1
|
Smith-Roe SL, Hobbs CA, Hull V, Todd Auman J, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine Iii CC, Salk JJ, Witt KL. Adopting duplex sequencing technology for genetic toxicity testing: A proof-of-concept mutagenesis experiment with N-ethyl-N-nitrosourea (ENU)-exposed rats. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503669. [PMID: 37770135 PMCID: PMC10539650 DOI: 10.1016/j.mrgentox.2023.503669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Duplex sequencing (DS) is an error-corrected next-generation sequencing method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors in consensus sequences. The resulting background of less than one artifactual mutation per 107 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DS-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays.
Collapse
Affiliation(s)
| | - Cheryl A Hobbs
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - J Todd Auman
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Michael A Streicker
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | - Miriam V Rivas
- Integrated Laboratory Systems, LLC (An Inotiv Company), Research Triangle Park, NC, USA
| | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | | | | | | | | | | | | | - Kristine L Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC, USA
| |
Collapse
|
2
|
Smith-Roe SL, Hobbs CA, Hull V, Auman JT, Recio L, Streicker MA, Rivas MV, Pratt GA, Lo FY, Higgins JE, Schmidt EK, Williams LN, Nachmanson D, Valentine CC, Salk JJ, Witt KL. Adopting Duplex Sequencing™ Technology for Genetic Toxicity Testing: A Proof-of-Concept Mutagenesis Experiment with N-Ethyl-N-Nitrosourea (ENU)-Exposed Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539833. [PMID: 37214853 PMCID: PMC10197591 DOI: 10.1101/2023.05.08.539833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Duplex sequencing (DuplexSeq) is an error-corrected next-generation sequencing (ecNGS) method in which molecular barcodes informatically link PCR-copies back to their source DNA strands, enabling computational removal of errors by comparing grouped strand sequencing reads. The resulting background of less than one artifactual mutation per 10 7 nucleotides allows for direct detection of somatic mutations. TwinStrand Biosciences, Inc. has developed a DuplexSeq-based mutagenesis assay to sample the rat genome, which can be applied to genetic toxicity testing. To evaluate this assay for early detection of mutagenesis, a time-course study was conducted using male Hsd:Sprague Dawley SD rats (3 per group) administered a single dose of 40 mg/kg N-ethyl-N-nitrosourea (ENU) via gavage, with mutation frequency (MF) and spectrum analyzed in stomach, bone marrow, blood, and liver tissues at 3 h, 24 h, 7 d, and 28 d post-exposure. Significant increases in MF were observed in ENU-exposed rats as early as 24 h for stomach (site of contact) and bone marrow (a highly proliferative tissue) and at 7 d for liver and blood. The canonical, mutational signature of ENU was established by 7 d post-exposure in all four tissues. Interlaboratory analysis of a subset of samples from different tissues and time points demonstrated remarkable reproducibility for both MF and spectrum. These results demonstrate that MF and spectrum can be evaluated successfully by directly sequencing targeted regions of DNA obtained from various tissues, a considerable advancement compared to currently used in vivo gene mutation assays. HIGHLIGHTS DuplexSeq is an ultra-accurate NGS technology that directly quantifies mutationsENU-dependent mutagenesis was detected 24 h post-exposure in proliferative tissuesMultiple tissues exhibited the canonical ENU mutation spectrum 7 d after exposureResults obtained with DuplexSeq were highly concordant between laboratoriesThe Rat-50 Mutagenesis Assay is promising for applications in genetic toxicology.
