1
|
Intrinsic and Rho-dependent termination cooperate for efficient transcription termination at 3’ untranslated regions. Biochem Biophys Res Commun 2022; 628:123-132. [DOI: 10.1016/j.bbrc.2022.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
2
|
Baur ST, Poehlein A, Renz NJ, Hollitzer SK, Montoya Solano JD, Schiel-Bengelsdorf B, Daniel R, Dürre P. Modulation of sol mRNA expression by the long non-coding RNA Assolrna in Clostridium saccharoperbutylacetonicum affects solvent formation. Front Genet 2022; 13:966643. [PMID: 36035128 PMCID: PMC9402939 DOI: 10.3389/fgene.2022.966643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Solvents such as butanol are important platform chemicals and are often produced from petrochemical sources. Production of butanol and other compounds from renewable and sustainable resources can be achieved by solventogenic bacteria, such as the hyper-butanol producer Clostridium saccharoperbutylacetonicum. Its sol operon consists of the genes encoding butyraldehyde dehydrogenase, CoA transferase, and acetoacetate decarboxylase (bld, ctfA, ctfB, adc) and the gene products are involved in butanol and acetone formation. It is important to understand its regulation to further optimize the solvent production. In this study, a new long non-coding antisense transcript complementary to the complete sol operon, now called Assolrna, was identified by transcriptomic analysis and the regulatory mechanism of Assolrna was investigated. For this purpose, the promoter-exchange strain C. saccharoperbutylacetonicum ΔPasr::Pasr** was constructed. Additionally, Assolrna was expressed plasmid-based under control of the native Pasr promoter and the lactose-inducible PbgaL promoter in both the wild type and the promoter-exchange strain. Solvent formation was strongly decreased for all strains based on C. saccharoperbutylacetonicum ΔPasr::Pasr** and growth could not be restored by plasmid-based complementation of the exchanged promoter. Interestingly, very little sol mRNA expression was detected in the strain C. saccharoperbutylacetonicum ΔPasr::Pasr** lacking Assolrna expression. Butanol titers were further increased for the overexpression strain C. saccharoperbutylacetonicum [pMTL83151_asr_PbgaL] compared to the wild type. These results suggest that Assolrna has a positive effect on sol operon expression. Therefore, a possible stabilization mechanism of the sol mRNA by Assolrna under physiological concentrations is proposed.
Collapse
Affiliation(s)
- Saskia Tabea Baur
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
- *Correspondence: Saskia Tabea Baur,
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Niklas Jan Renz
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | | | | | | | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
Sen P, Aziz R, Deka RC, Feil EJ, Ray SK, Satapathy SS. Stem Region of tRNA Genes Favors Transition Substitution Towards Keto Bases in Bacteria. J Mol Evol 2022; 90:114-123. [PMID: 35084523 DOI: 10.1007/s00239-021-10045-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
Transversion and transition mutations have variable effects on the stability of RNA secondary structure considering that the former destabilizes the double helix geometry to a greater extent by introducing purine:purine (R:R) or pyrimidine:pyrimidine (Y:Y) base pairs. Therefore, transversion frequency is likely to be lower than that of transition in the secondary structure regions of RNA genes. Here, we performed an analysis of transition and transversion frequencies in tRNA genes defined well with secondary structure and compared with the intergenic regions in five bacterial species namely Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Staphylococcus aureus and Streptococcus pneumoniae using a large genome sequence data set. In general, the transversion frequency was observed to be lower than that of transition in both tRNA genes and intergenic regions. The transition to transversion ratio was observed to be greater in tRNA genes than that in the intergenic regions in all the five bacteria that we studied. Interestingly, the intraspecies base substitution analysis in tRNA genes revealed that non-compensatory substitutions were more frequent than compensatory substitutions in the stem region. Further, transition to transversion ratio in the loop region was observed to be significantly lesser than that among the non-compensatory substitutions in the stem region. This indicated that the transversion is more deleterious than transition in the stem regions. In addition, substitutions from amino bases (A/C) to keto bases (G/T) were also observed to be more than the reverse substitutions in the stem region. Substitution from amino bases to keto bases are likely to facilitate the stable G:U pairing unlike the reverse substitution that facilitates the unstable A:C pairing in the stem region of tRNA. This work provides additional support that the secondary structure of tRNA molecule is what drives the different substitutions in its gene sequence.
Collapse
Affiliation(s)
- Piyali Sen
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Ruksana Aziz
- Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Ramesh C Deka
- Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India
- Center for Multidisciplinary Research, Tezpur University, Napaam, Tezpur, Assam, 784028, India
| | - Edward J Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK.
| | - Suvendra Kumar Ray
- Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
- Center for Multidisciplinary Research, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Siddhartha Sankar Satapathy
- Department of Computer Science and Engineering, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
- Center for Multidisciplinary Research, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| |
Collapse
|
4
|
Transcriptional Organization of the Salmonella Typhimurium Phage P22 pid ORFan Locus. Int J Mol Sci 2022; 23:ijms23031253. [PMID: 35163175 PMCID: PMC8835761 DOI: 10.3390/ijms23031253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Many phage genes lack sequence similarity to any other open reading frame (ORF) in current databases. These enigmatic ORFan genes can have a tremendous impact on phage propagation and host interactions but often remain experimentally unexplored. We previously revealed a novel interaction between phage P22 and its Salmonella Typhimurium host, instigated by the ORFan gene pid (for phage P22 encoded instigator of dgo expression) and resulting in derepression of the host dgoRKAT operon. The pid gene is highly expressed in phage carrier cells that harbor a polarly located P22 episome that segregates asymmetrically among daughter cells. Here, we discovered that the pid locus is fitted with a weak promoter, has an exceptionally long 5′ untranslated region that is instructive for a secondary pid mRNA species, and has a 3′ Rho-independent termination loop that is responsible for stability of the pid transcript.
Collapse
|
5
|
Prieto A, Bernabeu M, Sánchez-Herrero JF, Pérez-Bosque A, Miró L, Bäuerl C, Collado C, Hüttener M, Juárez A. Modulation of AggR levels reveals features of virulence regulation in enteroaggregative E. coli. Commun Biol 2021; 4:1295. [PMID: 34785760 PMCID: PMC8595720 DOI: 10.1038/s42003-021-02820-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) strains are one of the diarrheagenic pathotypes. EAEC strains harbor a virulence plasmid (pAA2) that encodes, among other virulence determinants, the aggR gene. The expression of the AggR protein leads to the expression of several virulence determinants in both plasmids and chromosomes. In this work, we describe a novel mechanism that influences AggR expression. Because of the absence of a Rho-independent terminator in the 3'UTR, aggR transcripts extend far beyond the aggR ORF. These transcripts are prone to PNPase-mediated degradation. Structural alterations in the 3'UTR result in increased aggR transcript stability, leading to increased AggR levels. We therefore investigated the effect of increased AggR levels on EAEC virulence. Upon finding the previously described AggR-dependent virulence factors, we detected novel AggR-regulated genes that may play relevant roles in EAEC virulence. Mutants exhibiting high AggR levels because of structural alterations in the aggR 3'UTR show increased mobility and increased pAA2 conjugation frequency. Furthermore, among the genes exhibiting increased fold change values, we could identify those of metabolic pathways that promote increased degradation of arginine, fatty acids and gamma-aminobutyric acid (GABA), respectively. In this paper, we discuss how the AggR-dependent increase in specific metabolic pathways activity may contribute to EAEC virulence.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Anna Pérez-Bosque
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Lluïsa Miró
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona, Barcelona, Spain
| | - Christine Bäuerl
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Carmen Collado
- Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Mário Hüttener
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain.
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
6
|
Gupta S, Pal D. Clusters of hairpins induce intrinsic transcription termination in bacteria. Sci Rep 2021; 11:16194. [PMID: 34376740 PMCID: PMC8355165 DOI: 10.1038/s41598-021-95435-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 07/20/2021] [Indexed: 01/13/2023] Open
Abstract
Intrinsic transcription termination (ITT) sites are currently identified by locating single and double-adjacent RNA hairpins downstream of the stop codon. ITTs for a limited number of genes/operons in only a few bacterial genomes are currently known. This lack of coverage is a lacuna in the existing ITT inference methods. We have studied the inter-operon regions of 13 genomes covering all major phyla in bacteria, for which good quality public RNA-seq data exist. We identify ITT sites in 87% of cases by predicting hairpin(s) and validate against 81% of cases for which the RNA-seq derived sites could be calculated. We identify 72% of these sites correctly, with 98% of them located ≤ 80 bases downstream of the stop codon. The predicted hairpins form a cluster (when present < 15 bases) in two-thirds of the cases, the remaining being single hairpins. The largest number of clusters is formed by two hairpins, and the occurrence decreases exponentially with an increasing number of hairpins in the cluster. Our study reveals that hairpins form an effective ITT unit when they act in concert in a cluster. Their pervasiveness along with single hairpin terminators corroborates a wider utilization of ITT mechanisms for transcription control across bacteria.
