex conformations which, if effectively targeted, offer opportunities to therapeutically modulate numerous cellular processes, including those linked to undruggable protein targets. Despite the considerable skepticism as to whether RNAs can be targeted with small molecule therapeutics, overwhelming evidence suggests the challenges we are currently facing are not outside the realm of possibility. In this review, we highlight the most recent advances in molecular techniques that have sparked a revolution in understanding the RNA structure-to-function relationship. We bring attention to the application of these modern techniques to identify druggable RNA targets and to assess small molecule binding specificity. Finally, we discuss novel screening methodologies that support RNA drug discovery and present examples of therapeutically valuable RNA targets.
Collapse
|
18
|
Binding of norharmane with RNA reveals two thermodynamically different binding modes with opposing heat capacity changes. J Colloid Interface Sci 2019; 538:587-596. [DOI: 10.1016/j.jcis.2018.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 02/01/2023]
|
19
|
Eubanks CS, Hargrove AE. RNA Structural Differentiation: Opportunities with Pattern Recognition. Biochemistry 2018; 58:199-213. [PMID: 30513196 DOI: 10.1021/acs.biochem.8b01090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Our awareness and appreciation of the many regulatory roles of RNA have dramatically increased in the past decade. This understanding, in addition to the impact of RNA in many disease states, has renewed interest in developing selective RNA-targeted small molecule probes. However, the fundamental guiding principles in RNA molecular recognition that could accelerate these efforts remain elusive. While high-resolution structural characterization can provide invaluable insight, examples of well-characterized RNA structures, not to mention small molecule:RNA complexes, remain limited. This Perspective provides an overview of the current techniques used to understand RNA molecular recognition when high-resolution structural information is unavailable. We will place particular emphasis on a new method, pattern recognition of RNA with small molecules (PRRSM), that provides rapid insight into critical components of RNA recognition and differentiation by small molecules as well as into RNA structural features.
Collapse
Affiliation(s)
- Christopher S Eubanks
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| | - Amanda E Hargrove
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0354 , United States
| |
Collapse
|
20
|
Chen YL, Lee T, Elber R, Pollack L. Conformations of an RNA Helix-Junction-Helix Construct Revealed by SAXS Refinement of MD Simulations. Biophys J 2018; 116:19-30. [PMID: 30558889 DOI: 10.1016/j.bpj.2018.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022] Open
Abstract
RNA is involved in a broad range of biological processes that extend far beyond translation. Many of RNA's recently discovered functions rely on folding to a specific conformation or transitioning between conformations. The RNA structure contains rigid, short basepaired regions connected by more flexible linkers. Studies of model constructs such as small helix-junction-helix (HJH) motifs are useful in understanding how these elements work together to determine RNA conformation. Here, we reveal the full ensemble of solution structures assumed by a model RNA HJH. We apply small-angle x-ray scattering and an ensemble optimization method to selectively refine models generated by all-atom molecular dynamics simulations. The expectation of a broad distribution of helix orientations, at and above physiological ionic strength, is not met. Instead, this analysis shows that the HJH structures are dominated by two distinct conformations at moderate to high ionic strength. Atomic structures, selected from the molecular dynamics simulations, reveal strong base-base interactions in the junction that critically constrain the conformational space available to the HJH molecule and lead to a surprising re-extension at high salt. These results are corroborated by comparison with previous single-molecule fluorescence resonance energy transfer experiments on the same constructs.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York
| | - Tongsik Lee
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas
| | - Ron Elber
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas; Institute of Computational Sciences and Engineering, University of Texas at Austin, Austin, Texas
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York.
| |
Collapse
|
21
|
Krüger DM, Neubacher S, Grossmann TN. Protein-RNA interactions: structural characteristics and hotspot amino acids. RNA (NEW YORK, N.Y.) 2018; 24:1457-1465. [PMID: 30093489 PMCID: PMC6191724 DOI: 10.1261/rna.066464.118] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/06/2018] [Indexed: 06/01/2023]
Abstract
Structural information about protein-RNA complexes supports the understanding of crucial recognition processes in the cell, and it can allow the development of high affinity ligands to interfere with these processes. In this respect, the identification of amino acid hotspots is particularly important. In contrast to protein-protein interactions, in silico approaches for protein-RNA interactions lag behind in their development. Herein, we report an analysis of available protein-RNA structures. We assembled a data set of 322 crystal and NMR structures and analyzed them regarding interface properties. In addition, we describe a computational alanine-scanning approach which provides interaction scores for interface amino acids, allowing the identification of potential hotspots in protein-RNA interfaces. We have made the computational approach available as an online tool, which allows interaction scores to be calculated for any structure of a protein-RNA complex by uploading atomic coordinates to the PRI HotScore web server (https://pri-hotscore.labs.vu.nl).