Collapse
Affiliation(s)
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Victoria Hull
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - J. Todd Auman
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Leslie Recio
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Michael A. Streicker
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | - Miriam V. Rivas
- Integrated Laboratory Systems, LLC (an Inotiv company), Research Triangle Park, NC
| | | | | | | | | | | | | | | | | | - Kristine L. Witt
- Division of Translational Toxicology, NIEHS, Research Triangle Park, NC
| |
Collapse
|
3
|
Aloisi CMN, Sandell ES, Sturla SJ. A Chemical Link between Meat Consumption and Colorectal Cancer Development? Chem Res Toxicol 2021; 34:12-23. [PMID: 33417435 DOI: 10.1021/acs.chemrestox.0c00395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O6-carboxymethylguanine (O6-CMG) is a mutagenic DNA adduct that forms at increased levels when people eat meat. It has been studied as a potential initiating event in colorectal carcinogenesis. It can arise from alkylation of guanine in DNA by electrophilic degradation products of N-nitroso compounds. There is significant data regarding biochemical and cellular process, including DNA repair and translesion DNA synthesis that control O6-CMG accumulation, persistence, and mutagenicity. Mutation spectra arising from the adduct closely resemble common mutations in colorectal cancer; however, gaps remain in understanding the biochemical processes that regulate how and where the damage persists in the genome. Addressing such questions relies on advances in chemistry such as synthesis approaches and bioanalytical methods. Results of research in this area help advance our understanding of the toxicological relevance of O6-CMG-modified DNA. Further attention should focus on understanding how a combination of genetic and environmental factors control its biological persistence and how this information can be used as a basis of biomoniotoring and prevention efforts to help mitigate colon cancer risk.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Emma S Sandell
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
4
|
Wang H, Zhang K, Qin H, Yang L, Zhang L, Cao Y. Genetic Association Between Angiotensinogen Polymorphisms and Lung Cancer Risk. Medicine (Baltimore) 2015; 94:e1250. [PMID: 26376373 PMCID: PMC4635787 DOI: 10.1097/md.0000000000001250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Earlier published studies investigating the association between polymorphisms in the angiotensinogen gene and lung cancer risk showed no consistent results. In this study, we have summarized all currently available data to examine the correlation by meta-analysis. Case-control studies addressing the association being examined were identified through Embase, the Cochrane Library, ISI Web of Science (Web of Knowledge), Google Scholar, PubMed, and CNKI databases. Risk of lung cancer (odds ratio [OR] and 95% confidence interval [CI]) was estimated with the fixed or the random effects model assuming homozygous, allele, heterozygous, dominant, and recessive models for all angiotensinogen polymorphisms. We identified a total of 10 articles in this meta-analysis, including 7 for Leu84Phe, 4 for Ile143Val, and 3 for Leu53Leu. In the meta-analysis of Leu84Phe polymorphism, the homozygous model provided an OR of 1.44 (Phe/Phe vs Ile/Ile: OR = 1.44, 95% CI = 1.04-1.99, P values for heterogeneity test (Q-test) [P(Het)] = 0.382). The significantly increased risk was similarly indicated in the recessive model (Phe/Phe vs Phe/Ile + Ile/Ile: OR = 1.41, 95% CI = 1.02-1.95, P(Het) = 0.381). We also observed a positive association in the Caucasian subgroup. The heterozygous model and the dominant model tested for the Ile143Val polymorphism showed a marginally increased risk (Ile/Val vs Ile/Ile: OR = 1.16, 95% CI = 1.00-1.36, P(Het) = 0.323; Val/Val + Ile/Val vs Ile/Ile: OR = 1.15, 95% CI = 0.99-1.34, P(Het) = 0.253). These data suggest that Leu84Phe and Ile143Val polymorphisms in the angiotensinogen gene may be useful biomarkers for lung cancer in some specific populations.
