1
|
Glasgow KW, Dillard M, Hertenstein E, Justin A, George R, Brady AB. Going Nuclear with Amino Acids and Proteins - Basic Biochemistry and Molecular Biology Primer for the Technologist. J Nucl Med Technol 2022; 50:186-194. [PMID: 35197272 DOI: 10.2967/jnmt.122.263847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, there has been an influx of new tracers into the field of nuclear medicine and molecular imaging. Most of these tracers that have been FDA approved for clinical imaging exploit various mechanisms of protein biochemistry and molecular biology to bring about their actions, such as amino acid metabolism, protein folding, receptor-ligand interactions, and surface transport mechanisms. In this review, we attempt to paint a clear picture of the basic biochemistry and molecular biology of protein structure, translation, transcription, post-translational modifications, and protein targeting, in the context of the various radiopharmaceuticals currently used clinically, all in an easy-to-understand language for entry level technologists in the field. Tracer characteristics, including indications, dosage, injection-to-imaging time, and the logic behind the normal and pathophysiologic biodistribution of these newer molecular tracers, are also discussed.
Collapse
Affiliation(s)
| | - Mike Dillard
- Nuclear Medicine, PET/CT, Therapeutics, Inland Imaging, LLC, United States
| | - Eric Hertenstein
- Nuclear Medicine Institute and Master of Science in Radiologic Sciences Graduate Program, University of Findlay, United States
| | - Allen Justin
- Western Sierra Collegiate Academy, United States
| | - Remo George
- Nuclear Medicine and Molecular Imaging Sciences Program, University of Alabama at Birmingham, United States
| | - Amy Byrd Brady
- Nuclear Medicine and Molecular Imaging Sciences Program, University of Alabama at Birmingham, United States
| |
Collapse
|
2
|
A unique peptide deformylase platform to rationally design and challenge novel active compounds. Sci Rep 2016; 6:35429. [PMID: 27762275 PMCID: PMC5071857 DOI: 10.1038/srep35429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
Peptide deformylase (PDF) is considered an excellent target to develop antibiotics. We have performed an extensive characterization of a new PDF from the pathogen Streptococcus agalactiae, showing properties similar to other known PDFs. S. agalactiae PDF could be used as PDF prototype as it allowed to get complete sets of 3-dimensional, biophysical and kinetic data with virtually any inhibitor compound. Structure-activity relationship analysis with this single reference system allowed us to reveal distinct binding modes for different PDF inhibitors and the key role of a hydrogen bond in potentiating the interaction between ligand and target. We propose this protein as an irreplaceable tool, allowing easy and relevant fine comparisons between series, to design, challenge and validate novel series of inhibitors. As proof-of-concept, we report here the design and synthesis of effective specific bacterial PDF inhibitors of an oxadiazole series with potent antimicrobial activity against a multidrug resistant clinical isolate.
Collapse
|
3
|
Grant SK, Sklar JG, Cummings RT. Development of Novel Assays for Proteolytic Enzymes Using Rhodamine-Based Fluorogenic Substrates. ACTA ACUST UNITED AC 2016; 7:531-40. [PMID: 14599351 DOI: 10.1177/1087057102238627] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Components within synthetic chemical and natural product extract libraries often interfere with fluorescence-based assays. Fluorescence interference can result when the intrinsic spectral properties of colored compounds overlap with the fluorescent probes. Typically, fluorescence-based protease assays use peptide amidomethylcoumarin derivatives as substrates. However, because many organic compounds absorb in the ultraviolet region, they can interfere with coumarin-based fluorescence assays. Red-shifted fluorescent dyes such as peptidyl rhodamine derivatives are useful because there is generally less interference from organic compounds outside the ultraviolet wavelengths. In this report, rhodamine-based fluorogenic substrates, such as bis-(Leu)2-Rhod110 and bis-(Ala-Pro)2-Rhod110, were developed for leucine aminopeptidase and dipeptidyl aminopeptidase. Novel, tandem rhodamine substrates such as Ala-Pro-Rhod110-Leu were designed with 2 protease cleavage sites and used to assay 2 proteases in a multiplex format. General endpoint high-throughput screening (HTS) assays were also developed for leucine aminopeptidase, dipeptidyl aminopeptidase, and trypsin that incorporated both amidomethylcoumarin and rhodamine-based fluorogenic substrates into a single screening format. These dual-substrate assays allowed for the successful screening of the LOPAC™ collection and natural product extracts despite high levels of fluorescence interference.
Collapse
Affiliation(s)
- Stephan K Grant
- Department of Human and Animal Infectious Disease Research, Merck and Co., Rahway, NJ, USA
| | | | | |
Collapse
|
4
|
Bienvenut WV, Giglione C, Meinnel T. Proteome-wide analysis of the amino terminal status of Escherichia coli proteins at the steady-state and upon deformylation inhibition. Proteomics 2016; 15:2503-18. [PMID: 26017780 DOI: 10.1002/pmic.201500027] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
Abstract
A proteome wide analysis was performed in Escherichia coli to identify the impact on protein N-termini of actinonin, an antibiotic specifically inhibiting peptide deformylase (PDF). A strategy and tool suite (SILProNaQ) was employed to provide large-scale quantitation of N-terminal modifications. In control conditions, more than 1000 unique N-termini were identified with 56% showing initiator methionine removal. Additional modifications corresponded to partial or complete Nα-acetylation (10%) and N-formyl retention (5%). Among the proteins undergoing these N-terminal modifications, 140 unique N-termini from translocated membrane proteins were highlighted. The very early time-course impact of actinonin was followed after addition of bacteriostatic concentrations of the drug. Under these conditions, 26% of all proteins did not undergo deformylation any longer after 10 min, a value reaching more than 60% of all characterized proteins after 40 min of treatment. The N-formylation ratio measured on individual proteins increased with the same trend. Upon early PDF inhibition, two major categories of proteins retained their N-formyl group: a large number of inner membrane proteins and many proteins involved in protein synthesis including factors assisting the nascent chains in early cotranslational events. All MS data have been deposited in the ProteomeXchange with identifiers PXD001979, PXD002012 and PXD001983 (http://proteomecentral.proteomexchange.org/dataset/PXD001979, http://proteomecentral.proteomexchange.org/dataset/PXD002012 and http://proteomecentral.proteomexchange.org/dataset/PXD001983).
Collapse
Affiliation(s)
- Willy V Bienvenut
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Carmela Giglione
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Thierry Meinnel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Giglione C, Fieulaine S, Meinnel T. N-terminal protein modifications: Bringing back into play the ribosome. Biochimie 2015; 114:134-46. [PMID: 25450248 DOI: 10.1016/j.biochi.2014.11.008] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
N-terminal protein modifications correspond to the first modifications which in principle any protein may undergo, before translation is completed by the ribosome. This class of essential modifications can have different nature or function and be catalyzed by a variety of dedicated enzymes. Here, we review the current state of the major N-terminal co-translational modifications, with a particular emphasis to their catalysts, which belong to metalloprotease and acyltransferase clans. The earliest of these modifications corresponds to the N-terminal methionine excision, an ubiquitous and essential process leading to the removal of the first methionine. N-alpha acetylation occurs also in all Kingdoms although its extent appears to be significantly increased in higher eukaryotes. Finally, N-myristoylation is a crucial pathway existing only in eukaryotes. Recent studies dealing on how some of these co-translational modifiers might work in close vicinity of the ribosome is starting to provide new information on when these modifications exactly take place on the elongating nascent chain and the interplay with other ribosome biogenesis factors taking in charge the nascent chains. Here a comprehensive overview of the recent advances in the field of N-terminal protein modifications is given.
