1
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
2
|
Giegé R. A historical perspective on protein crystallization from 1840 to the present day. FEBS J 2013; 280:6456-97. [DOI: 10.1111/febs.12580] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/30/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire; Université de Strasourg et CNRS; France
| |
Collapse
|
3
|
Giegé R. Fifty years excitement with science: recollections with and without tRNA. J Biol Chem 2013; 288:6679-87. [PMID: 23325807 DOI: 10.1074/jbc.x113.453894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Richard Giegé
- Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
4
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
5
|
Bour T, Akaddar A, Lorber B, Blais S, Balg C, Candolfi E, Frugier M. Plasmodial aspartyl-tRNA synthetases and peculiarities in Plasmodium falciparum. J Biol Chem 2009; 284:18893-903. [PMID: 19443655 DOI: 10.1074/jbc.m109.015297] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Distinctive features of aspartyl-transfer RNA (tRNA) synthetases (AspRS) from the protozoan Plasmodium genus are described. These apicomplexan AspRSs contain 29-31 amino acid insertions in their anticodon binding domains, a remarkably long N-terminal appendix that varies in size from 110 to 165 amino acids and two potential initiation codons. This article focuses on the atypical functional and structural properties of Plasmodium falciparum cytosolic AspRS, the causative parasite of human malaria. This species encodes a 626 or 577 amino acids AspRS depending on whether initiation starts on the first or second in-frame initiation codon. The longer protein has poor solubility and a propensity to aggregate. Production of the short version was favored as shown by the comparison of the recombinant protein with endogenous AspRS. Comparison of the tRNA aminoacylation activity of wild-type and mutant parasite AspRSs with those of yeast and human AspRSs revealed unique properties. The N-terminal extension contains a motif that provides unexpectedly strong RNA binding to plasmodial AspRS. Furthermore, experiments demonstrated the requirement of the plasmodial insertion for AspRS dimerization and, therefore, tRNA aminoacylation and other putative functions. Implications for the parasite biology are proposed. These data provide a robust background for unraveling the precise functional properties of the parasite AspRS and for developing novel lead compounds against malaria, targeting its idiosyncratic domains.
Collapse
Affiliation(s)
- Tania Bour
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Richard Giegé
- Département Machineries Traductionnelles, UPR 9002 Architecture et Reactivite de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
7
|
Kern D, Lorber B, Boulanger Y, Giege R. A peculiar property of aspartyl-tRNA synthetase from bakers' yeast: chemical modification of the protein by the enzymically synthesized aminoacyl adenylate. Biochemistry 2002. [DOI: 10.1021/bi00327a009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Moulinier L, Eiler S, Eriani G, Gangloff J, Thierry JC, Gabriel K, McClain W, Moras D. The structure of an AspRS-tRNA(Asp) complex reveals a tRNA-dependent control mechanism. EMBO J 2001; 20:5290-301. [PMID: 11566892 PMCID: PMC125622 DOI: 10.1093/emboj/20.18.5290] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 2.6 A resolution crystal structure of an inactive complex between yeast tRNA(Asp) and Escherichia coli aspartyl-tRNA synthetase reveals the molecular details of a tRNA-induced mechanism that controls the specificity of the reaction. The dimer is asymmetric, with only one of the two bound tRNAs entering the active site cleft of its subunit. However, the flipping loop, which controls the proper positioning of the amino acid substrate, acts as a lid and prevents the correct positioning of the terminal adenosine. The structure suggests that the acceptor stem regulates the loop movement through sugar phosphate backbone- protein interactions. Solution and cellular studies on mutant tRNAs confirm the crucial role of the tRNA three-dimensional structure versus a specific recognition of bases in the control mechanism.