Collapse
Affiliation(s)
- Swati Gupta
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
| |
Collapse
|
7
|
Bhaskar Y, Su X, Xu C, Xu J. Predicting Selective RNA Processing and Stabilization Operons in Clostridium spp. Front Microbiol 2021; 12:673349. [PMID: 34177856 PMCID: PMC8219983 DOI: 10.3389/fmicb.2021.673349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022] Open
Abstract
In selective RNA processing and stabilization (SRPS) operons, stem–loops (SLs) located at the 3′-UTR region of selected genes can control the stability of the corresponding transcripts and determine the stoichiometry of the operon. Here, for such operons, we developed a computational approach named SLOFE (stem–loop free energy) that identifies the SRPS operons and predicts their transcript- and protein-level stoichiometry at the whole-genome scale using only the genome sequence via the minimum free energy (ΔG) of specific SLs in the intergenic regions within operons. As validated by the experimental approach of differential RNA-Seq, SLOFE identifies genome-wide SRPS operons in Clostridium cellulolyticum with 80% accuracy and reveals that the SRPS mechanism contributes to diverse cellular activities. Moreover, in the identified SRPS operons, SLOFE predicts the transcript- and protein-level stoichiometry, including those encoding cellulosome complexes, ATP synthases, ABC transporter family proteins, and ribosomal proteins. Its accuracy exceeds those of existing in silico approaches in C. cellulolyticum, Clostridium acetobutylicum, Clostridium thermocellum, and Bacillus subtilis. The ability to identify genome-wide SRPS operons and predict their stoichiometry via DNA sequence in silico should facilitate studying the function and evolution of SRPS operons in bacteria.
Collapse
Affiliation(s)
- Yogendra Bhaskar
- Single-Cell Center and CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoquan Su
- Single-Cell Center and CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Chenggang Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Jian Xu
- Single-Cell Center and CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Spinsanti M, Brignoli T, Bodini M, Fontana LE, De Chiara M, Biolchi A, Muzzi A, Scarlato V, Delany I. Deconvolution of intergenic polymorphisms determining high expression of Factor H binding protein in meningococcus and their association with invasive disease. PLoS Pathog 2021; 17:e1009461. [PMID: 33770146 PMCID: PMC8026042 DOI: 10.1371/journal.ppat.1009461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Neisseria meningitidis is a strictly human pathogen and is the major cause of septicemia and meningitis worldwide. Factor H binding protein (fHbp) is a meningococcal surface-exposed lipoprotein that binds the human Complement factor H allowing the bacterium to evade the host innate immune response. FHbp is also a key antigen in two vaccines against N. meningitidis serogroup B. Although the fHbp gene is present in most circulating meningococcal strains, level of fHbp expression varies among isolates and has been correlated to differences in promoter sequences upstream of the gene. Here we elucidated the sequence determinants that control fHbp expression in globally circulating strains. We analyzed the upstream fHbpintergenic region (fIR) of more than 5800 strains representative of the UK circulating isolates and we identified eleven fIR sequence alleles which represent 88% of meningococcal strains. By engineering isogenic recombinant strains where fHbp expression was under the control of each of the eleven fIR alleles, we confirmed that the fIR sequence determines a specific and distinct level of expression. Moreover, we identified the molecular basis for variation in expression through polymorphisms within key regulatory regions that are known to affect fHbp expression. We experimentally established three expression groups, high–medium–low, that correlated directly with the susceptibility to killing mediated by anti-fHbp antibodies and the ability of the meningococcal strain to survive within human serum. By using this sequence classification and information about the variant, we predicted fHbp expression in the panel of UK strains and we observed that strains with higher expressing fIR alleles are more likely associated with invasive disease. Overall, our findings can contribute to understand and predict vaccine coverage mediated by fHbp as well as to shed light on the role of this virulence factor in determining an invasive phenotype. Complement plays a key role in the immunity against Neisseria meningitidis. The meningococcus uses the Factor H binding protein (fHbp), to bind a negative regulator of the alternative complement pathway, factor H, to its surface thus preventing complement deposition and lysis. The use of fHbp as an antigen in two licensed vaccines highlights its public health relevance. Therefore the levels of this antigen produced by the bacterium are pivotal on the one hand for the survival of N. meningitidis in blood and on the other hand for the susceptibility to vaccine-induced killing antibodies. Here, we identify the predominant nucleotide sequences that drive distinct levels of the fHbp antigen in circulating meningococcal strains. We cluster them into distinct groups with increasing levels and observe that strains expressing higher fHbp amounts are associated with invasive disease. Our findings show that the nucleotide sequence of the fHbp promoter can be used for the prediction of antigen levels of any given strain and consequently for both the assessment of its sensitivity to killing by fHbp antibodies and its likelihood to cause invasive disease.
Collapse
Affiliation(s)
| | - Tarcisio Brignoli
- GSK, Siena, Italy
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | | |
Collapse
|
9
|
Gale GAR, Wang B, McCormick AJ. Evaluation and Comparison of the Efficiency of Transcription Terminators in Different Cyanobacterial Species. Front Microbiol 2021; 11:624011. [PMID: 33519785 PMCID: PMC7843447 DOI: 10.3389/fmicb.2020.624011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria utilize sunlight to convert carbon dioxide into a wide variety of secondary metabolites and show great potential for green biotechnology applications. Although cyanobacterial synthetic biology is less mature than for other heterotrophic model organisms, there are now a range of molecular tools available to modulate and control gene expression. One area of gene regulation that still lags behind other model organisms is the modulation of gene transcription, particularly transcription termination. A vast number of intrinsic transcription terminators are now available in heterotrophs, but only a small number have been investigated in cyanobacteria. As artificial gene expression systems become larger and more complex, with short stretches of DNA harboring strong promoters and multiple gene expression cassettes, the need to stop transcription efficiently and insulate downstream regions from unwanted interference is becoming more important. In this study, we adapted a dual reporter tool for use with the CyanoGate MoClo Assembly system that can quantify and compare the efficiency of terminator sequences within and between different species. We characterized 34 intrinsic terminators in Escherichia coli, Synechocystis sp. PCC 6803, and Synechococcus elongatus UTEX 2973 and observed significant differences in termination efficiencies. However, we also identified five terminators with termination efficiencies of >96% in all three species, indicating that some terminators can behave consistently in both heterotrophic species and cyanobacteria.
Collapse
Affiliation(s)
- Grant A. R. Gale
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alistair J. McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Vargas-Blanco DA, Shell SS. Regulation of mRNA Stability During Bacterial Stress Responses. Front Microbiol 2020; 11:2111. [PMID: 33013770 PMCID: PMC7509114 DOI: 10.3389/fmicb.2020.02111] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bacteria have a remarkable ability to sense environmental changes, swiftly regulating their transcriptional and posttranscriptional machinery as a response. Under conditions that cause growth to slow or stop, bacteria typically stabilize their transcriptomes in what has been shown to be a conserved stress response. In recent years, diverse studies have elucidated many of the mechanisms underlying mRNA degradation, yet an understanding of the regulation of mRNA degradation under stress conditions remains elusive. In this review we discuss the diverse mechanisms that have been shown to affect mRNA stability in bacteria. While many of these mechanisms are transcript-specific, they provide insight into possible mechanisms of global mRNA stabilization. To that end, we have compiled information on how mRNA fate is affected by RNA secondary structures; interaction with ribosomes, RNA binding proteins, and small RNAs; RNA base modifications; the chemical nature of 5' ends; activity and concentration of RNases and other degradation proteins; mRNA and RNase localization; and the stringent response. We also provide an analysis of reported relationships between mRNA abundance and mRNA stability, and discuss the importance of stress-associated mRNA stabilization as a potential target for therapeutic development.