Collapse
Affiliation(s)
- Carmela Giglione
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| | - Sonia Fieulaine
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- CNRS, Institut des Sciences du Végétal, 1 Avenue de la Terrasse, Bât 23A, F-91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
6
|
Ivankin AN, Kulikovskii AV, Vostrikova NL, Chernuha IM. Cis and trans conformational changes of bacterial fatty acids in comparison with analogs of animal and vegetable origin. APPL BIOCHEM MICRO+ 2014. [DOI: 10.1134/s0003683814060052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Fieulaine S, Desmadril M, Meinnel T, Giglione C. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart. ACTA ACUST UNITED AC 2014; 70:242-52. [DOI: 10.1107/s1399004713026461] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/24/2013] [Indexed: 11/11/2022]
Abstract
Peptide deformylases (PDFs), which are essential and ubiquitous enzymes involved in the removal of theN-formyl group from nascent chains, are classified into four subtypes based on the structural and sequence similarity of specific conserved domains. All PDFs share a similar three-dimensional structure, are functionally interchangeablein vivoand display similar propertiesin vitro, indicating that their molecular mechanism has been conserved during evolution. The human mitochondrial PDF is the only exception as despite its conserved fold it reveals a unique substrate-binding pocket together with an unusual kinetic behaviour. Unlike human PDF, the closely related mitochondrial PDF1As from plants have catalytic efficiencies and enzymatic parameters that are similar to those of other classes of PDFs. Here, the aim was to identify the structural basis underlying the properties of human PDF compared with all other PDFs by focusing on plant mitochondrial PDF1A. The construction of a chimaera composed of plant PDF1A with the nonrandom substitutions found in a conserved motif of its human homologue converted it into an enzyme with properties similar to the human enzyme, indicating the crucial role of these positions. The crystal structure of this human-like plant PDF revealed that substitution of two residues leads to a reduction in the volume of the ligand-binding site together with the introduction of negative charges, unravelling the origin of the weak affinity of human PDF for its substrate. In addition, the substitution of the two residues of human PDF modifies the transition state of the reaction through alteration of the network of interactions between the catalytic residues and the substrate, leading to an overall reduced reaction rate.
Collapse
|
8
|
Identification of crucial amino acids of bacterial Peptide deformylases affecting enzymatic activity in response to oxidative stress. J Bacteriol 2013; 196:90-9. [PMID: 24142250 DOI: 10.1128/jb.00916-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide deformylase (PDF) is an essential bacterial metalloprotease involved in deformylation of N-formyl group from nascent polypeptide chains during protein synthesis. Iron-containing variants of this enzyme from Salmonella enterica serovar Typhimurium (sPDF) and Mycobacterium tuberculosis (mPDF), although inhibited by oxidizing agents like H2O2, exhibited strikingly different 50% inhibitory concentrations (IC50s) that ranged from nanomolar (sPDF) to millimolar (mPDF) levels. Furthermore, the metal dissociation rate was higher in sPDF than mPDF. We hypothesized that a restriction in entry of environmental oxygen or oxidizing agents into the active site of mPDF might be the cause for such discrepancies between two enzymes. Since the active-site residues of the two proteins are similar, we evaluated the role of the oxidation-prone noncatalytic residue(s) in the process. Amino acid sequence analysis revealed that Cys-130 of sPDF corresponds to Met-145 of mPDF and that they are away from the active sites. Swapping methionine with cysteine in mPDF, the M145C protein displayed a drastic decrease in the IC50 for H2O2 and an increased metal dissociation rate compared to the wild type. Matrix-assisted laser desorption ionization (MALDI) analysis of a trypsin-digested fragment containing Cys-145 of the M145C protein also indicated its increased susceptibility to oxidation. To incorporate residues identical to those of mPDF, we created a double mutant of sPDF (C130M-V63C) that showed increased IC50 for H2O2 compared to the wild type. Interestingly, the oxidation state of cysteines in C130M-V63C was unaffected during H2O2 treatment. Taken together, our results unambiguously established the critical role of noncatalytic cysteine/methionine for enzymatic sensitivity to H2O2 and, thus, for conferring behavioral distinction of bacterial PDFs under oxidative stress conditions.
Collapse
|
9
|
Goemaere E, Melet A, Larue V, Lieutaud A, Alves de Sousa R, Chevalier J, Yimga-Djapa L, Giglione C, Huguet F, Alimi M, Meinnel T, Dardel F, Artaud I, Pagès JM. New peptide deformylase inhibitors and cooperative interaction: a combination to improve antibacterial activity. J Antimicrob Chemother 2012; 67:1392-400. [PMID: 22378679 DOI: 10.1093/jac/dks058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES Bacterial drug resistance is a worrying public health problem and there is an urgent need for research and development to provide new antibacterial molecules. Peptide deformylase (PDF) is now a well-described intracellular target selected for the design of a new antibiotic group, PDF inhibitors (PDFIs). The initial bacterial susceptibility to an inhibitor of a cytoplasmic target is directly associated with the diffusion of the compound through the membrane barrier of Gram-negative bacteria and with its cytosolic accumulation at the required concentration. METHODS We have recently demonstrated that the activity of different PDFIs is strongly dependent on the accumulation of the active molecules by using permeabilizing agents, efflux inhibitors or efflux-mutated strains. In this work we assessed various combination protocols using different putative inhibitors (PDFIs, methionine aminopeptidase inhibitors etc.) to improve antibacterial activity against various resistant Gram-negative bacteria. RESULTS The maximum effect was observed when combining actinonin with a dual inhibitor of methionine aminopeptidase and PDF, this molecule being also able to interact with the target while actinonin is bound to the PDF active site. CONCLUSIONS Such a combination of inhibitors acting on two tightly associated metabolic steps results in a cooperative effect on bacterial cells and opens an original way to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Emilie Goemaere
- UMR-MD1, Transporteurs Membranaires, Chimiorésistance et Drug-Design, Aix-Marseille Université, IRBA, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Adam Z, Frottin F, Espagne C, Meinnel T, Giglione C. Interplay between N-terminal methionine excision and FtsH protease is essential for normal chloroplast development and function in Arabidopsis. THE PLANT CELL 2011; 23:3745-60. [PMID: 22010036 PMCID: PMC3229147 DOI: 10.1105/tpc.111.087239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
N-terminal methionine excision (NME) is the earliest modification affecting most proteins. All compartments in which protein synthesis occurs contain dedicated NME machinery. Developmental defects induced in Arabidopsis thaliana by NME inhibition are accompanied by increased proteolysis. Although increasing evidence supports a connection between NME and protein degradation, the identity of the proteases involved remains unknown. Here we report that chloroplastic NME (cNME) acts upstream of the FtsH protease complex. Developmental defects and higher sensitivity to photoinhibition associated with the ftsh2 mutation were abolished when cNME was inhibited. Moreover, the accumulation of D1 and D2 proteins of the photosystem II reaction center was always dependent on the prior action of cNME. Under standard light conditions, inhibition of chloroplast translation induced accumulation of correctly NME-processed D1 and D2 in a ftsh2 background, implying that the latter is involved in protein quality control, and that correctly NME-processed D1 and D2 are turned over primarily by the thylakoid FtsH protease complex. By contrast, inhibition of cNME compromises the specific N-terminal recognition of D1 and D2 by the FtsH complex, whereas the unprocessed forms are recognized by other proteases. Our results highlight the tight functional interplay between NME and the FtsH protease complex in the chloroplast.