Collapse
Affiliation(s)
- Hong Wang
- From the Department of Lung Cancer, 307 Hospital of PLA, Affiliated Hospital of Academy of Military Medical Sciences, FengTai Area, Beijing, China
| | | | | | | | | | | |
Collapse
|
5
|
Chikan NA, Bukhari S, Shabir N, Amin A, Shafi S, Qadri RA, Patel TNC. Atomic Insight into the Altered O6-Methylguanine-DNA Methyltransferase Protein Architecture in Gastric Cancer. PLoS One 2015; 10:e0127741. [PMID: 26011121 PMCID: PMC4444098 DOI: 10.1371/journal.pone.0127741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/19/2015] [Indexed: 11/22/2022] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) is one of the major DNA repair protein that counteracts the alkalyting agent-induced DNA damage by replacing O6-methylguanine (mutagenic lesion) back to guanine, eventually suppressing the mismatch errors and double strand crosslinks. Exonic alterations in the form of nucleotide polymorphism may result in altered protein structure that in turn can lead to the loss of function. In the present study, we focused on the population feared for high exposure to alkylating agents owing to their typical and specialized dietary habits. To this end, gastric cancer patients pooled out from the population were selected for the mutational screening of a specific error prone region of MGMT gene. We found that nearly 40% of the studied neoplastic samples harbored missense mutation at codon151 resulting into Serine to Isoleucine variation. This variation resulted in bringing about the structural disorder, subsequently ensuing into a major stoichiometric variance in recognition domain, substrate binding and selectivity loop of the active site of the MGMT protein, as observed under virtual microscope of molecular dynamics simulation (MDS). The atomic insight into MGMT protein by computational approach showed a significant change in the intra molecular hydrogen bond pattern, thus leading to the observed structural anomalies. To further examine the mutational implications on regulatory plugs of MGMT that holds the protein in a DNA-Binding position, a MDS based analysis was carried out on, all known physically interacting amino acids essentially clustered into groups based on their position and function. The results generated by physical-functional clustering of protein indicated that the identified mutation in the vicinity of the active site of MGMT protein causes the local and global destabilization of a protein by either eliminating the stabilizing salt bridges in cluster C3, C4, and C5 or by locally destabilizing the “protein stabilizing hing” mapped on C3-C4 cluster, preceding the active site.
Collapse
Affiliation(s)
- Naveed Anjum Chikan
- Division of Medical Biotechnology, School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
- Departments of Biotechnology, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Shoiab Bukhari
- Departments of Biotechnology, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Nadeem Shabir
- Department of Animal Biotechnology, College of Veterinary Sciences, Anand Agricultural University, Anand, Gujarat, India, 388 001
| | - Asif Amin
- Departments of Biotechnology, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Sheikh Shafi
- Department of Clinical Biochemistry, Sher-i- Kashmir Institute of Medical Sciences, Srinagar, Kashmir, 190011, India
| | - Raies Ahmad Qadri
- Departments of Biotechnology, University of Kashmir, Srinagar, Kashmir, 190006, India
| | - Trupti Navin Chandra Patel
- Division of Medical Biotechnology, School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, 632014, India
- * E-mail:
| |
Collapse
|
6
|
Masutani M, Nozaki T, Nakamoto K, Nakagama H, Suzuki H, Kusuoka O, Tsutsumi M, Sugimura T. The response of Parp knockout mice against DNA damaging agents. Mutat Res 2000; 462:159-66. [PMID: 10767627 DOI: 10.1016/s1383-5742(00)00033-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gene-disruption studies involving poly(ADP-ribose) polymerase (Parp) have identified the various roles of Parp in cellular responses to DNA damage. The partial rescue of V[D]J recombination process in SCID/Parp(-/-) double mutant mice indicates the participation of Parp in the repair of DNA strand break. Parp(-/-) mice are more sensitive to the lethal effects of alkylating agents. Parp is also thought to be involved in base-excision repair after DNA damage caused by alkylating agents. On the other hand, resistance of Parp(-/-) mice to DNA damage induced by reactive oxygen species implicates the contribution of Parp to cell death through NAD depletion. Parp(-/-) mice with two different genetic backgrounds also show enhanced sensitivity to the lethal effects of gamma-irradiation. Parp(-/-) mice show more severe villous atrophy of the small intestine compared to the wild-type counterpart in a genetic background of 129Sv/C57BL6. Other forms of enhanced tissue damage have been identified in Parp(-/-) mice with a genetic background of 129Sv/ICR. For example, Parp(-/-) mice exhibit extensive hemorrhage in the glandular stomach and other tissues, such as the testes, after gamma-irradiation. Severe myelosuppression is also observed in both Parp(+/+) and Parp(-/-) mice, but Parp(+/+) mice show extensive extramedullary hematopoiesis in the spleen during the recovery phase of post-irradiation, whereas the spleen of Parp(-/-) mice exhibits severe atrophy with no extramedullary hematopoiesis. The absence of extramedullary hematopoiesis in the spleen is probably the underlying mechanism of hemorrhagic tendency in various tissues of Parp(-/-) mice. These findings suggest that loss of Parp activity could contribute to post-irradiation tissue hemorrhage.