Collapse
Affiliation(s)
- Diego A Vargas-Blanco
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Scarlet S Shell
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, United States.,Program in Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
11
|
Abstract
RNA degradation is an important process that affects the final concentration of individual mRNAs, affecting protein expression and cellular physiology. Studies of how RNA is degraded increase our knowledge of this fundamental process as well as enable the creation of genetic tools to manipulate RNA stability. By studying global transcript turnover, we searched for sequence elements that correlated with transcript (in)stability and used these sequences to guide tool design. This study probes global RNA turnover in a cyanobacterium, Synechococcus sp. strain PCC 7002, that both has a unique array of RNases that facilitate RNA degradation and is an industrially relevant strain that could be used to convert CO2 and sunlight into useful products. RNA degradation is an important process that influences the ultimate concentration of individual proteins inside cells. While the main enzymes that facilitate this process have been identified, global maps of RNA turnover are available for only a few species. Even in these cases, there are few sequence elements that are known to enhance or destabilize a native transcript; even fewer confer the same effect when added to a heterologous transcript. To address this knowledge gap, we assayed genome-wide RNA degradation in the cyanobacterium Synechococcus sp. strain PCC 7002 by collecting total RNA samples after stopping nascent transcription with rifampin. We quantified the abundance of each position in the transcriptome as a function of time using RNA-sequencing data and later analyzed the global mRNA decay map using machine learning principles. Half-lives, calculated on a per-ORF (open reading frame) basis, were extremely short, with a median half-life of only 0.97 min. Despite extremely rapid turnover of most mRNA, transcripts encoding proteins involved in photosynthesis were both highly expressed and highly stable. Upon inspection of these stable transcripts, we identified an enriched motif in the 3′ untranslated region (UTR) that had similarity to Rho-independent terminators. We built statistical models for half-life prediction and used them to systematically identify sequence motifs in both 5′ and 3′ UTRs that correlate with stabilized transcripts. We found that transcripts linked to a terminator containing a poly(U) tract had a longer half-life than both those without a poly(U) tract and those without a terminator. IMPORTANCE RNA degradation is an important process that affects the final concentration of individual mRNAs, affecting protein expression and cellular physiology. Studies of how RNA is degraded increase our knowledge of this fundamental process as well as enable the creation of genetic tools to manipulate RNA stability. By studying global transcript turnover, we searched for sequence elements that correlated with transcript (in)stability and used these sequences to guide tool design. This study probes global RNA turnover in a cyanobacterium, Synechococcus sp. strain PCC 7002, that both has a unique array of RNases that facilitate RNA degradation and is an industrially relevant strain that could be used to convert CO2 and sunlight into useful products.
Collapse
|
12
|
Transcriptional control of gene expression in Pichia pastoris by manipulation of terminators. Appl Microbiol Biotechnol 2020; 104:7841-7851. [DOI: 10.1007/s00253-020-10785-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
13
|
He Z, Duan Y, Zhai W, Zhang X, Shi J, Zhang X, Xu Z. Evaluating Terminator Strength Based on Differentiating Effects on Transcription and Translation. Chembiochem 2020; 21:2067-2072. [PMID: 32180310 DOI: 10.1002/cbic.202000068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/27/2020] [Indexed: 11/05/2022]
Abstract
Transcription terminators play a role in terminating the progress of gene transcription, and are thus essential elements in the gene circuit. Terminators have two main functions: terminating gene transcription and improving the stability of gene transcripts during translation. We therefore considered the detailed characteristics of terminators in relation to their different roles in gene transcription and translation, including transcription shut-down degree (α) and upstream mRNA protection capacity (β), and apparent termination efficiency (η) reflecting the overall regulatory effect of the terminator. Based on a dual-reporter gene system, we constructed three terminator-probe plasmids to investigate each characteristic in Escherichia coli. According to multiple regression analysis, the transcription shut-down degree and the upstream mRNA protection capacity contributed almost equally to the apparent termination efficiency. Sequence analysis of 12 terminators demonstrated that the terminator sequence was dominated by GC bases, and that a high ratio of GC bases in the stem structure of terminators might be associated with a high degree of transcription shut-down. This comprehensive characterization of terminators furthers our understanding of the role of terminators in gene expression and provides a guide for synthetic terminator design.
Collapse
Affiliation(s)
- Zhiyun He
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University, 1800, Lihu Avenue, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800, Lihu Avenue, Wuxi, 214122, China
| | - Yanting Duan
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University, 1800, Lihu Avenue, Wuxi, 214122, China
| | - Weiji Zhai
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University, 1800, Lihu Avenue, Wuxi, 214122, China
| | - Xiaomei Zhang
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China.,School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Jinsong Shi
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China.,School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Xiaojuan Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University, 1800, Lihu Avenue, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800, Lihu Avenue, Wuxi, 214122, China.,Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University, 1800, Lihu Avenue, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800, Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
14
|
Planson AG, Sauveplane V, Dervyn E, Jules M. Bacterial growth physiology and RNA metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194502. [PMID: 32044462 DOI: 10.1016/j.bbagrm.2020.194502] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/17/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
Bacteria are sophisticated systems with high capacity and flexibility to adapt to various environmental conditions. Each prokaryote however possesses a defined metabolic network, which sets its overall metabolic capacity, and therefore the maximal growth rate that can be reached. To achieve optimal growth, bacteria adopt various molecular strategies to optimally adjust gene expression and optimize resource allocation according to the nutrient availability. The resulting physiological changes are often accompanied by changes in the growth rate, and by global regulation of gene expression. The growth-rate-dependent variation of the abundances in the cellular machineries, together with condition-specific regulatory mechanisms, affect RNA metabolism and fate and pose a challenge for rational gene expression reengineering of synthetic circuits. This article is part of a Special Issue entitled: RNA and gene control in bacteria, edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Anne-Gaëlle Planson
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Vincent Sauveplane
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Etienne Dervyn
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Matthieu Jules
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
15
|
The Rho-Independent Transcription Terminator for the porA Gene Enhances Expression of the Major Outer Membrane Protein and Campylobacter jejuni Virulence in Abortion Induction. Infect Immun 2019; 87:IAI.00687-19. [PMID: 31570559 DOI: 10.1128/iai.00687-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. Its porA gene encodes the major outer membrane protein (MOMP) that is abundantly expressed and has important physiological functions, including a key role in systemic infection and abortion induction in pregnant animals. Despite the importance of porA in C. jejuni pathogenesis, mechanisms modulating its expression levels remain elusive. At the 3' end of the porA transcript, there is a Rho-independent transcription terminator (named T porA in this study). Whether T porA affects the expression and function of MOMP remains unknown and is investigated in this study. Green fluorescent protein (GFP) fusion constructs with the porA promoter at the 5' end and an intact T porA or no T porA at the 3' end of the gfp coding sequence revealed that both the transcript level of gfp and its fluorescence signals were more than 2-fold higher in the construct with T porA than in the one without T porA Real-time quantitative PCR (qRT-PCR) analysis of the porA mRNA and immunoblot detection of MOMP in C. jejuni showed that disruption of T porA significantly reduced the porA transcript level and the expression of MOMP. An mRNA decay assay demonstrated that disruption of T porA resulted in a shortened transcript half-life of the upstream gfp or porA gene, indicating that T porA enhances mRNA stability. In the guinea pig model, the C. jejuni construct with an interrupted T porA was significantly attenuated in abortion induction. Together, these results indicate that T porA enhances the expression level of MOMP by stabilizing its mRNA and influences the virulence of C. jejuni.
Collapse
|
16
|
Nouaille S, Mondeil S, Finoux AL, Moulis C, Girbal L, Cocaign-Bousquet M. The stability of an mRNA is influenced by its concentration: a potential physical mechanism to regulate gene expression. Nucleic Acids Res 2017; 45:11711-11724. [PMID: 28977619 PMCID: PMC5714132 DOI: 10.1093/nar/gkx781] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/28/2017] [Indexed: 01/19/2023] Open
Abstract
Changing mRNA stability is a major post-transcriptional way of controlling gene expression, particularly in newly encountered conditions. As the concentration of mRNA is the result of an equilibrium between transcription and degradation, it is generally assumed that at constant transcription, any change in mRNA concentration is the consequence of mRNA stabilization or destabilization. However, the literature reports many cases of opposite variations in mRNA concentration and stability in bacteria. Here, we analyzed the causal link between the concentration and stability of mRNA in two phylogenetically distant bacteria Escherichia coli and Lactococcus lactis. Using reporter mRNAs, we showed that modifying the stability of an mRNA had unpredictable effects, either higher or lower, on its concentration, whereas increasing its concentration systematically reduced stability. This inverse relationship between the concentration and stability of mRNA was generalized to native genes at the genome scale in both bacteria. Higher mRNA turnover in the case of higher concentrations appears to be a simple physical mechanism to regulate gene expression in the bacterial kingdom. The consequences for bacterial adaptation of this control of the stability of an mRNA by its concentration are discussed.