Collapse
Affiliation(s)
| | | | - G. Eriani
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| | - J. Gangloff
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| | | | - K. Gabriel
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| | - W.H. McClain
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| | - D. Moras
- UPR 9004, Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP 163, 67404 Illkirch Cedex, C.U. de Strasbourg,
UPR9002, IBMC, 15 rue René Descartes, 67084 Strasbourg, France and Department of Bacteriology, University of Wisconsin, Madison, WI 53706-1567, USA Corresponding author e-mail:
| |
Collapse
|
9
|
Abstract
Structure/function relationships accounting for specific tRNA charging by class II aspartyl-tRNA synthetases from Saccharomyces cerevisiae, Escherichia coli and Thermus thermophilus are reviewed. Effects directly linked to tRNA features are emphasized and aspects about synthetase contribution in expression of tRNA(Asp) identity are also covered. Major identity nucleotides conferring aspartate specificity to yeast, E coli and T thermophilus tRNAs comprise G34, U35, C36, C38 and G73, a set of nucleotides conserved in tRNA(Asp) molecules of other biological origin. Aspartate specificity can be enhanced by negative discrimination preventing, eg mischarging of native yeast tRNA(Asp by yeast arginyl-tRNA synthetase. In the yeast system crystallography shows that identity nucleotides are in contact with identity amino acids located in the catalytic and anticodon binding domains of the synthetase. Specificity of RNA/protein interaction involves a conformational change of the tRNA that optimizes the H-bonding potential of the identity signals on both partners of the complex. Mutation of identity nucleotides leads to decreased aspartylation efficiencies accompanied by a loss of specific H-bonds and an altered adaptation of tRNA on the synthetase. Species-specific characteristics of aspartate systems are the number, location and nature of minor identity signals. These features and the structural variations in aspartate tRNAs and synthetases are correlated with mechanistic differences in the aminoacylation reactions catalyzed by the various aspartyl-tRNA synthetases. The reality of the aspartate identity set is verified by its functional expression in a variety of RNA frameworks. Inversely a number of identities can be expressed within a tRNA(Asp) framework. From this emerged the concept of the RNA structural frameworks underlying expression of identities which is illustrated with data obtained with engineered tRNAs. Efficient aspartylation of minihelices is explained by the primordial role of G73. From this and other considerations it is suggested that aspartate identity appeared early in the history of tRNA aminoacylation systems.
Collapse
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologioues et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
10
|
Eriani G, Cavarelli J, Martin F, Dirheimer G, Moras D, Gangloff J. Role of dimerization in yeast aspartyl-tRNA synthetase and importance of the class II invariant proline. Proc Natl Acad Sci U S A 1993; 90:10816-20. [PMID: 8248175 PMCID: PMC47869 DOI: 10.1073/pnas.90.22.10816] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytoplasmic aspartyl-tRNA synthetase (AspRS; EC 6.1.1.12) from yeast is, as are most class II synthetases, an alpha 2 dimer. The only invariant amino acid in signature motif 1 of this class is Pro-273; this residue is located at the dimer interface. To understand the role of Pro-273 in the conserved dimeric configuration, we tested the effect of a Pro-273-->Gly (P273G) substitution on the catalytic properties of homo- and heterodimeric AspRS. Heterodimers of AspRS were produced in vivo by overexpression of their respective subunit variants from plasmid-encoded genes and purified to homogeneity in one HPLC step. The homodimer containing the P273G shows an 80% inactivation of the enzyme and an affinity decrease for its cognate tRNA(Asp) of one order of magnitude. The P273G-mutated subunit recovered wild-type enzymatic properties when associated with a native subunit or a monomer otherwise inactivated having an intact dimeric interface domain. These results, which can be explained by the crystal structure of the native enzyme complexed with its substrates, confirm the structural importance of Pro-273 for dimerization and clearly establish the functional interdependence of the AspRS subunits. More generally, the dimeric conformation may be a structural prerequisite for the activity of mononucleotide binding sites constructed from antiparallel beta strands.