Collapse
Affiliation(s)
- Zach Adam
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Frédéric Frottin
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Christelle Espagne
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Centre National de la Recherche Scientifique, Campus de Recherche de Gif, Institut des Sciences du Végétal, F-91198 Gif-sur-Yvette cedex, France
- Address correspondence to
| |
Collapse
|
11
|
Fieulaine S, Boularot A, Artaud I, Desmadril M, Dardel F, Meinnel T, Giglione C. Trapping conformational states along ligand-binding dynamics of peptide deformylase: the impact of induced fit on enzyme catalysis. PLoS Biol 2011; 9:e1001066. [PMID: 21629676 PMCID: PMC3101196 DOI: 10.1371/journal.pbio.1001066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/14/2011] [Indexed: 11/18/2022] Open
Abstract
For several decades, molecular recognition has been considered one of the most fundamental processes in biochemistry. For enzymes, substrate binding is often coupled to conformational changes that alter the local environment of the active site to align the reactive groups for efficient catalysis and to reach the transition state. Adaptive substrate recognition is a well-known concept; however, it has been poorly characterized at a structural level because of its dynamic nature. Here, we provide a detailed mechanism for an induced-fit process at atomic resolution. We take advantage of a slow, tight binding inhibitor-enzyme system, actinonin-peptide deformylase. Crystal structures of the initial open state and final closed state were solved, as well as those of several intermediate mimics captured during the process. Ligand-induced reshaping of a hydrophobic pocket drives closure of the active site, which is finally “zipped up” by additional binding interactions. Together with biochemical analyses, these data allow a coherent reconstruction of the sequence of events leading from the encounter complex to the key-lock binding state of the enzyme. A “movie” that reconstructs this entire process can be further extrapolated to catalysis. The notion of induced fit when a protein binds its ligand—like a glove adapting to the shape of a hand—is a central concept of structural biochemistry introduced over 50 years ago. A detailed molecular demonstration of this phenomenon has eluded biochemists, however, largely due to the difficulty of capturing the steps of this very transient process: the “conformational change.” In this study, we were able to see this process by using X-ray diffraction to determine more than 10 distinct structures adopted by a single enzyme when it binds a ligand. To do this, we took advantage of the “slow, tight-binding” of a potent inhibitor to its specific target enzyme to trap intermediates in the binding process, which allowed us to monitor the action of an enzyme in real-time at atomic resolution. We showed the kinetics of the conformational change from an initial open state, including the encounter complex, to the final closed state of the enzyme. From these data and other biochemical and biophysical analyses, we make a coherent causal reconstruction of the sequence of events leading to inhibition of the enzyme's activity. We also generated a movie that reconstructs the sequence of events during the encounter. Our data provide new insights into how enzymes achieve a catalytically competent conformation in which the reactive groups are brought into close proximity, resulting in catalysis.
Collapse
Affiliation(s)
| | | | - Isabelle Artaud
- Université Paris Descartes, UMR8601, Paris, France
- CNRS, UMR8601, Paris, France
| | - Michel Desmadril
- Université Paris-Sud, IBBMC, UMR8619, Orsay, France
- CNRS, IBBMC, UMR8619, Orsay, France
| | - Frédéric Dardel
- Université Paris Descartes, UMR8015, Paris, France
- CNRS, UMR8015, Paris, France
| | - Thierry Meinnel
- CNRS, ISV, UPR2355, Gif-sur-Yvette, France
- * E-mail: (TM); (CG)
| | | |
Collapse
|
12
|
Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 2010; 30:343-54. [PMID: 20967479 DOI: 10.1007/s10096-010-1091-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 10/01/2010] [Indexed: 10/18/2022]
Abstract
Staphylococcal species, notably, coagulase-negative staphylococci (CoNS), are frequently misidentified using phenotypic methods. The partial nucleotide sequences of the tuf and gap genes were determined in 47 reference strains to assess their suitability, practicability, and discriminatory power as target molecules for staphylococcal identification. The partial tuf gene sequence was selected and further assessed with a collection of 186 strains, including 35 species and subspecies. Then, to evaluate the efficacy of this genotyping method versus the technology of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), the 186 strains were identified using MALDI-TOF-MS (Axima® Shimadzu) coupled to the SARAMIS® database (AnagnosTec). The French National Reference Center for Staphylococci identification method was used as a reference. One hundred and eighty-four strains (98.9%) were correctly identified by tuf gene sequencing. Only one strain was misidentified and one was unidentified. MALDI-TOF-MS identified correctly 138 isolates (74.2%). Four strains were misidentified, 39 were unidentified, five were identified at the group (hominis/warneri) level, and one strain was identified at the genus level. These results confirm the value of MALDI-TOF-MS identification for common species in clinical laboratory practice and the value of the partial tuf gene sequence for the identification of all staphylococcal species as required in a reference laboratory.
Collapse
|
13
|
Recombinant Expression, Isotope Labeling, and Purification of Cold shock Protein from Colwellia psychrerythraea for NMR Study. B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.11.2647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Salah P, Bisaglia M, Aliprandi P, Uzan M, Sizun C, Bontems F. Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis. Nucleic Acids Res 2009; 37:5578-88. [PMID: 19605565 PMCID: PMC2760812 DOI: 10.1093/nar/gkp547] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli ribosomal protein S1 is required for the translation initiation of messenger RNAs, in particular when their Shine-Dalgarno sequence is degenerated. Closely related forms of the protein, composed of the same number of domains (six), are found in all Gram-negative bacteria. More distant proteins, generally formed of fewer domains, have been identified, by sequence similarities, in Gram-positive bacteria and are also termed 'S1 proteins'. However in the absence of functional information, it is generally difficult to ascertain their relationship with Gram-negative S1. In this article, we report the solution structure of the fourth and sixth domains of the E. coli protein S1 and show that it is possible to characterize their beta-barrel by a consensus sequence that allows a precise identification of all domains in Gram-negative and Gram-positive S1 proteins. In addition, we show that it is possible to discriminate between five domain types corresponding to the domains 1, 2, 3, 4-5 and 6 of E. coli S1 on the basis of their sequence. This enabled us to identify the nature of the domains present in Gram-positive proteins and, subsequently, to probe the filiations between all forms of S1.