Collapse
Affiliation(s)
- Sébastien Nouaille
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Sophie Mondeil
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Anne-Laure Finoux
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Claire Moulis
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Laurence Girbal
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| | - Muriel Cocaign-Bousquet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135 av de Rangueil. 31077 Toulouse Cedex 4, France
| |
Collapse
|
17
|
Westbrook AW, Ren X, Moo-Young M, Chou CP. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng 2017; 115:216-231. [DOI: 10.1002/bit.26459] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Adam W. Westbrook
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - Xiang Ren
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - Murray Moo-Young
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - C. Perry Chou
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| |
Collapse
|
18
|
Ghosh IN, Landick R. OptSSeq: High-Throughput Sequencing Readout of Growth Enrichment Defines Optimal Gene Expression Elements for Homoethanologenesis. ACS Synth Biol 2016; 5:1519-1534. [PMID: 27404024 DOI: 10.1021/acssynbio.6b00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosome-binding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate to ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe2+-dependent AdhB and Zn2+-dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.
Collapse
Affiliation(s)
- Indro Neil Ghosh
- DOE
Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| | - Robert Landick
- DOE
Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
19
|
3'-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli. Sci Rep 2016; 6:29406. [PMID: 27406241 PMCID: PMC4942690 DOI: 10.1038/srep29406] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
3′-Untranslated region (3′UTR) engineering was investigated to improve solubility of heterologous proteins (e.g., Baeyer-Villiger monooxygenases (BVMOs)) in Escherichia coli. Insertion of gene fragments containing putative RNase E recognition sites into the 3′UTR of the BVMO genes led to the reduction of mRNA levels in E. coli. Importantly, the amounts of soluble BVMOs were remarkably enhanced resulting in a proportional increase of in vivo catalytic activities. Notably, this increase in biocatalytic activity correlated to the number of putative RNase E endonucleolytic cleavage sites in the 3′UTR. For instance, the biotransformation activity of the BVMO BmoF1 (from Pseudomonas fluorescens DSM50106) in E. coli was linear to the number of RNase E cleavage sites in the 3′UTR. In summary, 3′UTR engineering can be used to improve the soluble expression of heterologous enzymes, thereby fine-tuning the enzyme activity in microbial cells.
Collapse
|
20
|
Lin MT, Wang CY, Xie HJ, Cheung CHY, Hsieh CH, Juan HF, Chen BS, Lin C. Novel Utilization of Terminators in the Design of Biologically Adjustable Synthetic Filters. ACS Synth Biol 2016; 5:365-74. [PMID: 26912179 DOI: 10.1021/acssynbio.5b00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminators, which signal the end of transcription processes, are typically placed behind the last coding sequence of an operon to prevent interference between transcript units in most biologically synthetic systems. Here, we seek to extend the usability of terminators in genetic system design by using terminators as regulatory genetic parts. Terminators with different impacts on their upstream and downstream genes are characterized in detail via dynamic modeling to predict the behavior of the overall genetic system. Some nonlinear effects of terminators observed in our terminator measurements potentially facilitate regulation of gene expression. Through dynamic modeling in silico, we find that such genetic systems may behave like genetic filters. In agreement with the simulations, we successfully implement genetic high-pass and bandpass filters in vivo, demonstrating the potential of using terminators as regulatory parts. The genetic bandpass filter in this work is implemented through the interdependence between genetic parts, in which the termination efficiency of a terminator varies with the strength of the upstream promoter. This design strategy for a bandpass filter requires fewer base pairs than the conventional strategy of concatenating high-pass and low-pass filters. Our results show that this novel utilization of terminators as regulatory parts may provide a new perspective for efficient design of genetic circuits. We believe that further exploration of the complicated dynamics of terminators is important in the development of synthetic biology.
Collapse
Affiliation(s)
- Mei-Ting Lin
- Institute of Communications Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Ying Wang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hui-Juan Xie
- Department
of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chantal Hoi Yin Cheung
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chiao-Hui Hsieh
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Hsueh-Fen Juan
- Institute
of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | - Bor-Sen Chen
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Che Lin
- Institute of Communications Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
21
|
Promoter and Terminator Discovery and Engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:21-44. [PMID: 27277391 DOI: 10.1007/10_2016_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Control of gene expression is crucial to optimize metabolic pathways and synthetic gene networks. Promoters and terminators are stretches of DNA upstream and downstream (respectively) of genes that control both the rate at which the gene is transcribed and the rate at which mRNA is degraded. As a result, both of these elements control net protein expression from a synthetic construct. Thus, it is highly important to discover and engineer promoters and terminators with desired characteristics. This chapter highlights various approaches taken to catalogue these important synthetic elements. Specifically, early strategies have focused largely on semi-rational techniques such as saturation mutagenesis to diversify native promoters and terminators. Next, in an effort to reduce the length of the synthetic biology design cycle, efforts in the field have turned towards the rational design of synthetic promoters and terminators. In this vein, we cover recently developed methods such as hybrid engineering, high throughput characterization, and thermodynamic modeling which allow finer control in the rational design of novel promoters and terminators. Emphasis is placed on the methodologies used and this chapter showcases the utility of these methods across multiple host organisms.
Collapse
|
22
|
Redden H, Morse N, Alper HS. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Res 2014; 15:1-10. [DOI: 10.1111/1567-1364.12188] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 02/04/2023] Open
Affiliation(s)
- Heidi Redden
- Department for Molecular Biosciences; The University of Texas at Austin; Austin TX USA
| | - Nicholas Morse
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin TX USA
| | - Hal S. Alper
- Department for Molecular Biosciences; The University of Texas at Austin; Austin TX USA
- McKetta Department of Chemical Engineering; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
23
|
López-Garrido J, Puerta-Fernández E, Casadesús J. A eukaryotic-like 3' untranslated region in Salmonella enterica hilD mRNA. Nucleic Acids Res 2014; 42:5894-906. [PMID: 24682814 PMCID: PMC4027200 DOI: 10.1093/nar/gku222] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long 3' untranslated regions (3'UTRs) are common in eukaryotic mRNAs. In contrast, long 3'UTRs are rare in bacteria, and have not been characterized in detail. We describe a 3'UTR of 310 nucleotides in hilD mRNA, a transcript that encodes a transcriptional activator of Salmonella enterica pathogenicity island 1 (SPI-1). Deletion of the hilD 3'UTR increases the hilD mRNA level, suggesting that the hilD 3'UTR may play a role in hilD mRNA turnover. Cloning of the hilD 3'UTR downstream of the green fluorescent protein (gfp) gene decreases green fluorescent protein (GFP) activity in both Escherichia coli and S. enterica, indicating that the hilD 3'UTR can act as an independent module. S. enterica mutants lacking either ribonuclease E or polynucleotide phosphorylase contain similar amounts of hilD and hilD Δ3'UTR mRNAs, suggesting that the hilD 3'UTR is a target for hilD mRNA degradation by the degradosome. The hilD 3'UTR is also necessary for modulation of hilD and SPI-1 expression by the RNA chaperone Hfq. Overexpression of SPI-1 in the absence of the hilD 3'UTR retards Salmonella growth and causes uncontrolled invasion of epithelial cells. Based on these observations, we propose that the S. enterica hilD 3'UTR is a cis-acting element that contributes to cellular homeostasis by promoting hilD mRNA turnover.
Collapse
Affiliation(s)
- Javier López-Garrido
- Departamento de Genética, Universidad de Sevilla, Facultad de Biología, Apartado 1095, 41080 Sevilla, Spain
| | - Elena Puerta-Fernández
- Departamento de Genética, Universidad de Sevilla, Facultad de Biología, Apartado 1095, 41080 Sevilla, Spain
| | - Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Facultad de Biología, Apartado 1095, 41080 Sevilla, Spain
| |
Collapse
|
24
|
Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai QA, Thimmaiah T, Carothers JM, Arkin AP, Endy D. Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 2013; 41:5139-48. [PMID: 23511967 PMCID: PMC3643576 DOI: 10.1093/nar/gkt163] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The reliable forward engineering of genetic systems remains limited by the ad hoc reuse of many types of basic genetic elements. Although a few intrinsic prokaryotic transcription terminators are used routinely, termination efficiencies have not been studied systematically. Here, we developed and validated a genetic architecture that enables reliable measurement of termination efficiencies. We then assembled a collection of 61 natural and synthetic terminators that collectively encode termination efficiencies across an ∼800-fold dynamic range within Escherichia coli. We simulated co-transcriptional RNA folding dynamics to identify competing secondary structures that might interfere with terminator folding kinetics or impact termination activity. We found that structures extending beyond the core terminator stem are likely to increase terminator activity. By excluding terminators encoding such context-confounding elements, we were able to develop a linear sequence-function model that can be used to estimate termination efficiencies (r = 0.9, n = 31) better than models trained on all terminators (r = 0.67, n = 54). The resulting systematically measured collection of terminators should improve the engineering of synthetic genetic systems and also advance quantitative modeling of transcription termination.