Collapse
Affiliation(s)
- G Eriani
- Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance UPR 9002, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
11
|
Giegé R, Puglisi JD, Florentz C. tRNA structure and aminoacylation efficiency. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:129-206. [PMID: 8341800 DOI: 10.1016/s0079-6603(08)60869-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- R Giegé
- Unité Structure des Macromolécules Biologiques et Mécanismes de Reconnaissance, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | |
Collapse
|
12
|
Rudinger J, Puglisi JD, Pütz J, Schatz D, Eckstein F, Florentz C, Giegé R. Determinant nucleotides of yeast tRNA(Asp) interact directly with aspartyl-tRNA synthetase. Proc Natl Acad Sci U S A 1992; 89:5882-6. [PMID: 1631068 PMCID: PMC49401 DOI: 10.1073/pnas.89.13.5882] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The interaction of wild-type and mutant yeast tRNA(Asp) transcripts with yeast aspartyl-tRNA synthetase (AspRS; EC 6.1.1.12) has been probed by using iodine cleavage of phosphorothioate-substituted transcripts. AspRS protects phosphates in the anticodon (G34, U35), D-stem (U25), and acceptor end (G73) that correspond to determinant nucleotides for aspartylation. This protection, as well as that in anticodon stem (C29, U40, G41) and D-stem (U11 to U13), is consistent with direct interaction of AspRS at these phosphates. Other protection, in the variable loop (G45), D-loop (G18, G19), and T-stem and loop (G53, U54, U55), as well as enhanced reactivity at G37, may result from conformational changes of the transcript upon binding to AspRS. Transcripts mutated at determinant positions showed a loss of phosphate protection in the region of the mutation while maintaining the global protection pattern. The ensemble of results suggests that aspartylation specificity arises from both protein-base and protein-phosphate contacts and that different regions of tRNA(Asp) interact independently with AspRS. A mutant transcript of yeast tRNA(Phe) that contains the set of identity nucleotides for specific aspartylation gave a phosphate protection pattern strikingly similar to that of wild-type tRNA(Asp). This confirms that a small number of nucleotides within a different tRNA sequence context can direct specific interaction with synthetase.
Collapse
Affiliation(s)
- J Rudinger
- Laboratoire de Biochimie, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Delaria K, Guillen M, Louie A, Jurnak F. Stabilization of the Escherichia coli elongation factor Tu-GTP-aminoacyl-tRNA complex. Arch Biochem Biophys 1991; 286:207-11. [PMID: 1897948 DOI: 10.1016/0003-9861(91)90029-i] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effect of ammonium sulfate on the Escherichia coli elongation factor Tu-GTP-aminoacyl-tRNA complex has been studied. The half-lives of 12 E. coli aminoacyl-tRNA species were determined at 37 degrees C in the presence and absence of an equimolar amount of EF-Tu-GTP and in the presence and absence of 1.5 M ammonium sulfate. The results indicate that the addition of 1.5 M ammonium sulfate to the ternary complex increased the stability of all 12 complexes studied. In addition, the effects of various salts and crystallization agents on the stability of the E. coli EF-Tu-GTP-phenylalanyl-tRNA complex was studied in detail. Binding parameters were also measured under various conditions at 37 degrees C. The results indicate that the stability and the Kassoc of the ternary complex, using phenylalanyl-tRNA, can be increased by the presence of polyethylene glycol or ammonium sulfate.
Collapse
Affiliation(s)
- K Delaria
- Department of Biochemistry, University of California, Riverside 92521
| | | | | | | |
Collapse
|
14
|
Zheng JH, Knighton DR, Parello J, Taylor SS, Sowadski JM. Crystallization of catalytic subunit of adenosine cyclic monophosphate-dependent protein kinase. Methods Enzymol 1991; 200:508-21. [PMID: 1956335 DOI: 10.1016/0076-6879(91)00167-u] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Rubelj I, Weygand-Durasević I, Kućan Z. Evidence for two types of complexes formed by yeast tyrosyl-tRNA synthetase with cognate and non-cognate tRNA. Effect of ribonucleoside triphosphates. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:783-8. [PMID: 2174366 DOI: 10.1111/j.1432-1033.1990.tb19400.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polyacrylamide gel electrophoresis at pH 8.3 was used to detect and quantitate the formation of the yeast tyrosyl-tRNA synthetase (an alpha 2-type enzyme) complex with its cognate tRNA. Electrophoretic mobility of the complex is intermediate between the free enzyme and free tRNA; picomolar quantities can be readily detected by silver staining and quantitated by densitometry of autoradiograms when [32P]tRNA is used. Two kinds of complexes of Tyr-tRNA synthetase with yeast tRNA(Tyr) were detected. A slower-moving complex is formed at ratios of tRNA(Tyr)/enzyme less than or equal to 0.5; it is assigned the composition tRNA.(alpha 2)2. At higher ratios, a faster-moving complex is formed, approaching saturation at tRNA(Tyr)/enzyme = 1; any excess of tRNA(Tyr) remains unbound. This complex is assigned the composition tRNA.alpha 2. The slower, i.e. tRNA.(alpha 2)2 complex, but not the faster complex, can be formed even with non-cognate tRNAs. Competition experiments show that the affinity of the enzyme towards tRNA(Tyr) is at least 10-fold higher than that for the non-cognate tRNAs. ATP and GTP affect the electrophoretic mobility of the enzyme and prevent the formation of tRNA.(alpha 2)2 complexes both with cognate and non-cognate tRNAs, while neither tyrosine, as the third substrate of Tyr tRNA synthetase, nor AMP, AMP/PPi, or spermidine, have such effects. Hence, the ATP-mediated formation of the alpha 2 structure parallels the increase in specificity of the enzyme towards its cognate tRNA.