Collapse
Affiliation(s)
- Philippe Salah
- CNRS, Centre de Recherche CNRS de Gif-sur-Yvette FRC 3115, Institut de Chimie des Substances Naturelles, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
15
|
Wiltschi B, Merkel L, Budisa N. Fine tuning the N-terminal residue excision with methionine analogues. Chembiochem 2009; 10:217-20. [PMID: 19067457 DOI: 10.1002/cbic.200800605] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Birgit Wiltschi
- Max Planck Institute of Biochemistry, Molecular Biotechnology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
16
|
Goto Y, Murakami H, Suga H. Initiating translation with D-amino acids. RNA (NEW YORK, N.Y.) 2008; 14:1390-8. [PMID: 18515548 PMCID: PMC2441986 DOI: 10.1261/rna.1020708] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/30/2008] [Indexed: 05/19/2023]
Abstract
Here we report experimental evidence that the translation initiation apparatus accepts D-amino acids ((D)aa), as opposed to only L-methionine, as initiators. Nineteen (D)aa, as the stereoisomers to their natural L-amino acids, were charged onto initiator tRNA(fMet)(CAU) using flexizyme technology and tested for initiation in a reconstituted Escherichia coli translation system lacking methionine, i.e., the initiator was reprogrammed from methionine to (D)aa. Remarkably, all (D)aa could initiate translation while the efficiency of initiation depends upon the type of side chain. The peptide product initiated with (D)aa was generally in a nonformylated form, indicating that methionyl-tRNA formyltransferase poorly formylated the corresponding (D)aa-tRNA(fMet)(CAU). Although the inefficient formylation of (D)aa-tRNA(fMet)(CAU) resulted in modest expression of the corresponding peptide, preacetylation of (D)aa-tRNA(fMet)(CAU) dramatically increased expression level, implying that the formylation efficiency is one of the critical determinants of initiation efficiency with (D)aa. Our findings provide not only the experimental evidence that translation initiation tolerates (D)aa, but also a new means for the mRNA-directed synthesis of peptides capped with (D)aa or acyl-(D)aa at the N terminus.
Collapse
Affiliation(s)
- Yuki Goto
- Research Center of Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | | | | |
Collapse
|
17
|
Lin YH, Chang BC, Chiang PW, Tang SL. Questionable 16S ribosomal RNA gene annotations are frequent in completed microbial genomes. Gene 2008; 416:44-7. [DOI: 10.1016/j.gene.2008.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/18/2008] [Accepted: 02/26/2008] [Indexed: 11/16/2022]
|
18
|
Haque ME, Grasso D, Spremulli LL. The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt. Nucleic Acids Res 2007; 36:589-97. [PMID: 18056078 PMCID: PMC2241858 DOI: 10.1093/nar/gkm1072] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian mitochondrial initiation factor 3 (IF3mt) has a central region with homology to bacterial IF3. This homology region is preceded by an N-terminal extension and followed by a C-terminal extension. The role of these extensions on the binding of IF3mt to mitochondrial small ribosomal subunits (28S) was studied using derivatives in which the extensions had been deleted. The Kd for the binding of IF3mt to 28S subunits is ∼30 nM. Removal of either the N- or C-terminal extension has almost no effect on this value. IF3mt has very weak interactions with the large subunit of the mitochondrial ribosome (39S) (Kd = 1.5 μM). However, deletion of the extensions results in derivatives with significant affinity for 39S subunits (Kd = 0.12−0.25 μM). IF3mt does not bind 55S monosomes, while the deletion derivative binds slightly to these particles. IF3mt is very effective in dissociating 55S ribosomes. Removal of the N-terminal extension has little effect on this activity. However, removal of the C-terminal extension leads to a complex dissociation pattern due to the high affinity of this derivative for 39S subunits. These data suggest that the extensions have evolved to ensure the proper dissociation of IF3mt from the 28S subunits upon 39S subunit joining.
Collapse
Affiliation(s)
- Md Emdadul Haque
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC-27599-3290, USA
| | | | | |
Collapse
|
19
|
Paës G, O'Donohue MJ. Engineering increased thermostability in the thermostable GH-11 xylanase from Thermobacillus xylanilyticus. J Biotechnol 2006; 125:338-50. [PMID: 16644050 DOI: 10.1016/j.jbiotec.2006.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
Enzymatic hydrolysis constitutes an attractive strategy for biorefining of abundant, low-cost agricultural by-products such as wheat bran and straw. However, to adopt such an approach, efficient enzymes are required, in particular xylanases. To promote heat-induced disorganization of the complex cell wall network in wheat bran and thus increase enzymatic hydrolysis, we have attempted to improve the thermoresistance of a GH-11 xylanase that is already moderately thermostable. Using a previously described engineering strategy that involves the introduction of disulphide bridges, a mutant (Tx-xyl-SS3) displaying enhanced thermostability and thermoactivity was obtained. The half life at 70 degrees C (180 min) of Tx-xyl-SS3 is 10-fold greater than that of the wild type enzyme and its specific activity is almost doubled (3500 IU mg(-1)). Despite these improvements, Tx-xyl-SS3 was unsuitable for use at significantly higher reaction temperatures (i.e. 85-95 degrees C) and thus the initial objective of this study remained unaccomplished. However, unexpectedly even at the normal hydrolytic temperature (60 degrees C), Tx-xyl-SS3 was able to solubilize 50% of the wheat bran arabinoxylans, 10 points more than the wild type enzyme in parallel reactions. The data presented here show that this improvement is not directly linked to the increase in thermostability and/or thermoactivity, but rather to other unidentified changes to physico-chemical properties that may allow Tx-xyl-SS3 to better penetrate the cell wall network in wheat bran.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA-UMR FARE 614, 8, rue Gabriel Voisin, BP 316, 51688 Reims Cedex 2, France
| | | |
Collapse
|
20
|
Delostrinos CF, Hudson AE, Feng WC, Kosman J, Bassuk JA. The C-terminal Ca2+-binding domain of SPARC confers anti-spreading activity to human urothelial cells. J Cell Physiol 2006; 206:211-20. [PMID: 16121393 DOI: 10.1002/jcp.20462] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The anti-spreading activity of secreted protein acidic and rich in cysteine (SPARC) has been assigned to the C-terminal third domain, a region rich in alpha-helices. This "extracellular calcium-binding" (EC) domain contains two EF-hands that each coordinates one Ca2+ ion, forming a helix-loop-helix structure that not only drives the conformation of the protein but is also necessary for biological activity. Recombinant (r) EC, expressed in E. coli, was fused at the C-terminus to a His hexamer and isolated under denaturing conditions by nickel-chelate affinity chromatography. rEC-His was renatured by procedures that simultaneously (i) removed denaturing conditions, (ii) catalyzed disulfide bond isomerization, and (iii) initiated Ca2+-dependent refolding. Intrinsic tryptophan fluorescence and circular dichroism spectroscopies demonstrated that rEC-His exhibited a Ca2+-dependent conformation that was consistent with the known crystal structure. Spreading assays confirmed that rEC-His was biologically active through its ability to inhibit the spreading of freshly plated human urothelial cells propagated from transitional epithelium. rEC-His and rSPARC-His exhibited highly similar anti-spreading activities when measured as a function of concentration or time. In contrast to the wild-type and EC recombinant proteins, rSPARC(E268F)-His, a point substitution mutant at the Z position of EF-hand 2, failed to exhibit both Ca2+-dependent changes in alpha-helical secondary structure and anti-spreading activity. The collective data provide evidence that the motif of SPARC responsible for anti-spreading activity was dependent on the coordination of Ca2+ by a Glu residue at the Z position of EF-hand 2 and provide insights into how adhesive forces are balanced within the extracellular matrix of urothelial cells. .