Collapse
Affiliation(s)
- Guillaume Cambray
- BIOFAB International Open Facility Advancing Biotechnology (BIOFAB), 5885 Hollis Street, Emeryville, CA 94608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Small RNA modules confer different stabilities and interact differently with multiple targets. PLoS One 2013; 8:e52866. [PMID: 23349691 PMCID: PMC3551931 DOI: 10.1371/journal.pone.0052866] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 11/22/2012] [Indexed: 01/08/2023] Open
Abstract
Bacterial Hfq-associated small regulatory RNAs (sRNAs) parallel animal microRNAs in their ability to control multiple target mRNAs. The small non-coding MicA RNA represses the expression of several genes, including major outer membrane proteins such as ompA, tsx and ecnB. In this study, we have characterised the RNA determinants involved in the stability of MicA and analysed how they influence the expression of its targets. Site-directed mutagenesis was used to construct MicA mutated forms. The 5′linear domain, the structured region with two stem-loops, the A/U-rich sequence or the 3′ poly(U) tail were altered without affecting the overall secondary structure of MicA. The stability and the target regulation abilities of the wild-type and the different mutated forms of MicA were then compared. The 5′ domain impacted MicA stability through an RNase III-mediated pathway. The two stem-loops showed different roles and disruption of stem-loop 2 was the one that mostly affected MicA stability and abundance. Moreover, STEM2 was found to be more important for the in vivo repression of both ompA and ecnB mRNAs while STEM1 was critical for regulation of tsx mRNA levels. The A/U-rich linear sequence is not the only Hfq-binding site present in MicA and the 3′ poly(U) sequence was critical for sRNA stability. PNPase was shown to be an important exoribonuclease involved in sRNA degradation. In addition to the 5′ domain of MicA, the stem-loops and the 3′ poly(U) tail are also shown to affect target-binding. Disruption of the 3′U-rich sequence greatly affects all targets analysed. In conclusion, our results have shown that it is important to understand the “sRNA anatomy” in order to modulate its stability. Furthermore, we have demonstrated that MicA RNA can use different modules to regulate its targets. This knowledge can allow for the engineering of non-coding RNAs that interact differently with multiple targets.
Collapse
|
26
|
Zhao L, Stancik AD, Brown CJ. Differential transcription of bacteriophage φX174 genes at 37 °C and 42 °C. PLoS One 2012; 7:e35909. [PMID: 22540010 PMCID: PMC3335065 DOI: 10.1371/journal.pone.0035909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/26/2012] [Indexed: 11/23/2022] Open
Abstract
To investigate how high temperature affects viral transcription, the absolute amounts of mRNA for six bacteriophage φX174 genes were compared at 37°C and 42°C using Q-PCR. At 37°C, mRNA levels for all genes were consistent with previous studies, but at 42°C mRNA levels for four genes were significantly different from levels at 37°C. Transcript levels were higher for genes B and D; the promoter before gene B appears to be up-regulated at high temperature. Levels for genes F and G were reduced at high temperature, possibly due to increased efficiency of the transcription termination signal immediately upstream of gene F. These functional changes in φX174 gene regulation at high temperature have not been described previously. Studies of phage evolution at high temperatures indicate that this difference in transcript levels is subject to adaptation.
Collapse
Affiliation(s)
- Luyi Zhao
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Amber D. Stancik
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Celeste J. Brown
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
27
|
Establishment of a tractable genetic transformation system in Veillonella spp. Appl Environ Microbiol 2012; 78:3488-91. [PMID: 22344660 DOI: 10.1128/aem.00196-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have constructed the first Escherichia coli-Veillonella shuttle vector based on an endogenous plasmid (pVJL1) isolated from a clinical Veillonella strain. A highly transformable Veillonella strain was also identified. Both the shuttle vector and the transformable strain should be valuable tools for future Veillonella genetic studies.
Collapse
|
28
|
Sanders H, Brehony C, Maiden MCJ, Vipond C, Feavers IM. The effect of iron availability on transcription of the Neisseria meningitidis fHbp gene varies among clonal complexes. MICROBIOLOGY-SGM 2012; 158:869-876. [PMID: 22241045 PMCID: PMC3949423 DOI: 10.1099/mic.0.054957-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Factor H binding protein (fHbp) is a major antigenic component of novel vaccines
designed to protect against meningococcal disease. Prediction of the potential coverage of these
vaccines is difficult, as fHbp is antigenically variable and levels of expression differ among
isolates. Transcriptional regulation of the fHbp gene is poorly understood,
although evidence suggests that oxygen availability is involved. In this study iron accessibility
was found to affect fHbp transcription. However, regulation differed among
meningococcal clonal complexes (ccs). For the majority of isolates, increased iron
concentrations upregulated transcription. This effect was enhanced by the presence of a 181 bp
insertion element upstream of fHbp, associated with isolates belonging to cc4 and
cc5. Conversely, meningococci belonging to cc32 showed iron-repressed control of
fHbp, as regulation was dominated by cotranscription with the iron-repressed
upstream gene cbbA. These results highlight the complexity of fHbp
regulation and demonstrate that control of transcription can vary among genetic lineages.
Collapse
Affiliation(s)
- Holly Sanders
- National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Carina Brehony
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Martin C J Maiden
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
| | - Caroline Vipond
- National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Ian M Feavers
- National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, UK
| |
Collapse
|
29
|
Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3'-end chronicles. J Mol Biol 2011; 412:793-813. [PMID: 21439297 PMCID: PMC3622210 DOI: 10.1016/j.jmb.2011.03.036] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 01/01/2023]
Abstract
The process of transcription termination is essential to proper expression of bacterial genes and, in many cases, to the regulation of bacterial gene expression. Two types of bacterial transcriptional terminators are known to control gene expression. Intrinsic terminators dissociate transcription complexes without the assistance of auxiliary factors. Rho-dependent terminators are sites of dissociation mediated by an RNA helicase called Rho. Despite decades of study, the molecular mechanisms of both intrinsic and Rho-dependent termination remain uncertain in key details. Most knowledge is based on the study of a small number of model terminators. The extent of sequence diversity among functional terminators and the extent of mechanistic variation as a function of sequence diversity are largely unknown. In this review, we consider the current state of knowledge about bacterial termination mechanisms and the relationship between terminator sequence and steps in the termination mechanism.
Collapse
Affiliation(s)
- Jason M. Peters
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Abbey D. Vangeloff
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
30
|
PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A 2011; 108:13059-64. [PMID: 21788484 DOI: 10.1073/pnas.1107050108] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Major bacterial small RNAs (sRNAs) regulate the translation and stability of target mRNAs through base pairing with the help of the RNA chaperone Hfq. The Hfq-dependent sRNAs consist of three basic elements, mRNA base-pairing region, Hfq-binding site, and rho-independent terminator. Although the base-pairing region and the terminator are well documented in many sRNAs, the Hfq-binding site is less well-defined except that Hfq binds RNA with a preference for AU-rich sequences. Here, we performed mutational and biochemical studies to define the sRNA site required for Hfq action using SgrS as a model sRNA. We found that shortening terminator polyU tail eliminates the ability of SgrS to bind to Hfq and to silence ptsG mRNA. We also demonstrate that the SgrS terminator can be replaced with any foreign rho-independent terminators possessing a polyU tail longer than 8 without losing the ability to silence ptsG mRNA in an Hfq-dependent manner. Moreover, we found that shortening the terminator polyU tail of several other sRNAs also eliminates the ability to bind to Hfq and to regulate target mRNAs. We conclude that the polyU tail of sRNAs is essential for Hfq action in general. The data also indicate that the terminator polyU tail plays a role in Hfq-dependent stabilization of sRNAs.
Collapse
|
31
|
Bertin M, Château A, Fouet A. Full expression of Bacillus anthracis toxin gene in the presence of bicarbonate requires a 2.7-kb-long atxA mRNA that contains a terminator structure. Res Microbiol 2010; 161:249-59. [PMID: 20359529 DOI: 10.1016/j.resmic.2010.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 10/19/2022]
Abstract
Bacillus anthracis toxin gene expression requires AtxA, a virulence regulator that also activates capsule gene transcription and controls expression of more than a hundred genes. Here we report that atxA mRNA is 2.7-kb-long and ends, after a 500 nt-long 3' untranslated region, with a stem loop structure followed by a run of U's. The presence of this structure stabilizes atxA mRNA and is necessary for AtxA maximal accumulation, full expression of the PA toxin gene, pagA and optimal PA accumulation. This structure displays terminator activity independently of its orientation when cloned between an inducible promoter and a reporter gene. The 3.6-kb-long DNA fragment carrying both AtxA promoters and the terminator is sufficient for full expression of pagA in the presence of bicarbonate. No pXO1-encoded element other than the DNA fragment encompassing the 2.7 kb atxA transcript and the pagA promoter is required for bicarbonate induction of pagA transcription.