Collapse
Affiliation(s)
- I Rubelj
- Department of Chemistry, Faculty of Science, University of Zagreb, Yugoslavia
| | | | | |
Collapse
|
16
|
Perret V, Garcia A, Puglisi J, Grosjean H, Ebel JP, Florentz C, Giegé R. Conformation in solution of yeast tRNA(Asp) transcripts deprived of modified nucleotides. Biochimie 1990; 72:735-43. [PMID: 2078590 DOI: 10.1016/0300-9084(90)90158-d] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A synthetic gene of yeast aspartic acid tRNA with a promoter for phage T7 RNA polymerase was cloned in Escherichia coli. The in vitro transcribed tRNA(Asp) molecules are deprived of modified nucleotides and retain their aspartylation capacity. The solution conformation of these molecules was mapped with chemical structural probes and compared to that of fully modified molecules. Significant differences in reactivities were observed in Pb2+ cleavage of the RNAs and in modification of the bases with dimethyl sulphate. The most striking result concerns C56, which becomes reactive in unmodified tRNA(Asp), indicating the disruption of the C56-G19 base pair involved in the D- and T-loop interaction. The chemical data indicate that unmodified tRNA(Asp) transcripts possess a relaxed conformation compared to that of the native tRNA. This conclusion is confirmed by thermal melting experiments. Thus it can be proposed that post-transcriptional modifications of nucleotides in tRNA stabilize the biologically active conformations in these molecules.
Collapse
Affiliation(s)
- V Perret
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Florentz C, Kern D, Giege R. Stimulatory effect of ammonium sulfate at high concentrations on the aminoacylation of tRNA and tRNA-like molecules. FEBS Lett 1990; 261:335-8. [PMID: 2178975 DOI: 10.1016/0014-5793(90)80585-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The influence of various salts on the aminoacylation of tRNA(Val) and the tRNA-like structure from turnip yellow mosaic virus RNA by yeast valyl-tRNA synthetase has been studied. As expected, increasing the concentration of salts inhibits the enzymatic reaction. However, in the presence of high concentration of ammonium sulfate, and only this salt, the inhibitory effect is suppressed. Under such conditions, the aminoacylation becomes comparable to that measured in the absence of salt. It was shown that ammonium sulfate affects both the catalytic rate of the reaction and the affinity between valyl-tRNA synthetase and the RNAs. Because the affinity between the partners in the complex is increased when the concentration of the salt is high, it is suggested that hydrophobic effects are involved in tRNA/synthetase interactions.