Collapse
Affiliation(s)
- M Masutani
- Biochemistry Division, National Cancer Center Research Institute, 1-1 Tsukiji 5-chome, Chuo-ku, Tokyo, 104-0045, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Asamoto M, Mikheev AM, Jiang YZ, Wild CP, Hall J, Montesano R. Immunohistochemical detection of DNA alkylation adducts in rat and hamster liver after treatment with dimethylnitrosamine. EXPERIMENTAL PATHOLOGY 1991; 41:71-8. [PMID: 2037033 DOI: 10.1016/s0232-1513(11)80004-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Monoclonal and polyclonal antibodies specific for methylation adducts have been applied in an immunohistochemical study of DNA damage in rat and hamster liver following exposure to dimethylnitrosamine. The approach was validated, for frozen and paraffin-embedded sections, by comparison with biochemical data on adduct levels in whole tissues or specific cell populations in the same experimental systems. The potential application of this method to human exposure assessment is discussed.
Collapse
Affiliation(s)
- M Asamoto
- Unit of Mechanisms of Carcinogenesis, International Agency for Research on Cancer, Lyon, France
| | | | | | | | | | | |
Collapse
|
8
|
Kokkinakis DM. Differences between pancreatropic nitrosamine carcinogens and N-nitrosodimethylamine in methylating DNA in various tissues of hamsters and rats. Chem Biol Interact 1991; 78:167-81. [PMID: 2040022 DOI: 10.1016/0009-2797(91)90012-v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N-Nitrosobis(2-oxopropyl)amine (BOP) and N-nitroso(2-hydroxypropyl)(2-oxypropyl)amine (HPOP) induce pancreatic tumors in the Syrian hamster. BOP and HPOP target the kidneys, esophagus and upper respiratory system in rats, but the pancreas of this species is resistant to the above carcinogens. On the other hand, N-nitrosodimethylamine (DMN) induces hepatic and kidney tumors in the rat, and tumors of the liver and upper respiratory system in the hamster, but it is not known to affect the pancreas of either species. At equimolar doses, ratios of DMN versus BOP or HPOP mediated methylation in hamster liver DNA are 1.6 and 8.1, respectively. Respective ratios in the rat liver are 1.1 and 6.5. However, in both species equitoxic doses of BOP, HPOP and DMN induce similar levels of N7-methylguanine (N7-MeG) in hepatic DNA. At such doses methylation of kidney DNA is 24 and 14 times more extensive in BOP and HPOP than in DMN-treated hamsters. Similarly, ratios of N7-MeG in the pancreas of BOP and HPOP vs. DMN-treated hamsters are 10 and 5, respectively, while in the lung this ratio is 2.2 for both carcinogens. Levels of O6-methylguanine (O6-MeG) in the DNA of extrahepatic tissues are substantially greater in hamsters treated with BOP or HPOP than in those treated with an equitoxic dose of DMN. In rats, equitoxic doses of BOP and DMN induce similar levels of N7-MeG and O6-MeG in hepatic, kidney and lung DNA. However, levels of these adducts in pancreatic DNA are 2 times greater following BOP than DMN administration. Ratios of N7-MeG in pancreas, lung and kidney in HPOP vs. DMN-treated rats are 2.1, 2.7 and 2.1, respectively. Repair of O6-MeG is more effective in rat than in hamster liver, however in other tissues this is not always the case. Levels of O6-MeG in the pancreas of rats are reduced to half of their initial value between 40 and 50 h following the administration of 10, 50 or 20 mg/kg DMN, HPOP or BOP, respectively. However, half-lives for the repair of O6-MeG in hamster pancreas are 28, 62 and greater than 120 h at the respective doses of the above carcinogens. Since the above doses of DMN, HPOP and BOP induce 7, 19 and 41 nmol O6-MeG/mmol of guanine respectively in the hamster pancreas, it is suggested that the rate of repair could be a function of the initial concentration of this adduct. Differences between DMN and BOP or HPOP in methylating pancreatic DNA are sufficient to distinguish the latter two nitrosamines as pancreatic carcinogens for the hamster.