Collapse
Affiliation(s)
- Marine Bertin
- Institut Pasteur, Unité Toxines et Pathogénie Bactérienne, CNRS, URA 2172, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
32
|
Martínez-Trujillo M, Sánchez-Trujillo A, Ceja V, Ávila-Moreno F, Bermúdez-Cruz RM, Court D, Montañez C. Sequences required for transcription termination at the intrinsic lambdatI terminator. Can J Microbiol 2010; 56:168-77. [PMID: 20237579 PMCID: PMC7366390 DOI: 10.1139/w09-123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lambdatI terminator is located approximately 280 bp beyond the lambdaint gene, and it has a typical structure of an intrinsic terminator. To identify sequences required for lambdatI transcription termination a set of deletion mutants were generated, either from the 5' or the 3' end onto the lambdatI region. The termination efficiency was determined by measuring galactokinase (galK) levels by Northern blot assays and by in vitro transcription termination. The importance of the uridines and the stability of the stem structure in the termination were demonstrated. The nontranscribed DNA beyond the 3' end also affects termination. Additionally, sequences upstream have a small effect on transcription termination. The in vivo RNA termination sites at lambdatI were determined by S1 mapping and were located at 8 different positions. Processing of transcripts from the 3' end confirmed the importance of the hairpin stem in protection against exonuclease.
Collapse
Affiliation(s)
- Miguel Martínez-Trujillo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Apartado postal 14-740, C.P. 07360 México, D.F., México
| | - Alejandra Sánchez-Trujillo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Apartado postal 14-740, C.P. 07360 México, D.F., México
| | - Víctor Ceja
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Apartado postal 14-740, C.P. 07360 México, D.F., México
| | - Federico Ávila-Moreno
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Apartado postal 14-740, C.P. 07360 México, D.F., México
| | - Rosa María Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Apartado postal 14-740, C.P. 07360 México, D.F., México
| | - Donald Court
- Gene Regulation and Chromosome Biology, National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Cecilia Montañez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N, Apartado postal 14-740, C.P. 07360 México, D.F., México
| |
Collapse
|
33
|
Mitra A, Angamuthu K, Jayashree HV, Nagaraja V. Occurrence, divergence and evolution of intrinsic terminators across eubacteria. Genomics 2009; 94:110-6. [PMID: 19393739 DOI: 10.1016/j.ygeno.2009.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 04/04/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
In Escherichia coli, the canonical intrinsic terminator of transcription includes a palindrome followed by a U-trail on the transcript. The apparent underrepresentation of such terminators in eubacterial genomes led us to develop a rapid and accurate algorithm, GeSTer, to predict putative intrinsic terminators. Now, we have analyzed 378 genome sequences with an improved version of GeSTer. Our results indicate that the canonical E. coli type terminators are not overwhelmingly abundant in eubacteria. The atypical structures, having stem-loop structures but lacking 'U' trail, occur downstream of genes in all the analyzed genomes but different phyla show conserved preference for different types of terminators. This propensity correlates with genomic GC content and presence of the factor, Rho. 60-70% of identified terminators in all the genomes show "optimized" stem-length and DeltaG. These results provide evidence that eubacteria extensively rely on the mechanism of intrinsic termination, with a considerable divergence in their structure, positioning and prevalence. The software and detailed results for individual genomes are freely available on request.
Collapse
Affiliation(s)
- Anirban Mitra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
34
|
Mitra A, Angamuthu K, Nagaraja V. Genome-wide analysis of the intrinsic terminators of transcription across the genus Mycobacterium. Tuberculosis (Edinb) 2008; 88:566-75. [PMID: 18768372 DOI: 10.1016/j.tube.2008.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 06/08/2008] [Accepted: 06/10/2008] [Indexed: 11/18/2022]
Abstract
Termination of transcription in eubacteria is achieved by a region of the nascent transcript. In Escherichia coli, this intrinsic terminator consists of a hairpin followed by a U-stretch. Absence of the typical terminators in several genes of Mycobacterium tuberculosis led us to develop an accurate and efficient algorithm to identify putative terminators in all sequenced microbial genomes. In addition to the typical Escherichia coli type of terminators, several variant terminator structures were predicted by the algorithm and their existence was experimentally verified. We have now analysed 17 Mycobacterium genomes to obtain a comprehensive picture of the transcription terminators in mycobacteria. Our results show that the terminators that lack a U-trail, variant from the typical E. coli intrinsic terminators, are overwhelmingly predominant in all members of the genus. Most terminator structures are concentrated within 50 base pairs downstream of the stop codon. A large number of these terminators occur at the end of experimentally verified or predicted transcription units. We have observed inter-species variations in DeltaG and positioning of the terminators downstream of specific genes amongst closely related mycobacterial species suggesting differences in gene expression. The analysis would be useful in furthering our understanding of genome organization and gene expression in mycobacteria, in addition to the improvement in the annotation of the new genomes.
Collapse
Affiliation(s)
- A Mitra
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | | | | |
Collapse
|
35
|
Pettersson BMF, Kirsebom LA. The presence of a C-1/G+73 pair in a tRNA precursor influences processing and expression in vivo. J Mol Biol 2008; 381:1089-97. [PMID: 18625241 DOI: 10.1016/j.jmb.2008.06.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
To understand whether 5' and 3' structural elements of the region corresponding to the mature tRNA affect the expression of the tRNA, we examined several bacterial genomes for tRNA genes where the expression might be potentially affected by structural elements located outside of the mature tRNA. In Pseudomonas aeruginosa, our analysis suggested that the tRNA(Trp) is transcribed together with a putative stem-loop structure followed by a uridine tract immediately downstream of the tRNA region. This structural element, resembling a Rho-independent transcription terminator, might therefore influence the expression and processing of tRNA(Trp). Moreover, the secondary structure suggested that the discriminator base in the tRNA(Trp) precursor can pair with either the C at position -1, the 3' terminal residue in the 5' leader, or the C immediately 5' of the uridine tract of the putative Rho-independent transcription terminator. Here, we present in vivo data demonstrating the importance of residue -1 and the positioning of the putative transcription terminator for the expression of correctly 5' processed P. aeruginosa tRNA(Trp) in Escherichia coli. Interestingly, we also detected a difference in the appearance of correctly 5' processed P. aeruginosa tRNA(Trp) in E. coli compared to the situation in P. aeruginosa.
Collapse
Affiliation(s)
- B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Center, SE-751 24 Uppsala, Sweden
| | | |
Collapse
|
36
|
Gibb EA, Edgell DR. Multiple controls regulate the expression of mobE, an HNH homing endonuclease gene embedded within a ribonucleotide reductase gene of phage Aeh1. J Bacteriol 2007; 189:4648-61. [PMID: 17449612 PMCID: PMC1913452 DOI: 10.1128/jb.00321-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile genetic elements have the potential to influence the expression of genes surrounding their insertion site upon invasion of a genome. Here, we examine the transcriptional organization of a ribonucleotide reductase operon (nrd) that has been invaded by an HNH family homing endonuclease, mobE. In Aeromonas hydrophila phage Aeh1, mobE has inserted into the large-subunit gene (nrdA) of aerobic ribonucleotide reductase (RNR), splitting it into two smaller genes, nrdA-a and nrdA-b. This gene organization differs from that in phages T4, T6, RB2, RB3, RB15, and LZ7, where mobE is inserted in the nrdA-nrdB intergenic region. We present evidence that the expression of Aeh1 mobE is regulated by transcriptional, posttranscriptional, and translational controls. An Aeh1-specific late promoter drives expression of mobE, but strikingly the mobE transcript is processed internally at an RNase E-like site. We also identified a putative stem-loop structure upstream of mobE that sequesters the mobE ribosome binding site, presumably acting to down regulate MobE translation. Moreover, our transcriptional analyses indicate that the surrounding nrd genes of phage Aeh1 are expressed by a different strategy than are the corresponding phage T4 genes and that transcriptional readthrough is the only mechanism by which the promoterless Aeh1 nrdB gene is expressed. We suggest that the occurrence of multiple layers of control to limit the expression of mobE to late in the Aeh1 infection cycle is an adaptation of Aeh1 to reduce any effects on expression of the surrounding nrd genes early in phage infection when RNR function is critical.