Collapse
Affiliation(s)
- Dennis M Krüger
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
| | - Saskia Neubacher
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Tom N Grossmann
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Rajan D, Ilanchelian M. Exploring the interaction of Azure dyes with t-RNA by hybrid spectroscopic and computational approaches and its applications toward human lung cancer cell line. Int J Biol Macromol 2018; 113:1052-1061. [DOI: 10.1016/j.ijbiomac.2018.02.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 02/06/2018] [Accepted: 02/28/2018] [Indexed: 11/26/2022]
|
23
|
Clay MC, Ganser LR, Merriman DK, Al-Hashimi HM. Resolving sugar puckers in RNA excited states exposes slow modes of repuckering dynamics. Nucleic Acids Res 2017; 45:e134. [PMID: 28609788 PMCID: PMC5737546 DOI: 10.1093/nar/gkx525] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 11/15/2022] Open
Abstract
Recent studies have shown that RNAs exist in dynamic equilibrium with short-lived low-abundance 'excited states' that form by reshuffling base pairs in and around non-canonical motifs. These conformational states are proposed to be rich in non-canonical motifs and to play roles in the folding and regulatory functions of non-coding RNAs but their structure proves difficult to characterize given their transient nature. Here, we describe an approach for determining sugar pucker conformation in RNA excited states through nuclear magnetic resonance measurements of C1΄ and C4΄ rotating frame spin relaxation (R1ρ) in uniformly 13C/15N labeled RNA samples. Application to HIV-1 TAR exposed slow modes of sugar repuckering dynamics at the μs and ms timescale accompanying transitions between non-helical (C2΄-endo) to helical (C3΄-endo) conformations during formation of two distinct excited states. In contrast, we did not obtain any evidence for slow sugar repuckering dynamics for nucleotides in a variety of structural contexts that do not undergo non-helical to helical transitions. Our results outline a route for significantly improving the conformational characterization of RNA excited states and suggest that slow modes of repuckering dynamics gated by transient changes in secondary structure are quite common in RNA.
Collapse
Affiliation(s)
- Mary C. Clay
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Laura R. Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| |
Collapse
|
24
|
Sbicca L, González AL, Gresika A, Di Giorgio A, Closa JT, Tejedor RE, Andréola ML, Azoulay S, Patino N. Exploring the impact of the side-chain length on peptide/RNA binding events. Phys Chem Chem Phys 2017; 19:18452-18460. [PMID: 28681892 DOI: 10.1039/c7cp03726k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (KD) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.
Collapse
Affiliation(s)
- Lola Sbicca
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, 06108 Nice, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Aminoglycoside antibiotics are protein synthesis inhibitors applied to treat infections caused mainly by aerobic Gram-negative bacteria. Due to their adverse side effects they are last resort antibiotics typically used to combat pathogens resistant to other drugs. Aminoglycosides target ribosomes. We describe the interactions of aminoglycoside antibiotics containing a 2-deoxystreptamine (2-DOS) ring with 16S rRNA. We review the computational studies, with a focus on molecular dynamics (MD) simulations performed on RNA models mimicking the 2-DOS aminoglycoside binding site in the small ribosomal subunit. We also briefly discuss thermodynamics of interactions of these aminoglycosides with their 16S RNA target.
Collapse
|
26
|
Patwardhan NN, Ganser LR, Kapral GJ, Eubanks CS, Lee J, Sathyamoorthy B, Al-Hashimi HM, Hargrove AE. Amiloride as a new RNA-binding scaffold with activity against HIV-1 TAR. MEDCHEMCOMM 2017; 8:1022-1036. [PMID: 28798862 PMCID: PMC5546750 DOI: 10.1039/c6md00729e] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/14/2017] [Indexed: 12/23/2022]
Abstract
Diversification of RNA-targeted scaffolds offers great promise in the search for selective ligands of therapeutically relevant RNA such as HIV-1 TAR. We herein report the establishment of amiloride as a novel RNA-binding scaffold along with synthetic routes for combinatorial C(5)- and C(6)-diversification. Iterative modifications at the C(5)- and C(6)- positions yielded derivative 24, which demonstrated a 100-fold increase in activity over the parent dimethylamiloride in peptide displacement assays. NMR chemical shift mapping was performed using the 2D SOFAST- [1H-13C] HMQC NMR method, which allowed for facile and rapid evaluation of binding modes for all library members. Cheminformatic analysis revealed distinct differences between selective and non-selective ligands. In this study, we evolved dimethylamiloride from a weak TAR ligand to one of the tightest binding selective TAR ligands reported to date through a novel combination of synthetic methods and analytical techniques. We expect these methods to allow for rapid library expansion and tuning of the amiloride scaffold for a range of RNA targets and for SOFAST NMR to allow unprecedented evaluation of small molecule:RNA interactions.