Collapse
Affiliation(s)
- C Florentz
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
18
|
Garcia A, Giegé R, Behr JP. New photoactivatable structural and affinity probes of RNAs: specific features and applications for mapping of spermine binding sites in yeast tRNA(Asp) and interaction of this tRNA with yeast aspartyl-tRNA synthetase. Nucleic Acids Res 1990; 18:89-95. [PMID: 2408010 PMCID: PMC330207 DOI: 10.1093/nar/18.1.89] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aryldiazonium salts are shown to be useful as phototriggered structural probes for RNA mapping as well as for footprinting of RNA/protein interaction. In particular the yeast tRNA(Asp)/aspartyl-tRNA synthetase complex is shown to involve the variable loop face and the concave side of the L-shaped nucleic acid bound to a lipophilic area of the enzyme. When chemically linked to spermine, the photoactive group cleaves RNA at polyamine binding sites; 3-4 spermines have been located in the tRNA(Asp), stabilizing the central part of the molecule in regions where two ribose-phosphate strands are close to each other.
Collapse
Affiliation(s)
- A Garcia
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
19
|
Theobald A, Springer M, Grunberg-Manago M, Ebel JP, Giege R. Tertiary structure of Escherichia coli tRNA(3Thr) in solution and interaction of this tRNA with the cognate threonyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:511-24. [PMID: 2457500 DOI: 10.1111/j.1432-1033.1988.tb14223.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.
Collapse
Affiliation(s)
- A Theobald
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
20
|
Lorber B, Mejdoub H, Reinbolt J, Boulanger Y, Giegé R. Properties of N-terminal truncated yeast aspartyl-tRNA synthetase and structural characteristics of the cleaved domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:155-61. [PMID: 3286258 DOI: 10.1111/j.1432-1033.1988.tb14076.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is a dimer made up of identical subunits of Mr 64,000 as shown by biochemical and crystallographic analyses. Previous studies have emphasized the high sensitivity of the amino-terminal region (residues 1-32) to proteolytic enzymes. This work reports the results of limited tryptic or chymotryptic digestion of the purified enzyme which gives rise to a truncated species that has lost the first 50-64 residues with full retention of both the activity and the dimeric structure. In contrast the larger tryptic fragment is distinguished from the whole enzyme by its weaker retention on heparin-substituted agarose gels. The cleaved N-terminal part presents peculiar structural features, such as a high content in lysine residues arranged in a palindromic fashion. The properties of the trypsin-modified enzyme and of the cleaved amino-terminal region are discussed in relation to the known structural characteristics of aspartyl-tRNA synthetase and of other eukaryotic aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- B Lorber
- Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
21
|
Timmins PA, Zaccai G. Low resolution structures of biological complexes studied by neutron scattering. EUROPEAN BIOPHYSICS JOURNAL : EBJ 1988; 15:257-68. [PMID: 3284742 DOI: 10.1007/bf00256476] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Lorber B, Kern D, Mejdoub H, Boulanger Y, Reinbolt J, Giege R. The microheterogeneity of the crystallizable yeast cytoplasmic aspartyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:409-17. [PMID: 3297688 DOI: 10.1111/j.1432-1033.1987.tb11454.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Yeast aspartyl-tRNA synthetase is a dimeric enzyme (alpha 2, Mr 125,000) which can be crystallized either alone or complexed with tRNAAsp. When analyzed by electrophoretic methods, the pure enzyme presents structural heterogeneities even when recovered from crystals. Up to three enzyme populations could be identified by polyacrylamide gel electrophoresis and more than ten by isoelectric focusing. They have similar molecular masses and mainly differ in their charge. All are fully active. This microheterogeneity is also revealed by ion-exchange chromatography and chromatofocusing. Several levels of heterogeneity have been defined. A first type, which is reversible, is linked to redox effects and/or to conformational states of the protein. A second one, revealed by immunological methods, is generated by partial and differential proteolysis occurring during enzyme purification from yeast cells harvested in growth phase. As demonstrated by end-group analysis, the fragmentation concerns exclusively the N-terminal end of the enzyme. The main cleavage points are Gln-19, Val-20 and Gly-26. Six minor cuts are observed between positions 14 and 33. The present data are discussed in the perspective of the crystallographic studies on aspartyl-tRNA synthetase.