Collapse
Affiliation(s)
- Catherine F Delostrinos
- Program in Human Urothelial Biology, Children's Hospital and Regional Medical Center, Seattle, Washington 98105-0371, USA
| | | | | | | | | |
Collapse
|
21
|
Powers R, Mirkovic N, Goldsmith-Fischman S, Acton TB, Chiang Y, Huang YJ, Ma L, Rajan PK, Cort JR, Kennedy MA, Liu J, Rost B, Honig B, Murray D, Montelione GT. Solution structure of Archaeglobus fulgidis peptidyl-tRNA hydrolase (Pth2) provides evidence for an extensive conserved family of Pth2 enzymes in archea, bacteria, and eukaryotes. Protein Sci 2005; 14:2849-61. [PMID: 16251366 PMCID: PMC2253226 DOI: 10.1110/ps.051666705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The solution structure of protein AF2095 from the thermophilic archaea Archaeglobus fulgidis, a 123-residue (13.6-kDa) protein, has been determined by NMR methods. The structure of AF2095 is comprised of four alpha-helices and a mixed beta-sheet consisting of four parallel and anti-parallel beta-strands, where the alpha-helices sandwich the beta-sheet. Sequence and structural comparison of AF2095 with proteins from Homo sapiens, Methanocaldococcus jannaschii, and Sulfolobus solfataricus reveals that AF2095 is a peptidyl-tRNA hydrolase (Pth2). This structural comparison also identifies putative catalytic residues and a tRNA interaction region for AF2095. The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Data Bank but not functionally annotated. The NMR structure of AF2095 has been further leveraged to obtain good-quality structural models for 55 other proteins. Although earlier studies have proposed that the Pth2 protein family is restricted to archeal and eukaryotic organisms, the similarity of the AF2095 structure to human Pth2, the conservation of key active-site residues, and the good quality of the resulting homology models demonstrate a large family of homologous Pth2 proteins that are conserved in eukaryotic, archaeal, and bacterial organisms, providing novel insights in the evolution of the Pth and Pth2 enzyme families.
Collapse
Affiliation(s)
- Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Moon JH, Park JK, Kim EE. Structure analysis of peptide deformylase from Bacillus cereus. Proteins 2005; 61:217-20. [PMID: 16049914 DOI: 10.1002/prot.20526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Ho Moon
- Biomedical Research Center, Life Sciences Division, Korea Institute of Science and Technology, Seoul, Korea
| | | | | |
Collapse
|
23
|
Zhou Z, Song X, Li Y, Gong W. Unique structural characteristics of peptide deformylase from pathogenic bacterium Leptospira interrogans. J Mol Biol 2004; 339:207-15. [PMID: 15123432 DOI: 10.1016/j.jmb.2004.03.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 03/16/2004] [Accepted: 03/16/2004] [Indexed: 11/29/2022]
Abstract
Peptide deformylase (PDF), which is essential for normal growth of bacteria but not for higher organisms, is explored as an attractive target for developing novel antibiotics. Here, we present the crystal structure of Leptospira interrogans PDF (LiPDF) at 2.2A resolution. To our knowledge, this is the first crystal structure of PDF associating in a stable dimer. The key loop (named the CD-loop: amino acid residues 66-76) near the active-site pocket adopts "closed" or "open" conformations in the two monomers forming the dimer. In the closed subunit, the CD-loop and residue Arg109 block the entry of the substrate-binding pocket, while the active-site pocket of the open subunit is occupied by the C-terminal tail from the neighbouring molecule. Moreover, a formate group, as one product of deformylisation, is observed bound with the active-site zinc ion. LiPDF displays significant structural differences in the C-terminal region compared to both type-I and type-II PDFs, suggesting a new family of PDFs.
Collapse
Affiliation(s)
- Zhaocai Zhou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Baldwin ET, Harris MS, Yem AW, Wolfe CL, Vosters AF, Curry KA, Murray RW, Bock JH, Marshall VP, Cialdella JI, Merchant MH, Choi G, Deibel MR. Crystal structure of type II peptide deformylase from Staphylococcus aureus. J Biol Chem 2002; 277:31163-71. [PMID: 12048187 DOI: 10.1074/jbc.m202750200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first crystal structure of Class II peptide deformylase has been determined. The enzyme from Staphylococcus aureus has been overexpressed and purified in Escherichia coli and the structure determined by x-ray crystallography to 1.9 A resolution. The purified iron-enriched form of S. aureus peptide deformylase enzyme retained high activity over many months. In contrast, the iron-enriched form of the E. coli enzyme is very labile. Comparison of the two structures details many differences; however, there is no structural explanation for the dramatic activity differences we observed. The protein structure of the S. aureus enzyme reveals a fold similar, but not identical to, the well characterized E. coli enzyme. The most striking deviation of the S. aureus from the E. coli structure is the unique conformation of the C-terminal amino acids. The distinctive C-terminal helix of the latter is replaced by a strand in S. aureus which wraps around the enzyme, terminating near the active site. Although there are no differences at the amino acid level near the active site metal ion, significant changes are noted in the peptide binding cleft which may play a role in the design of general peptide deformylase inhibitors.
Collapse
Affiliation(s)
- Eric T Baldwin
- Department of Structural Analytical and Medicinal Chemistry, Pharmacia, 301 Henrietta Street, Kalamazoo, MI 49007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Li Y, Chen Z, Gong W. Enzymatic properties of a new peptide deformylase from pathogenic bacterium Leptospira interrogans. Biochem Biophys Res Commun 2002; 295:884-9. [PMID: 12127977 DOI: 10.1016/s0006-291x(02)00777-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Peptide deformylase (LiPDF), a target protein for antibacterial agents from pathogenic bacteria Leptospira interrogans was identified and purified. Enzymatic studies including kinetics and inhibition revealed new inspiring highlights. The purified active enzyme was a dimer and showed a hyperbolic progress plot when the substrate was low but an excess substrate inhibition effect in higher substrate concentration. Variants on the metal-binding ligand-Cys102 were constructed to verify the indispensable attribute. Also the variant, LiPDF with the insertion residues (R(70)Y(71)P(72)G(73)T(74) P(75)D(76)V(77)) between the conserved motif 1 and motif 2 excised, was constructed and displayed no marked changes on enzymatic features. The results of atom absorbance proved that it contains a tightly bound Zn2+ rather than Fe2+ in E. coliPDF that is an essential cofactor for its high catalytic activity.