Collapse
Affiliation(s)
- D M Kokkinakis
- Northwestern University Medical School, Department of Pathology, Chicago, IL 60611
| |
Collapse
|
9
|
Weisburger JH, Jones RC, Barnes WS, Pegg AE. Mechanisms of differential strain sensitivity in gastric carcinogenesis. Jpn J Cancer Res 1988; 79:1304-10. [PMID: 3148600 PMCID: PMC5917662 DOI: 10.1111/j.1349-7006.1988.tb01560.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The genetically-controlled, distinct sensitivity of different rat strains to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced cancer of the glandular stomach and duodenum was investigated. MNNG is activated through thiols, and the thiol content of the glandular stomach, duodenum, and liver of the BN rat tended to be slightly, but not significantly higher than that of the Wistar, Sprague-Dawley, Lewis, and Buffalo rats. The levels of the DNA repair system, O6-alkylguanine transferase (AGT), in sensitive Wistar strain rats had values similar to those in resistant Buffalo strain rats. Administration of 80 mg/liter of MNNG in the drinking water for six weeks up to the time of tissue collection yielded the same AGT levels. Of all the parameters examined to account for genetically-mediated sensitivity to gastrointestinal cancer induction, namely, N-denitrosation, thiol activation, AGT-related DNA repair, and cell duplication rates, the latter yielded the best association, although these factors acting together may be involved.
Collapse
|
10
|
González Svatetz CA, Paluzie Avila G, Agudo Trigueros A. [Diet, environmental factors and gastric cancer]. GACETA SANITARIA 1988; 2:157-64. [PMID: 3148586 DOI: 10.1016/s0213-9111(88)70919-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Furihata C, Matsushima T. Use of in vivo/in vitro unscheduled DNA synthesis for identification of organ-specific carcinogens. Crit Rev Toxicol 1987; 17:245-77. [PMID: 3556021 DOI: 10.3109/10408448709071210] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There are still only a few in vivo short-term assay methods for predicting potential organ-specific carcinogens and mutagens in mammals, although such methods are required for evaluating the in vivo effects of in vitro mutagens. In the in vivo/in vitro UDS assay methods described here, chemicals are given to experimental animals and induction of UDS in target organs is determined by in vitro organ culture or primary cell culture in the presence of [3H]dThd. Incorporation of [3H]dThd into DNA is measured with a liquid scintillation counter or by autoradiography. These methods have now been applied to the glandular stomach, forestomach, colon, liver, kidney, pancreas, tracheal epithelium, nasal epithelium, and spermatocytes. With minor modifications, they may also be applied to other organs. The present review shows that induction of UDS in various organs correlated well with the induction of cancer in these organs. The present authors have used the present methods to identify some potential organ-specific mutagens and carcinogens in mammals. The present authors found that three dicarbonyl compounds, glyoxal, methylglyoxal, and diacetyl, induced apparent UDS and TDS in the glandular stomach, and other groups found that 2-NT, MA6BT, and CNEt6BT induced UDS in the liver. These in vivo/in vitro UDS assays are better than in vitro UDS assay for identification of potential organ-specific mutagens and carcinogens in mammals and are especially useful for identifying potential mutagens and carcinogens that are specific for certain organs, such as the stomach, liver, and kidney. They are also useful for examining the potential mutagenicities and carcinogenicities of carcinogen analogs. However, these methods are not suitable for general in vivo screening because they are not yet available for all organs. A further advantage of the methods is that they can be used to examine larger numbers of animals at one time than other methods for detecting DNA damage, such as alkaline elution or alkaline sucrose density gradient centrifugation. Glyoxal enhanced cancer induction in the glandular stomach by the administration of a limited amount of MNNG and then glyoxal afterward in the two-stage stomach carcinogenesis.
Collapse
|