Collapse
Affiliation(s)
- Neeraj N. Patwardhan
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Laura R. Ganser
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Gary J. Kapral
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Christopher S. Eubanks
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
| | - Janghyun Lee
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Bharathwaj Sathyamoorthy
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Hashim M. Al-Hashimi
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| | - Amanda E. Hargrove
- Department of Chemistry
, Duke University
,
Durham
, North Carolina 27708
, USA
.
; Tel: +1 919 660 1522
- Department of Biochemistry
, Duke University Medical Center
,
Durham
, North Carolina 27708
, USA
| |
Collapse
|
27
|
Structure-Based Discovery of Small Molecules Binding to RNA. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2016_29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Agarwal S, Tyagi G, Chadha D, Mehrotra R. Structural-conformational aspects of tRNA complexation with chloroethyl nitrosourea derivatives: A molecular modeling and spectroscopic investigation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:1-11. [PMID: 27838504 DOI: 10.1016/j.jphotobiol.2016.09.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022]
Abstract
Chloroethyl nitrosourea derivatives (CENUs) represent an important family of anticancer chemotherapeutic agents, which are used in the treatment of different types of cancer such as brain tumors, resistant or relapsed Hodgkin's disease, small cell lung cancer and malignant melanoma. This work focuses towards understanding the interaction of chloroethyl nitrosourea derivatives; lomustine, nimustine and semustine with tRNA using spectroscopic approach in order to elucidate their auxiliary anticancer action mechanism inside the cell. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Fourier transform infrared difference spectroscopy, circular dichroism spectroscopy and UV-visible spectroscopy were employed to investigate the binding parameters of tRNA-CENUs complexation. Results of present study demonstrate that all CENUs, studied here, interact with tRNA through guanine nitrogenous base residues and possibly further crosslink cytosine residues in paired region of tRNA. Moreover, spectral data collected for nimustine-tRNA and semustine-tRNA complex formation indicates towards the groove-directed-alkylation as their anti-malignant action, which involves the participation of uracil moiety located in major groove of tRNA. Besides this, tRNA-CENUs adduct formation did not alter the native conformation of biopolymer and tRNA remains in A-form after its interaction with all three nitrosourea derivatives studied. The binding constants (Ka) estimated for tRNA complexation with lomustine, nimustine and semustine are 2.55×102M-1, 4.923×102M-1 and 4.223×102M-1 respectively, which specify weak type of CENU's binding with tRNA. Moreover, molecular modeling simulations were also performed to predict preferential binding orientation of CENUs with tRNA that corroborates well with spectral outcomes. The findings, presented here, recognize tRNA binding properties of CENUs that can further help in rational designing of more specific and efficient RNA targeted chemotherapeutic agents.
Collapse
Affiliation(s)
- Shweta Agarwal
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Gunjan Tyagi
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Deepti Chadha
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Ranjana Mehrotra
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India; Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India.
| |
Collapse
|
29
|
Kabir A, Dutta D, Mandal C, Suresh Kumar G. Molecular Recognition of tRNA with 1-Naphthyl Acetyl Spermine, Spermine, and Spermidine: A Thermodynamic, Biophysical, and Molecular Docking Investigative Approach. J Phys Chem B 2016; 120:10871-10884. [PMID: 27690446 DOI: 10.1021/acs.jpcb.6b05391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of tRNA in protein translational machinery and the influence of polyamines on the interaction of acylated and deacylated tRNA with ribosomes make polyamine-tRNA interaction conspicuous. We studied the interaction of two biogenic polyamines, spermine (SPM) and spermidine (SPD), with tRNAPhe and compared the results to those of the analogue 1-naphthyl acetyl spermine (NASPM). The binding affinity of SPM was comparable to that of NASPM; both were higher than that of SPD. The interactions led to significant thermal stabilization of tRNAPhe and an increase in the enthalpy of transition. All the interactions were exothermic in nature and displayed prominent enthalpy-entropy compensation behavior. The entropy-driven nature of the interaction, the structural perturbations observed, and docking results proved that the polyamines were bound in the groove of the anticodon arm of tRNAPhe. The amine groups of polyamines were involved in extensive electrostatic, H-bonding, and van der Waals interactions with tRNAPhe. The naphthyl group of NASPM showed an additional stacking interaction with G24 and G26 of tRNAPhe, which was absent in others. The results demonstrate that 1-naphthyl acetyl spermine can target the same binding sites as the biogenic polyamines without substituting for the functions played by them, which may lead to exhibition of selective anticancer cytotoxicity.