Collapse
Affiliation(s)
- Ewan A Gibb
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
37
|
Ambur OH, Frye SA, Tønjum T. New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J Bacteriol 2006; 189:2077-85. [PMID: 17194793 PMCID: PMC1855724 DOI: 10.1128/jb.01408-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The frequently occurring DNA uptake sequence (DUS), recognized as a 10-bp repeat, is required for efficient genetic transformation in the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Genome scanning for DUS occurrences in three different species of Neisseria demonstrated that 76% of the nearly 2,000 neisserial DUS were found to have two semiconserved base pairs extending from the 5' end of DUS to constitute a 12-mer repeat. Plasmids containing sequential variants of the neisserial DUS were tested for their ability to transform N. meningitidis and N. gonorrhoeae, and the 12-mer was found to outperform the 10-mer DUS in transformation efficiency. Assessment of meningococcal uptake of DNA confirmed the enhanced performance of the 12-mer compared to the 10-mer DUS. An inverted repeat DUS was not more efficient in transformation than DNA species containing a single or direct repeat DUS. Genome-wide analysis revealed that half of the nearly 1,500 12-mer DUS are arranged as inverted repeats predicted to be involved in rho-independent transcriptional termination or attenuation. The distribution of the uptake signal sequence required for transformation in the Pasteurellaceae was also biased towards transcriptional terminators, although to a lesser extent. In addition to assessing the intergenic location of DUS, we propose that the 10-mer identity of DUS should be extended and recognized as a 12-mer DUS. The dual role of DUS in transformation and as a structural component on RNA affecting transcription makes this a relevant model system for assessing significant roles of repeat sequences in biology.
Collapse
Affiliation(s)
- O Herman Ambur
- Institute of Microbiology and Centre for Molecular Biology and Neuroscience, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Center, NO-0027 Oslo, Norway
| | | | | |
Collapse
|
38
|
Petrillo M, Silvestro G, Di Nocera PP, Boccia A, Paolella G. Stem-loop structures in prokaryotic genomes. BMC Genomics 2006; 7:170. [PMID: 16820051 PMCID: PMC1590033 DOI: 10.1186/1471-2164-7-170] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 07/04/2006] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. RESULTS Systematic analysis of the distribution of stem-loop structures (SLSs) in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. CONCLUSION In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or the turnover of cotranscribed mRNAs. Three previously undescribed families of repeated sequences were found in Yersiniae, Bordetellae and Enterococci.
Collapse
Affiliation(s)
- Mauro Petrillo
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giustina Silvestro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Pier Paolo Di Nocera
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
- Dipartimento SAVA Università del Molise Via De Sanctis, 86100 Campobasso, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
39
|
Ramírez-Prado JH, Martínez-Márquez EI, Olmedo-Alvarez G. cry1Aa Lacks Stability Elements at Its 5′-UTR but Integrity of Its Transcription Terminator Is Critical to Prevent Decay of Its Transcript. Curr Microbiol 2006; 53:23-9. [PMID: 16775783 DOI: 10.1007/s00284-005-5178-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 11/14/2005] [Indexed: 10/24/2022]
Abstract
We analyzed the influence of the 5' and 3' untranslated regions of the Bacillus thuringiensis cry1Aa on its mRNA stability. Although the cry1Aa gene has a stable transcript (8 min), its 5' UTR did not provide stability to the reporter gene uidA. Stability of cry1Aa could be increased to 40 min by addition of an SP82 stability element at the 5' UTR, suggesting that once the 5' and 3' ends were protected initiation of decay could be effectively blocked. We generated mutations in the transcription terminator and found that changes that reduced the stability of the stem, a larger loop, or elimination of the U-trail sharply decreased the half-life of the transcript. Therefore, unlike some stable bacterial transcripts, cry1Aa lacks special features at the end 5' to prevent decay, but its terminator is the main determinant of its stability.
Collapse
|
40
|
Yamamoto Y, Sunohara T, Jojima K, Inada T, Aiba H. SsrA-mediated trans-translation plays a role in mRNA quality control by facilitating degradation of truncated mRNAs. RNA (NEW YORK, N.Y.) 2003; 9:408-18. [PMID: 12649493 PMCID: PMC1370408 DOI: 10.1261/rna.2174803] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Accepted: 12/16/2002] [Indexed: 05/22/2023]
Abstract
An important unsolved question regarding the bacterial SsrA system is the fate of target mRNAs replaced by SsrA RNA during trans-translation. The aim of the present study is to address the potential role of SsrA system in mRNA quality control, focusing on truncated mRNAs that are expected to arise from 3'-to-5' exonucleolytic attack. We found that significant amounts of truncated mRNAs and polypeptides were produced from genes lacking a rho-independent terminator in SsrA-deficient cells. These truncated mRNAs, hence truncated polypeptides, were no longer observed in the presence of SsrA RNA. The data indicate that the SsrA system facilitates degradation of "nonstop" mRNAs by presumably removing the stalled ribosomes. Furthermore, analysis of affinity-purified proteins indicated that truncated polypeptides could be produced even from a gene with an intact rho-independent terminator, although less efficiently, implying that C-terminally truncated proteins and 3'-truncated mRNA may be produced from virtually all protein-coding genes. We conclude that the SsrA system not only promotes the degradation of incomplete polypeptides but also minimizes the synthesis of incomplete polypeptides by facilitating the degradation of truncated mRNAs that are produced in cells.
Collapse
Affiliation(s)
- Yasufumi Yamamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
41
|
Smolke CD, Keasling JD. Effect of gene location, mRNA secondary structures, and RNase sites on expression of two genes in an engineered operon. Biotechnol Bioeng 2002; 80:762-76. [PMID: 12402322 DOI: 10.1002/bit.10434] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of endoribonuclease sites, secondary structures in mRNA, and gene placement on protein production and mRNA stability and steady-state levels were tested in a dual-gene operon containing the genes encoding beta-galactosidase (lacZ) from Escherichia coli and green fluorescent protein (gfp) from Aequorea victoria. Two previously identified RNase E sites were placed separately between the coding regions to direct cleavage in this area and produce two secondary transcripts, each containing a single-gene coding region. Novel secondary structures were engineered into the 3' and 5' ends of each of the coding regions to protect the transcript from inactivation by endoribonucleases (5' hairpins) and degradation by exoribonucleases (3' hairpins). In addition, the effects of relative gene placement were examined by switching the locations of the two coding regions. Depending on the particular secondary structures and RNase E sites placed between the genes the relative steady-state transcript and protein levels encoded by the two reporter genes could be changed up to 2.5-fold and 4-fold, respectively. By changing gene location and incorporating secondary structures and RNase E sites the relative steady-state transcript and protein levels encoded by the two reporter genes could be changed up to 100-fold and 750-fold, respectively.
Collapse
Affiliation(s)
- Christina D Smolke
- Department of Chemical Engineering, University of California, Berkeley 94720-1462, USA
| | | |
Collapse
|
42
|
Unniraman S, Chatterji M, Nagaraja V. A hairpin near the 5' end stabilises the DNA gyrase mRNA in Mycobacterium smegmatis. Nucleic Acids Res 2002; 30:5376-81. [PMID: 12490705 PMCID: PMC140080 DOI: 10.1093/nar/gkf697] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA is amongst the most labile macromolecules present in the cells. The steady-state levels of mRNA are regulated both at the stages of synthesis and degradation. Recent work in Escherichia coli suggests that controlling the rate of degradation is as important as the process of synthesis. The stability of mRNA is probably more important in slow- growing organisms like mycobacteria. Here, we present our analysis of the cis elements that determine the stability of the DNA gyrase message in Mycobacterium smegmatis. The message appears to be stabilised by a structure close to its 5' end. The effect is especially pronounced in a nutrient-depleted state. These results largely parallel the model proposed in E.coli for mRNA degradation/ stability with subtle differences. Furthermore, these results suggest that the slow-growing organisms might use stable mRNAs as a method to reduce the load of transcription on the cell.
Collapse
Affiliation(s)
- Shyam Unniraman
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore-560012, India
| | | | | |
Collapse
|
43
|
Unniraman S, Prakash R, Nagaraja V. Conserved economics of transcription termination in eubacteria. Nucleic Acids Res 2002; 30:675-84. [PMID: 11809879 PMCID: PMC100295 DOI: 10.1093/nar/30.3.675] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A secondary structure in the nascent RNA followed by a trail of U residues is believed to be necessary and sufficient to terminate transcription. Such structures represent an extremely economical mechanism of transcription termination since they function in the absence of any additional protein factors. We have developed a new algorithm, GeSTer, to identify putative terminators and analysed all available complete bacterial genomes. The algorithm classifies the structures into five classes. We find that potential secondary structure sequences are concentrated downstream of coding regions in most bacterial genomes. Interestingly, many of these structures are not followed by a discernible U-trail. However, irrespective of the nature of the trail sequence, the structures show a similar distribution, indicating that they serve the same purpose. In contrast, such a distribution is absent in archaeal genomes, indicating that they employ a distinct mechanism for transcription termination. The present algorithm represents the fastest and most accurate algorithm for identifying terminators in eubacterial genomes without being restricted by the classical Escherichia coli paradigm.
