Depauw H, de Wolf M, van Dessel G, Hilderson HJ, Lagrou A, Dierick W. Fluidity characteristics of bovine thyroid plasma membranes.
BIOCHIMICA ET BIOPHYSICA ACTA 1985;
814:57-67. [PMID:
3978100 DOI:
10.1016/0005-2736(85)90419-5]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Highly purified plasma membranes of bovine thyroid were obtained by differential pelleting followed by discontinuous gradient centrifugation in a swing-out rotor. Subfractions of plasma membranes were prepared by affinity chromatography on Con A-Sepharose. The final membrane fractions were enriched 25-30-fold over homogenate in 5'-nucleotidase and alkaline phosphatase and displayed a protein to phospholipid ratio of 1.67 and a cholesterol to phospholipid molar ratio of 0.55. The phospholipid composition did not deviate appreciably from that of whole tissue except for the higher sphingomyelin level (22.5 vs. 14.0%). The predominant fatty acids were palmitic (16:0), oleic (18:1), stearic (18:0) and linoleic (18:2) acid. The physical state of the membrane was studied by (i) calculation of the lipid structural order parameter SDPH from steady-state fluorescence anisotropy determinations of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH); (ii) estimation of the lateral diffusion coefficient of pyrene following excimer formation. These parameters were determined in native thyroid plasma membranes and in reconstituted vesicles, obtained by detergent dialysis from octylglucoside solubilized membrane components. The presence of membrane protein or neutral lipids induced more restraint on the movements of the fluorophores. The lipid order parameter, SDPH was mainly determined by the neutral lipids. Subfractions of plasma membrane enriched in luminal membranes have a slightly lower fluidity (higher SDPH and lower Ddiff values) than subfractions enriched in basolateral membranes. This difference appears to be due to both differences in lipid as well as protein composition. Under physiological conditions, no significant alterations in probe dynamics could be observed upon addition of thyrotropin or cholera toxin, even at micromolar concentrations.
Collapse