Collapse
Affiliation(s)
| | | | - Chhabinath Mandal
- National Institute of Pharmaceutical and Educational Research , Kolkata 700032, India
| | | |
Collapse
|
30
|
Ray B, Agarwal S, Kadian H, Gambhir K, Sharma P, Mehrotra R. Deciphering molecular aspects of interaction between anticancer drug mitoxantrone and tRNA. J Biomol Struct Dyn 2016; 35:2090-2102. [DOI: 10.1080/07391102.2016.1213185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bhumika Ray
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Shweta Agarwal
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Heena Kadian
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Kaweri Gambhir
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Parag Sharma
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - Ranjana Mehrotra
- Academy of Scientific & Innovative Research (AcSIR), CSIR-National Physical Laboratory Campus, New Delhi 110012, India
- Quantum Phenomena and Applications, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| |
Collapse
|
31
|
Merriman DK, Xue Y, Yang S, Kimsey IJ, Shakya A, Clay M, Al-Hashimi HM. Shortening the HIV-1 TAR RNA Bulge by a Single Nucleotide Preserves Motional Modes over a Broad Range of Time Scales. Biochemistry 2016; 55:4445-56. [PMID: 27232530 DOI: 10.1021/acs.biochem.6b00285] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helix-junction-helix (HJH) motifs are flexible building blocks of RNA architecture that help define the orientation and dynamics of helical domains. They are also frequently involved in adaptive recognition of proteins and small molecules and in the formation of tertiary contacts. Here, we use a battery of nuclear magnetic resonance techniques to examine how deleting a single bulge residue (C24) from the human immunodeficiency virus type 1 (HIV-1) transactivation response element (TAR) trinucleotide bulge (U23-C24-U25) affects dynamics over a broad range of time scales. Shortening the bulge has an effect on picosecond-to-nanosecond interhelical and local bulge dynamics similar to that casued by increasing the Mg(2+) and Na(+) concentration, whereby a preexisting two-state equilibrium in TAR is shifted away from a bent flexible conformation toward a coaxial conformation, in which all three bulge residues are flipped out and flexible. Surprisingly, the point deletion minimally affects microsecond-to-millisecond conformational exchange directed toward two low-populated and short-lived excited conformational states that form through reshuffling of bases pairs throughout TAR. The mutant does, however, adopt a slightly different excited conformational state on the millisecond time scale, in which U23 is intrahelical, mimicking the expected conformation of residue C24 in the excited conformational state of wild-type TAR. Thus, minor changes in HJH topology preserve motional modes in RNA occurring over the picosecond-to-millisecond time scales but alter the relative populations of the sampled states or cause subtle changes in their conformational features.
Collapse
Affiliation(s)
- Dawn K Merriman
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Yi Xue
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Shan Yang
- Baxter Health Care (Suzhou) Company, Ltd. , Suzhou, Jiang Su 215028, China
| | - Isaac J Kimsey
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Anisha Shakya
- Department of Chemistry and Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Mary Clay
- Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| | - Hashim M Al-Hashimi
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States.,Department of Biochemistry, Duke University Medical Center , Durham, North Carolina 27710, United States
| |
Collapse
|
32
|
Bhattacharjee P, Sarkar S, Pandya P, Bhadra K. Targeting different RNA motifs by beta carboline alkaloid, harmalol: a comparative photophysical, calorimetric, and molecular docking approach. J Biomol Struct Dyn 2016; 34:2722-2740. [DOI: 10.1080/07391102.2015.1126694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Wang M, Yu Y, Liang C, Lu A, Zhang G. Recent Advances in Developing Small Molecules Targeting Nucleic Acid. Int J Mol Sci 2016; 17:ijms17060779. [PMID: 27248995 PMCID: PMC4926330 DOI: 10.3390/ijms17060779] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/01/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022] Open
Abstract
Nucleic acids participate in a large number of biological processes. However, current approaches for small molecules targeting protein are incompatible with nucleic acids. On the other hand, the lack of crystallization of nucleic acid is the limiting factor for nucleic acid drug design. Because of the improvements in crystallization in recent years, a great many structures of nucleic acids have been reported, providing basic information for nucleic acid drug discovery. This review focuses on the discovery and development of small molecules targeting nucleic acids.
Collapse
Affiliation(s)
- Maolin Wang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Yuanyuan Yu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Chao Liang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
- Shenzhen Lab of Combinatorial Compounds and Targeted Drug Delivery, HKBU Institute of Research and Continuing Education, Shenzhen 518000, China.