Collapse
Affiliation(s)
- Yikun Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | | | | |
Collapse
|
26
|
Solbiati J, Chapman-Smith A, Cronan JE. Stabilization of the biotinoyl domain of Escherichia coli acetyl-CoA carboxylase by interactions between the attached biotin and the protruding "thumb" structure. J Biol Chem 2002; 277:21604-9. [PMID: 11943781 DOI: 10.1074/jbc.m201928200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported (Chapman-Smith, A., Forbes, B. E., Wallace, J. C., and Cronan, J. E., Jr. (1997) J. Biol. Chem. 272, 26017-26022) that the biotinylated (holo) species of the biotin carboxyl carrier protein (BCCP) biotinoyl domain is much more resistant to chemical modification and proteolysis than the unbiotinylated (apo) form. We hypothesized that the increased stability was due to a conformational change engendered by interaction of the domain with biotin protein ligase, the enzyme that attaches the biotin moiety. We now report that a BCCP-87 species to which the biotin moiety was attached by chemical acylation rather than by biotin protein ligase showed the characteristically greater stability of the holo biotinoyl domain. This result demonstrates that our hypothesis was incorrect; the attached biotin is solely responsible for the increased stability. The bacterial and chloroplast multisubunit acetyl-CoA carboxylases are unusual in that the highly symmetrical and conserved structure of the biotinoyl domain of the BCCP subunit is disrupted by a structured loop called the "thumb" that protrudes from body of the domain. Prior structural work showed that the thumb interacts with uriedo ring of the attached biotin moiety. We have tested whether the thumb-biotin interactions are responsible for the greater holo form stability by examination of two BCCP-87 species that lack the thumb. These BCCP species were produced in both the apo and holo forms, and their sensitivities to trypsin digestion were compared. The holo forms of these proteins were found to be only marginally more stable than their apo forms and much more sensitive to trypsin digestion than the wild type holo-BCCP-87. Therefore, removal of the thumb has an effect similar to lack of biotinylation, indicating that thumb-biotin interactions are responsible for most (but not all) of the increased stability of the holo biotinoyl domain. In the course of these experiments we demonstrated that treatment of Escherichia coli with the peptide deformylase inhibitor, actinonin, results in the expected (but previously unreported) accumulation of an N-formylated protein species.
Collapse
Affiliation(s)
- José Solbiati
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
27
|
Abstract
The demands for recombinant proteins, in addition to plasmid DNA, for therapeutic use are steadily increasing. Bacterial fermentation processes have long been and still are the major tool for production of these molecules. The key objective of process optimization is to attain a high yield of the required quality, which is determined, to a large extent, by plasmid replication rates, metabolic capacity and the properties of the specific gene construct. When high copy number plasmids are used, the metabolic capacity of the host cell is often overstrained and efficient protein production is impaired. The plasmid copy number is the key parameter in the exploitation of the host cell, and can be maximized by optimal control of the flux ratios between biosynthesis of host cell proteins and recombinant proteins.
Collapse
Affiliation(s)
- Reingard Grabherr
- University of Agricultural Sciences, Institute of Applied Microbiology, Muthgasse 18, A-1190, Vienna, Austria.
| | | |
Collapse
|
28
|
Bradshaw RA, Hope CJ, Yi E, Walker KW. Co- and Posttranslational Processing: The Removal of Methionine. CO- AND POSTTRANSLATIONAL PROTEOLYSIS OF PROTEINS 2002. [DOI: 10.1016/s1874-6047(02)80015-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Guenneugues M, Caserta E, Brandi L, Spurio R, Meunier S, Pon CL, Boelens R, Gualerzi CO. Mapping the fMet-tRNA(f)(Met) binding site of initiation factor IF2. EMBO J 2000; 19:5233-40. [PMID: 11013225 PMCID: PMC302095 DOI: 10.1093/emboj/19.19.5233] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The interaction between fMet-tRNA(f)(Met) and Bacillus stearothermophilus translation initiation factor IF2 has been characterized. We demonstrate that essentially all thermodynamic determinants governing the stability and the specificity of this interaction are localized within the acceptor hexanucleotide fMet-3'ACCAAC of the initiator tRNA and a fairly small area at the surface of the beta-barrel structure of the 90-amino acid C-terminal domain of IF2 (IF2 C-2). A weak but specific interaction between IF2 C-2 and formyl-methionyl was also demonstrated. The surface of IF2 C-2 interacting with fMet-tRNA(f)(Met) has been mapped using two independent approaches, site- directed mutagenesis and NMR spectroscopy, which yielded consistent results. The binding site comprises C668 and G715 located in a groove accommodating the methionyl side-chain, R700, in the vicinity of the formyl group, Y701 and K702 close to the acyl bond between fMet and tRNA(f)(Met), and the surface lined with residues K702-S660, along which the acceptor arm of the initiator tRNA spans in the direction 3' to 5'.
Collapse
Affiliation(s)
- M Guenneugues
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Grill S, Gualerzi CO, Londei P, Bläsi U. Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 2000; 19:4101-10. [PMID: 10921890 PMCID: PMC306601 DOI: 10.1093/emboj/19.15.4101] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation initiation in bacteria involves a stochastic binding mechanism in which the 30S ribosomal subunit first binds either to mRNA or to initiator tRNA, fMet-tRNA(f)(Met). Leaderless lambda cI mRNA did not form a binary complex with 30S ribosomes, which argues against the view that ribosomal recruitment signals other than a 5'-terminal start codon are essential for translation initiation of these mRNAs. We show that, in Escherichia coli, translation initiation factor 2 (IF2) selectively stimulates translation of lambda cI mRNA in vivo and in vitro. These experiments suggest that the start codon of leaderless mRNAs is recognized by a 30S-fMet-tRNA(f)(Met)-IF2 complex, an intermediate equivalent to that obligatorily formed during translation initiation in eukaryotes. We further show that leaderless lambda cI mRNA is faithfully translated in vitro in both archaebacterial and eukaryotic translation systems. This suggests that translation of leaderless mRNAs reflects a fundamental capability of the translational apparatus of all three domains of life and lends support to the hypothesis that the translation initiation pathway is universally conserved.
Collapse
Affiliation(s)
- S Grill
- Institute of Microbiology and Genetics, Vienna Biocenter, University of Vienna, Dr Bohrgasse 9, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- E Fuchs
- Institute of Molecular Genetics, University of Heidelberg, Germany
| |
Collapse
|
32
|
Meunier S, Spurio R, Czisch M, Wechselberger R, Guenneugues M, Gualerzi CO, Boelens R. Structure of the fMet-tRNA(fMet)-binding domain of B. stearothermophilus initiation factor IF2. EMBO J 2000; 19:1918-26. [PMID: 10775275 PMCID: PMC302012 DOI: 10.1093/emboj/19.8.1918] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The three-dimensional structure of the fMet-tRNA(fMet) -binding domain of translation initiation factor IF2 from Bacillus stearothermophilus has been determined by heteronuclear NMR spectroscopy. Its structure consists of six antiparallel beta-strands, connected via loops, and forms a closed beta-barrel similar to domain II of elongation factors EF-Tu and EF-G, despite low sequence homology. Two structures of the ternary complexes of the EF-Tu small middle dotaminoacyl-tRNA small middle dot GDP analogue have been reported and were used to propose and discuss the possible fMet-tRNA(fMet)-binding site of IF2.