Collapse
|
23
|
Romby P, Moras D, Bergdoll M, Dumas P, Vlassov VV, Westhof E, Ebel JP, Giegé R. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J Mol Biol 1985; 184:455-71. [PMID: 3900415 DOI: 10.1016/0022-2836(85)90294-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ethylnitrosourea is an alkylating reagent preferentially modifying phosphate groups in nucleic acids. It was used to monitor the tertiary structure, in solution, of yeast tRNAAsp and to determine those phosphate groups in contact with the cognate aspartyl-tRNA synthetase. Experiments involve 3' or 5'-end-labelled tRNA molecules, low yield modification of the free or complexed nucleic acid and specific splitting at the modified phosphate groups. The resulting end-labelled oligonucleotides are resolved on polyacrylamide sequencing gels and data analysed by autoradiography and densitometry. Experiments were conducted in parallel on yeast tRNAAsp and on tRNAPhe. In that way it was possible to compare the solution structure of two elongator tRNAs and to interpret the modification data using the known crystal structures of both tRNAs. Mapping of the phosphates in free tRNAAsp and tRNAPhe allowed the detection of differential reactivities for phosphates 8, 18, 19, 20, 22, 23, 24 and 49: phosphates 18, 19, 23, 24 and 49 are more reactive in tRNAAsp, while phosphates 8, 20 and 22 are more reactive in tRNAPhe. All other phosphates display similar reactivities in both tRNAs, in particular phosphate 60 in the T-loop, which is strongly protected. Most of these data are explained by the crystal structures of the tRNAs. Thermal transitions in tRNAAsp could be followed by chemical modifications of phosphates. Results indicate that the D-arm is more flexible than the T-loop. The phosphates in yeast tRNAAsp in contact with aspartyl-tRNA synthetase are essentially contained in three continuous stretches, including those at the corner of the amino acid accepting and D-arm, at the 5' side of the acceptor stem and in the variable loop. When represented in the three-dimensional structure of the tRNAAsp, it clearly appears that one side of the L-shaped tRNA molecule, that comprising the variable loop, is in contact with aspartyl-tRNA synthetase. In yeast tRNAPhe interacting with phenylalanyl-tRNA synthetase, the distribution of protected phosphates is different, although phosphates in the anticodon stem and variable loop are involved in both systems. With tRNAPhe, the data cannot be accommodated by the interaction model found for tRNAAsp, but they are consistent with the diagonal side model proposed by Rich & Schimmel (1977). The existence of different interaction schemes between tRNAs and aminoacyl-tRNA synthetases, correlated with the oligomeric structure of the enzyme, is proposed.
Collapse
|
24
|
Romby P, Giegé R, Houssier C, Grosjean H. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal. J Mol Biol 1985; 184:107-118. [PMID: 2411934 DOI: 10.1016/0022-2836(85)90047-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The temperature-jump method was used to measure the thermodynamic and kinetic parameters of the yeast tRNAAsp (anticodon GUC) duplex, which involves a U/U mismatch in the middle position of the quasi self-complementary anticodon, and of the yeast tRNAAsp (GUC)-Escherichia coli tRNAVal (GAC) complex, in which the tRNAs have complementary anticodons. The existence of the tRNAAsp duplex involving GUC-GUC interactions as evidenced in the crystal structure has now been demonstrated in solution. However, the value of its association constant (Kass = 10(4)M-1 at 0 degrees C) is characteristic of a rather weak complex, when compared with that between tRNAAsp and tRNAVal (Kass = 4 X 10(6) M-1 at 0 degrees C), the effect being essentially linked to differences in the rate constant for dissociation. tRNAAsp split in the anticodon by T1 ribonuclease gives no relaxation signal, indicating that the effects observed with intact tRNA were entirely due to anticodon interactions. No duplex formation was observed with other tRNAs having quasi self-complementary GNC anticodons (where N is C, A or G), such as E. coli tRNAGly (GCC), E. coli tRNAVal (GAC) or E. coli tRNAAla (GGC). This is compatible with the idea that, probably as in the crystal structure, a short double helix is formed in solution between the two GUC anticodons. Because of steric effects, such a complex formation would be hindered if a cytosine, adenine or guanine residue were located in the middle position of the anticodon. Escherichia coli tRNAAsp possessing a modified G residue, the Q base, at the first position of the anticodon, showed a weaker self-association than yeast tRNAAsp but its complex with E. coli tRNAVal was found to be only 1.5 times less stable than that between yeast tRNAAsp and E. coli tRNAVal. Temperature-jump experiments conducted under conditions mimicking those used for the crystallization of yeast tRNAAsp (in the presence of 1.6 M-ammonium sulphate and 3mM-spermine) revealed an important stabilization of the yeast and E. coli tRNAAsp duplexes or of their complexes with E. coli tRNAVal. The effect is due exclusively to ammonium sulphate; it is entropy driven and its influence is reflected on the association rate constant; no influence on the dissociation rate constant was observed. For all tRNA-tRNA complexes, the melting temperature upon addition of ammonium sulphate was considerably increased. This study permits the definition of solution conditions in which tRNAs with appropriate anticodons exist mainly as anticodon-anticodon dimers.