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
34
|
Khilari R, Thakur Y, Pardhi M, Pande R. RNA-Binding Efficacy of N-Phenylbenzohydroxamic Acid: An Invitro and Insilico Approach. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:332-47. [PMID: 25874942 DOI: 10.1080/15257770.2014.1001073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RNA has attracted recent attention for its key role in gene expression and hence targeting by small molecules for therapeutic intervention. This study is aimed to elucidate the specificity of RNA binding affinity of parent compound of N-arylhydroxamic acids series, N-phenylbenzohydroxamic acid trivially named as PBHA,C6H5NOH.C6H5C˭O. The binding behavior was examined by various biophysical methods such as absorption, fluorescence, and viscosity measurements. Molecular docking was also done. The value of affinity constant and overall binding constant was calculated 5.79±0.03×10(4) M(-1) and K'=1.09±0.03×10(5) M(-1), respectively. The Stern-Volmer constant Ksv obtained was 2.28±0.04×10(4) M(-1). The compound (PBHA) shows a concentration-based enhancement of fluorescence intensity with increasing RNA concentration. Fluorescence quenching of PBHA-RNA complex in presence of K4 [Fe(CN)6] was also observed. Viscometric studies complimented the UV results where a continuous increase in relative viscosity of the RNA solution was observed with added optimal PBHA concentration. All the experimental evidences indicate that PBHA can strongly bind to RNA through an intercalative mode.
Collapse
Affiliation(s)
- Rubi Khilari
- a School of Studies in Chemistry, Pt. Ravishankar Shukla University , Raipur , Chhattisgarh , India
| | | | | | | |
Collapse
|
35
|
Leeder WM, Reuss AJ, Brecht M, Kratz K, Wachtveitl J, Göringer HU. Charge reduction and thermodynamic stabilization of substrate RNAs inhibit RNA editing. PLoS One 2015; 10:e0118940. [PMID: 25742417 PMCID: PMC4350841 DOI: 10.1371/journal.pone.0118940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 01/04/2023] Open
Abstract
African trypanosomes cause a parasitic disease known as sleeping sickness. Mitochondrial transcript maturation in these organisms requires a RNA editing reaction that is characterized by the insertion and deletion of U-nucleotides into otherwise non-functional mRNAs. Editing represents an ideal target for a parasite-specific therapeutic intervention since the reaction cycle is absent in the infected host. In addition, editing relies on a macromolecular protein complex, the editosome, that only exists in the parasite. Therefore, all attempts to search for editing interfering compounds have been focused on molecules that bind to proteins of the editing machinery. However, in analogy to other RNA-driven biochemical pathways it should be possible to stall the reaction by targeting its substrate RNAs. Here we demonstrate inhibition of editing by specific aminoglycosides. The molecules bind into the major groove of the gRNA/pre-mRNA editing substrates thereby causing a stabilization of the RNA molecules through charge compensation and an increase in stacking. The data shed light on mechanistic details of the editing process and identify critical parameters for the development of new trypanocidal compounds.
Collapse
Affiliation(s)
- W.-Matthias Leeder
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas J. Reuss
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Michael Brecht
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Katja Kratz
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - H. Ulrich Göringer
- Molecular Genetics, Darmstadt University of Technology, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
36
|
Basu P, Kumar GS. Structural and thermodynamic basis of interaction of the putative anticancer agent chelerythrine with single, double and triple-stranded RNAs. RSC Adv 2015. [DOI: 10.1039/c5ra00660k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Interaction of chl with poly(uau), poly(au) and poly(u).
Collapse
Affiliation(s)
- Pritha Basu
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory
- Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700 032
- India
| |
Collapse
|
37
|
Tyagi G, Agarwal S, Mehrotra R. tRNA binding with anti-cancer alkaloids–nature of interaction and comparison with DNA–alkaloids adducts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 142:250-6. [DOI: 10.1016/j.jphotobiol.2014.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/01/2014] [Accepted: 12/06/2014] [Indexed: 11/26/2022]
|
38
|
Kabir A, Suresh Kumar G. Targeting double-stranded RNA with spermine, 1-naphthylacetyl spermine and spermidine: a comparative biophysical investigation. J Phys Chem B 2014; 118:11050-64. [PMID: 25184857 DOI: 10.1021/jp5035294] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RNA targeting is an evolving new approach to anticancer therapeutics that requires identification of small molecules to selectively target specific RNA structures. In this report, the interaction of biogenic polyamines spermine, spermidine and the synthetic analogue 1-naphthylacetyl spermine with three double-stranded RNA polynucleotides--poly(I)·poly(C), poly(C)·poly(G), and poly(A)·poly(U)--has been described to understand the structural and thermodynamic basis of the binding and the comparative efficacy of the analogue over the natural polyamines. Circular dichroism spectroscopy, thermal melting experiments, and ethidium bromide displacement assay were used to characterize the interaction. Microcalorimetry studies were performed to deduce the energetics of the interaction and atomic force microscopy experiments done to gain insight into