Collapse
Affiliation(s)
- S Meunier
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Green BG, Toney JH, Kozarich JW, Grant SK. Inhibition of bacterial peptide deformylase by biaryl acid analogs. Arch Biochem Biophys 2000; 375:355-8. [PMID: 10700392 DOI: 10.1006/abbi.1999.1673] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide deformylase is an essential eubacterial metalloenzyme involved in the maturation of proteins by cleaving the N-formyl group from N-blocked methionine polypeptides. Biaryl acid analogs containing tetrazole, acyl sulfonamide, or carboxylate pharmacophores were found to be potent inhibitors of recombinant Escherichia coli peptide deformylase. Two of these compounds, a biphenyl tetrazole, compound 1, and a biphenyl acyl sulfonamide, compound 4, were competitive inhibitors with K(i) values of 1.2 and 6.0 microM, respectively. By analogy to the binding of related compounds to other metalloenzymes such as Bacteroides fragilis metallo-beta-lactamase CcrA and human carbonic anhydrase, a mechanism of inhibition is proposed for these peptide deformylase inhibitors where the acidic moieties form direct ionic interactions with the active site metal cation.
Collapse
Affiliation(s)
- B G Green
- Department of Biochemistry, Rahway, New Jersey, 07065, USA
| | | | | | | |
Collapse
|
34
|
Meinnel T, Sacerdot C, Graffe M, Blanquet S, Springer M. Discrimination by Escherichia coli initiation factor IF3 against initiation on non-canonical codons relies on complementarity rules. J Mol Biol 1999; 290:825-37. [PMID: 10398584 DOI: 10.1006/jmbi.1999.2881] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translation initiation factor IF3, one of three factors specifically required for translation initiation in Escherichia coli, inhibits initiation on any codon other than the three canonical initiation codons, AUG, GUG, or UUG. This discrimination against initiation on non-canonical codons could be due to either direct recognition of the two last bases of the codon and their cognate bases on the anticodon or to some ability to "feel" codon-anticodon complementarity. To investigate the importance of codon-anticodon complementarity in the discriminatory role of IF3, we constructed a derivative of tRNALeuthat has all the known characteristics of an initiator tRNA except the CAU anticodon. This tRNA is efficiently formylated by methionyl-tRNAfMettransformylase and charged by leucyl-tRNA synthetase irrespective of the sequence of its anticodon. These initiator tRNALeuderivatives (called tRNALI) allow initiation at all the non-canonical codons tested, provided that the complementarity between the codon and the anticodon of the initiator tRNALeuis respected. More remarkably, the discrimination by IF3, normally observed with non-canonical codons, is neutralised if a tRNALIcarrying a complementary anticodon is used for initiation. This suggests that IF3 somehow recognises codon-anticodon complementarity, at least at the second and third position of the codon, rather than some specific bases in either the codon or the anticodon.
Collapse
Affiliation(s)
- T Meinnel
- Laboratoire de Biochimie UMR7654 du CNRS, Ecole Polytechnique, Palaiseau Cedex, 91128, France
| | | | | | | | | |
Collapse
|
35
|
Solbiati J, Chapman-Smith A, Miller JL, Miller CG, Cronan JE. Processing of the N termini of nascent polypeptide chains requires deformylation prior to methionine removal. J Mol Biol 1999; 290:607-14. [PMID: 10395817 DOI: 10.1006/jmbi.1999.2913] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N-formyl-methionine termini are formed in the initiation reaction of bacterial protein synthesis and processed during elongation of the nascent polypeptide chain. We report that the formyl group must be removed before the methionine residue can be cleaved by methionine aminopeptidase. This has long been implicitly assumed, but that assumption was based on inconclusive data and was in apparent conflict with more recently published data. We demonstrate that the Salmonella typhimurium methionine aminopeptidase is totally inactive on an N-formyl-methionyl peptide in vitro, and present a detailed characterization of the substrate specificity of this key enzyme by use of a very sensitive and quantitative assay. Finally, a reporter protein expressed in a strain lacking peptide deformylase was shown to retain the formyl group confirming the physiological role of the deformylase.
Collapse
Affiliation(s)
- J Solbiati
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
One of the recent discoveries in protein biosynthesis was the finding that selenocysteine, the 21st amino acid, is cotranslationally inserted into polypeptides under the direction of a UGA codon assisted by a specific structural signal in the mRNA. The key to selenocysteine biosynthesis and insertion is a special tRNA species, tRNA(Sec). The formation of selenocysteine from serine represents an interesting tRNA-mediated amino acid transformation. tRNA(Sec) (or the gene encoding it) has been found over all three domains of life. It displays a number of unique features that designate it a selenocysteine-inserting tRNA and differentiate it from canonical elongator tRNAs. Although there are still some uncertainties concerning the precise secondary and tertiary structures of eukaryal tRNA(Sec), the major identity determinant for selenocysteine biosynthesis and insertion appears to be the 13 bp long extended acceptor arm. In addition the core of the 3D structure of these tRNAs is different from that of class II tRNAs like tRNA(Sec). The biological implications of these structural differences still remain to be fully understood.
Collapse
Affiliation(s)
- S Commans
- Lehrstuhl für Mikrobiologie der Universität München, Germany.
| | | |
Collapse
|
37
|
Westphal V, Darby NJ, Winther JR. Functional properties of the two redox-active sites in yeast protein disulphide isomerase in vitro and in vivo. J Mol Biol 1999; 286:1229-39. [PMID: 10047493 DOI: 10.1006/jmbi.1999.2560] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein folding catalysed by protein disulphide isomerase (PDI) has been studied both in vivo and in vitro using different assays. PDI contains a CGHC active site in each of its two catalytic domains (a and a'). The relative importance of each active site in PDI from Saccharomyces cerevisiae (yPDI) has been analysed by exchanging the active-site cysteine residues for serine residues. The activity of the mutant forms of yPDI was determined quantitatively by following the refolding of bovine pancreatic trypsin inhibitor in vitro. In this assay the activity of the wild-type yPDI is quite similar to that of human PDI, both in rearrangement and oxidation reactions. However, while the a domain active site of the human enzyme is more active than the a'-site, the reverse is the case for yPDI. This prompted us to set up an assay to investigate whether the situation would be different with a native yeast substrate, procarboxypeptidase Y. In this assay, however, the a' domain active site also appeared to be much more potent than the a-site. These results were unexpected, not only because of the difference with human PDI, but also because analysis of folding of procarboxypeptidase Y in vivo had shown the a-site to be most important. We furthermore show that the apparent difference between in vivo and in vitro activities is not due to catalytic contributions from the other PDI homologues found in yeast.