Collapse
|
25
|
Lorber B, Giegé R. High-performance liquid chromatographic analysis of crystals of tRNA, aminoacyl-tRNA synthetase, and their complex. Anal Biochem 1985; 146:402-4. [PMID: 3896023 DOI: 10.1016/0003-2697(85)90558-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-performance liquid chromatography on an ion exchanger column was successfully used for a rapid biochemical analysis of crystals of yeast tRNAAsp and aspartyl-tRNA synthetase as well as cocrystals formed by the synthetase and the tRNA.
Collapse
|
26
|
Zaccai G. The solution structures of transfer RNA and ribonuclease in different solvents. BASIC LIFE SCIENCES 1984; 27:93-103. [PMID: 6712574 DOI: 10.1007/978-1-4899-0375-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Lorber B, Kern D, Dietrich A, Gangloff J, Ebel JP, Giegé R. Large scale purification and structural properties of yeast aspartyl-tRNA synthetase. Biochem Biophys Res Commun 1983; 117:259-67. [PMID: 6362667 DOI: 10.1016/0006-291x(83)91569-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A large scale purification procedure of baker's yeast aspartyl-tRNA synthetase is described which yields more than 200 mg pure protein starting from 30 Kg of wet commercial cells. The synthetase is an alpha 2 dimer of Mr = 125,000 +/- 5,000 which can be crystallized (J. Mol. Biol. 138, 1980, 129-135). The enzyme has an elongated shape with a Stokes radius of 50 A and a frictional ratio of 1.5. The synthetase has a tendency to aggregate but methods are described where this effect is overcome.
Collapse
|
28
|
Moras D, Lorber B, Romby P, Ebel JP, Giegé R, Lewit-Bentley A, Roth M. Yeast tRNAAsp-aspartyl-tRNA synthetase: the crystalline complex. J Biomol Struct Dyn 1983; 1:209-23. [PMID: 6401112 DOI: 10.1080/07391102.1983.10507435] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aspartyl-tRNA synthetase from yeast, a dimer of molecular weight 125,000 and its cognate tRNA (Mr = 24,160) were co-crystallized using ammonium sulfate as precipitant agent. The presence in the crystals of both components in the two-to-one stoichiometric ratio was demonstrated by electrophoresis, biological activity assays and crystallographic data. Crystals belong to the cubic space group I432 with cell parameter of 354 A and one complex particle per asymmetric unit. The solvent content of about 78% is favorable for a low resolution structural investigation. By exchanging H2O for D2O in mother liquors, advantage can be taken from contrast variation techniques with neutron radiations. Diffraction data to 20 A resolution were measured at five different contrasts, two of them being close to the theoretical matching point of RNA and protein in the presence of ammonium sulfate. The experimental extinction of the diffracted signal was observed to be close to 36% D2O, significantly different from the predicted value of 41%. The phenomenon can be explained by the existence of a large interface region between the two tRNAs and the enzyme. These parts of the molecules are hidden from the solvent and their protons are less easily exchangeable. Accessibility studies toward chemicals of tRNAAsp in solution and in the presence of synthetase are in agreement with such a model.