the interaction at the molecular level. The experiments demonstrated structural perturbations in the polynucleotides on binding of the polyamines. Thermal melting studies showed enhanced stabilization of RNA-polyamine complexes with increase in the total standard molar enthalpy of transition. The binding affinity was strongest for poly(I)·poly(C) as revealed by microcalorimetry results and varied as poly(I)·poly(C) > poly(C)·poly(G) > poly(A)·poly(U). The order of affinity for the polyamines was spermine >1-naphthylacetyl spermine > spermidine. Total enthalpy-entropy compensation and high standard molar heat capacity values characterized the interactions. The results of the study on the binding of polyamines to dsRNAs presented here have been compared to those reported earlier with dsDNAs. The present findings advance our knowledge on the mechanism of interaction of polyamines with RNA and may help in the search for analogues that can interfere with biogenic polyamine metabolism and function.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology , Kolkata 700 032, India
| | | |
Collapse
|
39
|
Abstract
Conformational changes in nucleic acids play a key role in the way genetic information is stored, transferred, and processed in living cells. Here, we describe new approaches that employ a broad range of experimental data, including NMR-derived chemical shifts and residual dipolar couplings, small-angle X-ray scattering, and computational approaches such as molecular dynamics simulations to determine ensembles of DNA and RNA at atomic resolution. We review the complementary information that can be obtained from diverse sets of data and the various methods that have been developed to combine these data with computational methods to construct ensembles and assess their uncertainty. We conclude by surveying RNA and DNA ensembles determined using these methods, highlighting the unique physical and functional insights obtained so far.
Collapse
Affiliation(s)
- Loïc Salmon
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan 48109;
| | | | | |
Collapse
|
40
|
Lee J, Vogt CE, McBrairty M, Al-Hashimi HM. Influence of dimethylsulfoxide on RNA structure and ligand binding. Anal Chem 2013; 85:9692-8. [PMID: 23987474 DOI: 10.1021/ac402038t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dimethyl sulfoxide (DMSO) is widely used as a cosolvent to solubilize hydrophobic compounds in RNA-ligand binding assays. Although it is known that high concentrations of DMSO (>75%) can significantly affect RNA structure and folding energetics, a thorough analysis of how lower concentrations (<10%) of DMSO typically used in binding assays affects RNA structure and ligand binding has not been undertaken. Here, we use NMR and 2-aminopurine fluorescence spectroscopy to examine how DMSO affects the structure, dynamics, and ligand binding properties of two flexible hairpin RNAs: the transactivation response element from HIV-1 and bacterial ribosomal A-site. In both cases, 5-10% DMSO decreased stacking interactions and increased local disorder in noncanonical residues within bulges and loops and resulted in 0.3-4-fold reduction in the measured binding affinities for different small molecules, with the greatest reduction observed for an intercalating compound that binds RNA nonspecifically. Our results suggest that, by competing for hydrophobic interactions, DMSO can have a small but significant effect on RNA structure and ligand binding. These effects should be considered when developing ligand binding assays and high throughput screens.
Collapse
Affiliation(s)
- Janghyun Lee
- Department of Chemistry and Biophysics, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
41
|
Das A, Kumar GS. Binding of the plant alkaloid aristololactam-β-d-glucoside and antitumor antibiotic daunomycin to single stranded polyribonucleotides. Biochim Biophys Acta Gen Subj 2013; 1830:4708-18. [PMID: 23769768 DOI: 10.1016/j.bbagen.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/24/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Interaction of the plant alkaloid aristololactam-β-d-glucoside and the antitumor drug daunomycin with single stranded RNAs poly(G), poly(I), poly(C) and poly(U) has been investigated. METHODS Biophysical techniques of absorption, fluorescence, competition dialysis, circular dichroism, and microcalorimetry have been used. RESULTS Absorption and fluorescence studies have revealed noncooperative binding of ADG and DAN to the single stranded RNAs. The binding affinity of ADG varied as poly(G) > poly(I) > > poly(C) > poly(U). The affinity of DAN was one order higher than that of ADG and varied as poly(G) > poly(I) > poly(U) > poly(C). This binding preference was further confirmed by competition dialysis assay. The thermodynamics of the binding was characterised to be favourable entropy and enthalpic terms but their contributions were different for different systems. The major non-polyelectrolytic contribution to the binding revealed from salt dependent data appears to be arising mostly from stacking of DAN and ADG molecules with the bases leading to partial intercalation to single stranded RNA structures. Small negative heat capacity values have been observed in all the four cases. CONCLUSIONS This study presents the comparative structural and thermodynamic profiles of the binding of aristololactam-β-d-glucoside and daunomycin to single stranded polyribonucleotides. GENERAL SIGNIFICANCE These results suggest strong, specific but differential binding of these drug molecules to the single stranded RNAs and highlight the role of their structural differences in the interaction profile.