Collapse
Affiliation(s)
- V Westphal
- Carlsberg Laboratory, Gamle Carlsbergvej 10, Copenhagen Valby, DK- 2500, Denmark
| | | | | |
Collapse
|
38
|
Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1410:103-23. [PMID: 10076021 DOI: 10.1016/s0005-2728(98)00161-3] [Citation(s) in RCA: 1033] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondria play a central role in cellular energy provision. The organelles contain their own genome with a modified genetic code. The mammalian mitochondrial genome is transmitted exclusively through the female germ line. The human mitochondrial DNA (mtDNA) is a double-stranded, circular molecule of 16569 bp and contains 37 genes coding for two rRNAs, 22 tRNAs and 13 polypeptides. The mtDNA-encoded polypeptides are all subunits of enzyme complexes of the oxidative phosphorylation system. Mitochondria are not self-supporting entities but rely heavily for their functions on imported nuclear gene products. The basic mechanisms of mitochondrial gene expression have been solved. Cis-acting mtDNA sequences have been characterised by sequence comparisons, mapping studies and mutation analysis both in vitro and in patients harbouring mtDNA mutations. Characterisation of trans-acting factors has proven more difficult but several key enzymes involved in mtDNA replication, transcription and protein synthesis have now been biochemically identified and some have been cloned. These studies revealed that, although some factors may have an additional function elsewhere in the cell, most are unique to mitochondria. It is expected that cell cultures of patients with mitochondrial diseases will increasingly be used to address fundamental questions about mtDNA expression.
Collapse
Affiliation(s)
- J W Taanman
- Department of Clinical Neurosciences, Royal Free Hospital School of Medicine, University of London, Rowland Hill Street, London NW3 2PF,
| |
Collapse
|
39
|
Schmitt E, Panvert M, Blanquet S, Mechulam Y. Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet. EMBO J 1998; 17:6819-26. [PMID: 9843487 PMCID: PMC1171029 DOI: 10.1093/emboj/17.23.6819] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The crystal structure of Escherichia coli methionyl-tRNAfMet transformylase complexed with formyl-methionyl-tRNAfMet was solved at 2.8 A resolution. The formylation reaction catalyzed by this enzyme irreversibly commits methionyl-tRNAfMet to initiation of translation in eubacteria. In the three-dimensional model, the methionyl-tRNAfMet formyltransferase fills in the inside of the L-shaped tRNA molecule on the D-stem side. The anticodon stem and loop are away from the protein. An enzyme loop is wedged in the major groove of the acceptor helix. As a result, the C1-A72 mismatch characteristic of the initiator tRNA is split and the 3' arm bends inside the active centre. This recognition mechanism is markedly distinct from that of elongation factor Tu, which binds the acceptor arm of aminoacylated elongator tRNAs on the T-stem side.
Collapse
Affiliation(s)
- E Schmitt
- Laboratoire de Biochimie, Unité Mixte de Recherche No. 7654 du Centre National de la Recherche Scientifique, Ecole Polytechnique, F-91128 Palaiseau cedex, France
| | | | | | | |
Collapse
|
40
|
Meinnel T, Lazennec C, Villoing S, Blanquet S. Structure-function relationships within the peptide deformylase family. Evidence for a conserved architecture of the active site involving three conserved motifs and a metal ion. J Mol Biol 1997; 267:749-61. [PMID: 9126850 DOI: 10.1006/jmbi.1997.0904] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thermus thermophilus peptide deformylase was characterized. Its enzymatic properties as well as its organization in domains proved to share close resemblances with those of the Escherichia coli enzyme despite few sequence identities. In addition to the HEXXH signature sequence of the zinc metalloprotease family, a second short stretch of strictly conserved amino acids was noticed, EGCLS, the cysteine of which corresponds to the third zinc ligand. The study of site-directed mutants of the E. coli deformylase shows that the residues of this stretch are crucial for the structure and/or catalytic efficiency of the active enzyme. Both aforementioned sequences were used as markers of the peptide deformylase family in protein sequence databases. Seven sequences coming from Haemophilus influenzae, Lactococcus lactis, Bacillus stearothermophilus, Mycoplasma genitalium, Mycoplasma pneumoniae, Bacillus subtilus and Synechocystis sp. could be identified. The characterization of the product of the open reading frame from B. stearothermophilus confirmed that it actually corresponded to a peptide deformylase with properties similar to those of the E. coli enzyme. Alignment of the nine peptide deformylase sequences showed that, in addition to the two above sequences, only a third one, GXGXAAXQ, is strictly conserved. This motif is also located in the active site according to the three-dimensional structure of the E. coli enzyme. Site-directed variants of E. coli peptide deformylase showed the involvement of the corresponding residues for maintaining an active and stable enzyme. Altogether, these data allow us to propose that the three identified conserved motifs of peptide deformylases build up the active site around a metal ion. Finally, an analysis of the location of the other conserved residues, in particular of the hydrophobic ones, was performed using the three-dimensional model of the E. coli enzyme. This enables us to suggest that all bacterial peptide deformylases adopt a constant overall tertiary structure.
Collapse
Affiliation(s)
- T Meinnel
- Unite de Recherche Associee n 1970 du Centre National de la Recherche Scientifique, Ecole Polytechnique, Palaiseau, France
| | | | | | | |
Collapse
|
41
|
Sette M, van Tilborg P, Spurio R, Kaptein R, Paci M, Gualerzi CO, Boelens R. The structure of the translational initiation factor IF1 from E.coli contains an oligomer-binding motif. EMBO J 1997; 16:1436-43. [PMID: 9135158 PMCID: PMC1169740 DOI: 10.1093/emboj/16.6.1436] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The structure of the translational initiation factor IF1 from Escherichia coli has been determined with multidimensional NMR spectroscopy. Using 1041 distance and 78 dihedral constraints, 40 distance geometry structures were calculated, which were refined by restrained molecular dynamics. From this set, 19 structures were selected, having low constraint energy and few constraint violations. The ensemble of 19 structures displays a root-mean-square deviation versus the average of 0.49 A for the backbone atoms and 1.12 A for all atoms for residues 6-36 and 46-67. The structure of IF1 is characterized by a five-stranded beta-barrel. The loop connecting strands three and four contains a short 3(10) helix but this region shows considerably higher flexibility than the beta-barrel. The fold of IF1 is very similar to that found in the bacterial cold shock proteins CspA and CspB, the N-terminal domain of aspartyl-tRNA synthetase and the staphylococcal nuclease, and can be identified as the oligomer-binding motif. Several proteins of this family are nucleic acid-binding proteins. This suggests that IF1 plays its role in the initiation of protein synthesis by nucleic acid interactions. Specific changes of NMR signals of IF1 upon titration with 30S ribosomal subunit identifies several residues that are involved in the interaction with ribosomes.
Collapse
Affiliation(s)
- M Sette
- Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|