Collapse
Affiliation(s)
- D Moras
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Li ZQ, Giegé R, Jacrot B, Oberthür R, Thierry JC, Zaccaï G. Structure of phenylalanine-accepting transfer ribonucleic acid and of its environment in aqueous solvents with different salts. Biochemistry 1983; 22:4380-8. [PMID: 6354255 DOI: 10.1021/bi00288a006] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thermodynamic and structural parameters were measured for brewers' yeast tRNAPhe in solution in the range of 0.1-0.9 M monovalent salt (with and without 1 mM MgCl2), pH 7.0, by small-angle neutron scattering. Partial specific volumes and preferential interaction parameters were found to be similar to corresponding values measured by more conventional means in DNA [Eisenberg, H. (1981) Q. Rev. Biophys. 14, 141-172]. There is no evidence of a large conformational change in tRNAPhe in this range, and the molecule has a radius of gyration that is the same as that calculated from the crystal-structure coordinates (23 A). Transfer RNA in solution is made up of polyion tRNA76- and 76 positive monovalent ions (in absence of Mg2+). The data show the polyion to be surrounded by a shell of solvent that is significantly denser than bulk, whose structure depends on salt conditions. In 0.1 M NaCl, it has an excess mass of approximately 85 molecules of water. This would be accounted for, for example, by approximately 850 molecules of water if their density were 10% higher than that for bulk. The radius of gyration of the dense shell is approximately 30 A for NatRNA and approximately 35 A for KtRNA. The present study shows that the solvent around tRNA is a component of its structure that must be taken into account in understanding its function.
Collapse
|
30
|
Lorber B, Giegé R, Ebel JP, Berthet C, Thierry JC, Moras D. Crystallization of a tRNA . aminoacyl-tRNA synthetase complex. Characterization and first crystallographic data. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(20)82082-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Abstract
Isoelectric points and isoelectric focusing behaviour of 10 highly purified eukaryotic aminoacyl-tRNA synthetases from 3 sources, Saccharomyces cerevisiae, Euglena gracilis and Phaseolus vulgaris were examined. The pI-values measured on polyacrylamide gels under native conditions are situated between pH 5.0-7.5. A microheterogeneity was observed for 9 enzymes appearing otherwise homogeneous on gel electrophoresis. A compilation of the isoelectric points of aminoacyl-tRNA synthetases is given and literature data are compared with our experimental results.
Collapse
|
32
|
Antonsson B, Leberman R. Stabilization of the ternary complex EF-Tu.GTP.valyl-tRNAval by ammonium salts. Biochimie 1982; 64:1035-40. [PMID: 6819001 DOI: 10.1016/s0300-9084(82)80384-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In a search for crystallizing conditions for the ternary complex EF-Tu.GTP.valyl-tRNAval, the influence of various salts on its stability has been examined by measuring the rate of deacylation of the aminoacyl-tRNA in the complex. The most striking result is the general higher stability in solutions of ammonium salts and, in particular, the enhancement of this effect by sulphate and citrate. Thus sodium sulphate and citrate lead to destabilization of the complex, as expected from conventional considerations of adding salt, whereas the corresponding ammonium salts stabilize the complex as shown, for example, by an increase in the half-life of the valyl-tRNAval in the complex from about 20 hours to at least 300 hours in the presence of 1.2 M ammonium sulphate. These results suggest that ammonium sulphate and ammonium citrate might be very suitable precipitants for crystallization studies of the ternary complex.
Collapse
|
33
|
Lorber B, Kern D, Giegé R, Ebel JP. Covalent attachment of aspartic acid to yeast aspartyl-tRNA synthetase induced by the enzyme. FEBS Lett 1982; 146:59-64. [PMID: 6754443 DOI: 10.1016/0014-5793(82)80705-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aspartic acid can be covalently linked to yeast aspartyl-tRNA synthetase and to other proteins, in the absence of tRNA, under conditions where the synthetase activates the amino acid into aspartyl-adenylate, i.e., in the presence of ATP and MgCl2. The linkage between aspartic acid and the protein is acid and alkali resistant; thus it is likely a peptide-like amide bond formed between the activated carboxylate group of aspartic acid and the primary amine function of the side chain of lysine residues.
Collapse
|