Collapse
Affiliation(s)
- Abhi Das
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
42
|
Screening for inhibitors of the hepatitis C virus internal ribosome entry site RNA. Bioorg Med Chem 2013; 21:6139-44. [PMID: 23602522 DOI: 10.1016/j.bmc.2013.03.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023]
Abstract
The highly conserved internal ribosome entry site (IRES) of hepatitis C virus (HCV) regulates translation of the viral RNA genome and is essential for the expression of HCV proteins in infected host cells. The structured subdomain IIa of the IRES element is the target site of recently discovered benzimidazole inhibitors that selectively block viral translation through capture of an extended conformation of an RNA internal loop. Here, we describe the development of a FRET-based screening assay for similarly acting HCV translation inhibitors. The assay relies on monitoring fluorescence changes that indicate rearrangement of the RNA target conformation upon ligand binding. Screening of a small pilot set of potential RNA binders identified a benzoxazole scaffold as a ligand that bound selectively to IIa IRES target and was confirmed as an inhibitor of in vitro viral translation. The screening approach outlined here provides an efficient method to discover HCV translation inhibitors that may provide leads for the development of novel antiviral therapies directed at the highly conserved IRES RNA.
Collapse
|
43
|
Do TN, Carloni P, Varani G, Bussi G. RNA/Peptide Binding Driven by Electrostatics-Insight from Bidirectional Pulling Simulations. J Chem Theory Comput 2013; 9:1720-30. [PMID: 26587630 DOI: 10.1021/ct3009914] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA/protein interactions play crucial roles in controlling gene expression. They are becoming important targets for pharmaceutical applications. Due to RNA flexibility and to the strength of electrostatic interactions, standard docking methods are insufficient. We here present a computational method which allows studying the binding of RNA molecules and charged peptides with atomistic, explicit-solvent molecular dynamics. In our method, a suitable estimate of the electrostatic interaction is used as an order parameter (collective variable) which is then accelerated using bidirectional pulling simulations. Since the electrostatic interaction is only used to enhance the sampling, the approximations used to compute it do not affect the final accuracy. The method is employed to characterize the binding of TAR RNA from HIV-1 and a small cyclic peptide. Our simulation protocol allows blindly predicting the binding pocket and pose as well as the binding affinity. The method is general and could be applied to study other electrostatics-driven binding events.
Collapse
Affiliation(s)
- Trang N Do
- SISSA/ISAS - International School for Advanced Studies, Trieste 34136, Italy
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, D-52425 Jülich, Germany and Institute for Advanced Simulation IAS-5, Computational Biomedicine, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gabriele Varani
- Department of Chemistry and Department of Biochemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Giovanni Bussi
- SISSA/ISAS - International School for Advanced Studies, Trieste 34136, Italy
| |
Collapse
|
44
|
Jiménez-Moreno E, Gómez-Pinto I, Corzana F, Santana AG, Revuelta J, Bastida A, Jiménez-Barbero J, González C, Asensio JL. Chemical Interrogation of Drug/RNA Complexes: From Chemical Reactivity to Drug Design. Angew Chem Int Ed Engl 2013; 52:3148-51. [DOI: 10.1002/anie.201209434] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Indexed: 11/08/2022]
|
45
|
Jiménez-Moreno E, Gómez-Pinto I, Corzana F, Santana AG, Revuelta J, Bastida A, Jiménez-Barbero J, González C, Asensio JL. Chemical Interrogation of Drug/RNA Complexes: From Chemical Reactivity to Drug Design. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Blakeley BD, DePorter SM, Mohan U, Burai R, Tolbert BS, McNaughton BR. Methods for identifying and characterizing interactions involving RNA. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
47
|
Kumar GS. RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures. J Biosci 2012; 37:539-52. [DOI: 10.1007/s12038-012-9217-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Das A, Suresh Kumar G. Probing the binding of two sugar bearing anticancer agents aristololactam-β-(D)-glucoside and daunomycin to double stranded RNA polynucleotides: a combined spectroscopic and calorimetric study. MOLECULAR BIOSYSTEMS 2012; 8:1958-69. [PMID: 22596256 DOI: 10.1039/c2mb25080b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The plant alkaloid aristololactam-β-d-glucoside and the anticancer chemotherapy drug daunomycin are two sugar bearing DNA binding antibiotics. The binding of these molecules to three double stranded ribonucleic acids, poly(A)·poly(U), poly(I)·poly(C) and poly(C)·poly(G), was studied using various biophysical techniques. Absorbance and fluorescence studies revealed that these molecules bound non-cooperatively to these ds RNAs with the binding affinities of the order 10(6) for daunomycin and 10(5) M(-1) for aristololactam-β-d-glucoside. Fluorescence quenching and viscosity studies gave evidence for intercalative binding. The binding enhanced the melting temperature of poly(A)·poly(U) and poly(I)·poly(C) and the binding affinity values evaluated from the melting data were in agreement with that obtained from other techniques. Circular dichroism results suggested minor conformational perturbations of the RNA structures. The binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived from calorimetry were in agreement with that obtained from spectroscopic data. Daunomycin bound all the three RNAs stronger than aristololactam-β-d-glucoside and the binding affinity varied as poly(A)·poly(U) > poly(I)·poly(C) > poly(C)·poly(G). The temperature dependence of the enthalpy changes yielded negative values of heat capacity changes for the complexation suggesting substantial hydrophobic contribution to the binding process. Furthermore, an enthalpy-entropy compensation behavior was also seen in all systems. These results provide new insights into binding of these small molecule drugs to double stranded RNA sequences.