Collapse
MESH Headings
- Algorithms
- Bacteria/genetics
- Base Composition
- Codon, Terminator/genetics
- Computational Biology/methods
- Conserved Sequence
- Escherichia coli/genetics
- Evolution, Molecular
- Genes, Archaeal/genetics
- Genes, Bacterial/genetics
- Genome, Archaeal
- Genome, Bacterial
- Models, Genetic
- Nucleic Acid Conformation
- RNA Stability/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Software
- Terminator Regions, Genetic/genetics
- Terminator Regions, Genetic/physiology
- Thermodynamics
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- Shyam Unniraman
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
44
|
Unniraman S, Prakash R, Nagaraja V. Alternate paradigm for intrinsic transcription termination in eubacteria. J Biol Chem 2001; 276:41850-5. [PMID: 11551936 DOI: 10.1074/jbc.m106252200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intrinsic transcription terminators are functionally defined as sites that bring about termination in vitro with purified RNA polymerase alone. Based on studies in Escherichia coli, intrinsic termination requires a palindromic stretch followed by a trail of T (or U) residues in the coding strand. We have developed a highly efficient algorithm to identify hairpin potential sequences in bacterial genomes in order to build a general model for intrinsic transcription termination. The algorithm was applied to analyze the Mycobacterium tuberculosis genome. We find that hairpin potential sequences are concentrated in the immediate downstream of stop codons. However, most of these structures either lack the U trail entirely or have a mixed A/U trail reflecting an evolutionarily relaxed requirement for the U trail in the mycobacterial genome. Predicted atypical structures were shown to work efficiently as terminators both inside the mycobacterial cell and in vitro with purified RNA polymerase. The results are discussed in light of the kinetic competition models for transcription termination. The algorithm identifies >90% of experimentally tested terminators in bacteria and is an invaluable tool in identifying transcription units in whole genomes.
Collapse
Affiliation(s)
- S Unniraman
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
45
|
Burr SE, Diep DB, Buckley JT. Type II secretion by Aeromonas salmonicida: evidence for two periplasmic pools of proaerolysin. J Bacteriol 2001; 183:5956-63. [PMID: 11566995 PMCID: PMC99674 DOI: 10.1128/jb.183.20.5956-5963.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aeromonas salmonicida containing the cloned gene for proaerolysin secretes the protein via the type II secretory pathway. Here we show that altering a region near the beginning of aerA led to a dramatic increase in the amount of proaerolysin that was produced and that a large amount of the protein was cell associated. All of the cell-associated protein had crossed the cytoplasmic membrane, because the signal sequence had been removed, and all of it was accessible to processing by trypsin during osmotic shock. Enlargement of the periplasm was observed by electron microscopy in overproducing cells, likely caused by the osmotic effect of the very large concentrations of accumulated proaerolysin. Immunogold electron microscopy localized nearly all of the proaerolysin in the enlarged periplasm; however, only half of the protoxin was released from the cells by osmotic shocking. Cross-linking studies showed that this fraction contained normal dimeric proaerolysin but that proaerolysin in the fraction that was not shockable had not dimerized, although it appeared to be correctly folded. Both periplasmic fractions were secreted by the cells; however, the nonshockable fraction was secreted much more slowly than the shockable fraction. We estimated a rate for maximal secretion of proaerolysin from the bacteria that was much lower than the rates that have been estimated for inner membrane transit, which suggests that transit across the outer membrane is rate limiting and may account for the periplasmic accumulation of the protein. Finally, we show that overproduction of proaerolysin inhibited the release of the protease that is secreted by A. salmonicida.
Collapse
Affiliation(s)
- S E Burr
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | | | | |
Collapse
|
46
|
Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL. Prediction of transcription terminators in bacterial genomes. J Mol Biol 2000; 301:27-33. [PMID: 10926490 DOI: 10.1006/jmbi.2000.3836] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study describes an algorithm that finds rho-independent transcription terminators in bacterial genomes and evaluates the accuracy of its predictions. The algorithm identifies terminators by searching for a common mRNA motif: a hairpin structure followed by a short uracil-rich region. For each terminator, an energy-scoring function that reflects hairpin stability, and a tail-scoring function based on the number of U nucleotides and their proximity to the stem, are computed. A confidence value can be assigned to each terminator by analyzing candidate terminators found both within and between genes, and taking into account the energy and tail scores. The confidence is an empirical estimate of the probability that the sequence is a true terminator. The algorithm was used to conduct a comprehensive analysis of 12 bacterial genomes to identify likely candidates for rho-independent transcription terminators. Four of these genomes (Deinococcus radiodurans, Escherichia coli, Haemophilus influenzae and Vibrio cholerae) were found to have large numbers of rho-independent terminators. Among the other genomes, most appear to have no transcription terminators of this type, with the exception of Thermotoga maritima. A set of 131 experimentally determined E. coli terminators was used to evaluate the sensitivity of the method, which ranges from 89 % to 98 %, with corresponding false positive rates of 2 % and 18 %.
Collapse
Affiliation(s)
- M D Ermolaeva
- The Institute for Genomic Research, 9712 Medical Center Dr, Rockville, MD 20850, USA.
| | | | | | | | | |
Collapse
|
47
|
Mitsui R, Sakai Y, Yasueda H, Kato N. A novel operon encoding formaldehyde fixation: the ribulose monophosphate pathway in the gram-positive facultative methylotrophic bacterium Mycobacterium gastri MB19. J Bacteriol 2000; 182:944-8. [PMID: 10648518 PMCID: PMC94368 DOI: 10.1128/jb.182.4.944-948.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 4.2-kb PstI fragment harboring the gene cluster of the ribulose monophosphate (RuMP) pathway for formaldehyde fixation was identified in the chromosome of a gram-positive, facultative methylotroph, Mycobacterium gastri MB19, by using the coding region of 3-hexulose-6-phosphate synthase (HPS) as the hybridization probe. The PstI fragment contained three complete open reading frames (ORFs) which encoded from the 5' end, a DNA-binding regulatory protein (rmpR), 6-phospho-3-hexuloisomerase (PHI; rmpB), and HPS (rmpA). Sequence analysis suggested that rmpA and rmpB constitute an operon, and Northern blot analysis of RNA extracted from bacteria grown under various conditions suggested that the expression of the two genes is similarly regulated at the transcriptional level. A similarity search revealed that the proteins encoded by rmpA and rmpB in M. gastri MB19 show high similarity to the unidentified proteins of nonmethylotrophic prokaryotes, including bacteria and anaerobic archaea. The clusters in the phylogenetic tree of the HPS protein of M. gastri MB19 and those in the phylogenetic tree of the PHI protein were nearly identical, which implies that these two formaldehyde-fixing genes evolved as a pair. These findings give new insight into the acquisition of the formaldehyde fixation pathway during the evolution of diverse microorganisms.
Collapse
Affiliation(s)
- R Mitsui
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
48
|
Abe H, Abo T, Aiba H. Regulation of intrinsic terminator by translation in Escherichia coli: transcription termination at a distance downstream. Genes Cells 1999; 4:87-97. [PMID: 10320475 DOI: 10.1046/j.1365-2443.1999.00246.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Rho-independent terminators in Escherichia coli are DNA sequences of 30-50 bp consisting of a GC-rich dyad symmetry sequence followed by a run of T residues in the nontemplate strand. The transcription termination at the Rho-independent terminator occurs within the T-tract in vitro. It has been believed that the transcription termination at the Rho-independent terminator occurs within the T-tract in vivo, as established in vitro, and therefore the 3' ends of mRNAs are mostly generated as a direct result of transcription termination. However, how the transcription termination occurs and how the 3' ends of mRNAs are formed in living cells remains to be studied. RESULTS We developed a double terminator system in which a second Rho-independent terminator was placed downstream of the crp terminator. This system made it possible to detect transcripts that pass through the crp terminator by Northern blotting. We found that most of the crp transcripts extend beyond the crp terminator. The transcriptional read-through at the crp terminator was reduced when the translation of crp mRNA was interrupted. The level of the read-through transcript decreased with distance between the two terminators, suggesting that transcription termination occurs at multiple positions beyond the crp terminator. CONCLUSION We conclude that most RNA polymerase reads through the crp terminator in the natural situation and terminates transcription over a wide region downstream of the crp terminator, resulting in heterogeneous primary transcripts that are subsequently processed back to the terminator hairpin. We propose that ribosome translation to the crp stop codon causes read-through of the terminator. The regulatory effect of translation on Rho-independent termination may be a general phenomenon at other operons.
Collapse
Affiliation(s)
- H Abe
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | | | | |
Collapse
|