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India
| | | |
Collapse
|
49
|
Bothe JR, Nikolova EN, Eichhorn CD, Chugh J, Hansen AL, Al-Hashimi HM. Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy. Nat Methods 2011; 8:919-31. [PMID: 22036746 PMCID: PMC3320163 DOI: 10.1038/nmeth.1735] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many recently discovered noncoding RNAs do not fold into a single native conformation but sample many different conformations along their free-energy landscape to carry out their biological function. Here we review solution-state NMR techniques that measure the structural, kinetic and thermodynamic characteristics of RNA motions spanning picosecond to second timescales at atomic resolution, allowing unprecedented insights into the RNA dynamic structure landscape. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering.
Collapse
Affiliation(s)
- Jameson R. Bothe
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
| | - Evgenia N. Nikolova
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | - Catherine D. Eichhorn
- Chemical Biology Doctoral Program, The University of Michigan, Ann Arbor, Michigan, USA
| | - Jeetender Chugh
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| | - Alexandar L. Hansen
- Department of Chemistry, The University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, The University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | - Hashim M. Al-Hashimi
- Department of Chemistry, The University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Das A, Bhadra K, Suresh Kumar G. Targeting RNA by small molecules: comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA(phe). PLoS One 2011; 6:e23186. [PMID: 21858023 PMCID: PMC3156712 DOI: 10.1371/journal.pone.0023186] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Interaction of aristololactam-β-D-glucoside and daunomycin with tRNA(phe) was investigated using various biophysical techniques. METHODOLOGY/PRINCIPAL FINDINGS Absorption and fluorescence studies revealed that both the compounds bind tRNA(phe) non-cooperatively. The binding of daunomycin was about one order of magnitude higher than that of aristololactam-β-D-glucoside. Stronger binding of the former was also inferred from fluorescence quenching data, quantum efficiency values and circular dichroic results. Results from isothermal titration calorimetry experiments suggested that the binding of both compounds was predominantly entropy driven with a smaller but favorable enthalpy term that increased with temperature. A large favorable electrostatic contribution to the binding of daunomycin to tRNA(phe) was revealed from salt dependence data and the dissection of the free energy values. The electrostatic component to the free energy change for aristololactam-β-D-glucoside-tRNA(phe) interaction was smaller than that of daunomycin. This was also inferred from the slope of log K versus [Na(+)] plots. Both compounds enhanced the thermal stability of tRNA(phe). The small heat capacity changes of -47 and -99 cal/mol K, respectively, observed for aristololactam-β-D-glucoside and daunomycin, and the observed enthalpy-entropy compensation phenomenon confirmed the involvement of multiple weak noncovalent interactions. Molecular aspects of the interaction have been revealed. CONCLUSIONS/SIGNIFICANCE This study presents the structural and energetic aspects of the binding of aristololactam-β-D-glucoside and daunomycin to tRNA(phe).
Collapse
MESH Headings
- Algorithms
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/metabolism
- Antibiotics, Antineoplastic/pharmacology
- Aristolochic Acids/chemistry
- Aristolochic Acids/metabolism
- Aristolochic Acids/pharmacology
- Binding Sites
- Binding, Competitive
- Calorimetry
- Circular Dichroism
- Daunorubicin/chemistry
- Daunorubicin/metabolism
- Daunorubicin/pharmacology
- Entropy
- Glucosides/chemistry
- Glucosides/metabolism
- Glucosides/pharmacology
- Kinetics
- Molecular Structure
- Nucleic Acid Conformation/drug effects
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Spectrometry, Fluorescence
- Thermodynamics
Collapse
Affiliation(s)
- Abhi Das
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Kakali Bhadra
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| | - Gopinatha Suresh Kumar
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, Kolkata, West Bengal, India
| |
Collapse
|