1
|
Semenov DG, Belyakov AV, Glushchenko TS, Samoilov MO, Salinska E, Lazarewicz JW. Hypobaric Preconditioning Modifies Group I mGluRs Signaling in Brain Cortex. Neurochem Res 2015; 40:2200-10. [PMID: 26318863 DOI: 10.1007/s11064-015-1708-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022]
Abstract
The study assessed involvement of Ca(2+) signaling mediated by the metabotropic glutamate receptors mGluR1/5 in brain tolerance induced by hypoxic preconditioning. Acute slices of rat piriform cortex were tested 1 day after exposure of adult rats to mild hypobaric hypoxia for 2 h at a pressure of 480 hPa once a day for three consecutive days. We detected 44.1 ± 11.6 % suppression of in vitro anoxia-induced increases of intracellular Ca(2+) levels and a fivefold increase in Ca(2+) transients evoked by selective mGluR1/5 agonist, DHPG. Western blot analysis of cortical homogenates demonstrated a 11 ± 4 % decrease in mGluR1 immunoreactivity (IR), and in the nuclei-enriched fraction a 12 ± 3 % increase in IR of phospholipase Cβ1 (PLCβ1), which is a major mediator of mGluR1/5 signaling. Immunocytochemical analysis of the cortex revealed increase in the mGluR1/5 and PLCβ1 IR in perikarya, and a decrease in IR of the neuronal inositol trisphosphate receptors (IP3Rs). We suggest that enhanced expression of mGluR5 and PLCβ1 and potentiation of Ca(2+) signaling may represent pro-survival upregulation of Ca(2+)-dependent genomic processes, while decrease in mGluR1 and IP3R IR may be attributed to a feedback mechanism preventing excessive intracellular Ca(2+) release.
Collapse
Affiliation(s)
- Dmitry G Semenov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova, 6, Saint Petersburg, Russia, 199034.
| | - Alexandr V Belyakov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova, 6, Saint Petersburg, Russia, 199034.
| | - Tatjana S Glushchenko
- Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova, 6, Saint Petersburg, Russia, 199034.
| | - Mikhail O Samoilov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Nab. Makarova, 6, Saint Petersburg, Russia, 199034.
| | - Elzbieta Salinska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| | - Jerzy W Lazarewicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Neuhof C, Neuhof H. Calpain system and its involvement in myocardial ischemia and reperfusion injury. World J Cardiol 2014; 6:638-652. [PMID: 25068024 PMCID: PMC4110612 DOI: 10.4330/wjc.v6.i7.638] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/26/2014] [Accepted: 05/29/2014] [Indexed: 02/06/2023] Open
Abstract
Calpains are ubiquitous non-lysosomal Ca2+-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca2+-content and Ca2+-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction.
Collapse
|
3
|
Abstract
Decreased oxygen availability impairs cellular energy production and, without a coordinated and matched decrease in energy consumption, cellular and whole organism death rapidly ensues. Of particular interest are mechanisms that protect brain from low oxygen injury, as this organ is not only the most sensitive to hypoxia, but must also remain active and functional during low oxygen stress. As a result of natural selective pressures, some species have evolved molecular and physiological mechanisms to tolerate prolonged hypoxia with no apparent detriment. Among these mechanisms are a handful of responses that are essential for hypoxia tolerance, including (i) sensors that detect changes in oxygen availability and initiate protective responses; (ii) mechanisms of energy conservation; (iii) maintenance of basic brain function; and (iv) avoidance of catastrophic cell death cascades. As the study of hypoxia-tolerant brain progresses, it is becoming increasingly apparent that mitochondria play a central role in regulating all of these critical mechanisms. Furthermore, modulation of mitochondrial function to mimic endogenous neuroprotective mechanisms found in hypoxia-tolerant species confers protection against otherwise lethal hypoxic stresses in hypoxia-intolerant organs and organisms. Therefore, lessons gleaned from the investigation of endogenous mechanisms of hypoxia tolerance in hypoxia-tolerant organisms may provide insight into clinical pathologies related to low oxygen stress.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Zoology, The University of British Columbia, #4200-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Oxygen Sensitive Synaptic Neurotransmission in Anoxia-Tolerant Turtle Cerebrocortex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 758:71-9. [DOI: 10.1007/978-94-007-4584-1_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Comparison of Ca2+ Responses to Stimulation of Glutamate Receptors in the Rat Cerebral Cortex after Hypobaric Hypoxia of Different Severities. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11055-010-9361-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Zivkovic G, Buck LT. Regulation of AMPA receptor currents by mitochondrial ATP-sensitive K+ channels in anoxic turtle neurons. J Neurophysiol 2010; 104:1913-22. [PMID: 20685922 DOI: 10.1152/jn.00506.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mammalian neurons rapidly undergo excitotoxic cell death during anoxia, whereas neurons from the anoxia-tolerant painted turtle survive without oxygen for hours and offer a unique model to study mechanisms to reduce the severity of cerebral stroke. An anoxia-mediated decrease in whole cell N-methyl-D-aspartate receptor and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) currents are an important part of the turtle's natural defense. Here we investigate the role of mitochondrial ATP-sensitive K(+) (mK(ATP)) channels in the regulation of AMPAR. Whole cell AMPAR currents were stable over 90 min of normoxic recording; however, anoxia resulted in a 52% decrease in AMPAR currents. Pharmacological activation of mK(ATP) channels with diazoxide or levcromakalim resulted in a 46% decrease in normoxic AMPAR currents and the decrease was abolished with application of the antagonists 5-hydroxydecanoic acid and glibenclamide, whereas mK(ATP) antagonists blocked the anoxia-mediated decrease. Mitochondrial K(Ca) channel modulators responded similarly. The Ca(2+)-uniporter antagonist ruthenium red reduced AMPAR currents by 38% and was blocked with the agonist spermine. The calcium chelator BAPTA in the recording electrode during anoxia or diazoxide perfusion also abolished the reduction in AMPAR currents. We conclude that the mK(ATP) channel is involved in the anoxia-mediated down-regulation of AMPAR activity during anoxia and that it is a common mechanism to reduce glutamatergic excitability.
Collapse
Affiliation(s)
- George Zivkovic
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, RW 329, Toronto, ON, Canada
| | | |
Collapse
|
7
|
Pamenter ME, Shin DSH, Cooray M, Buck LT. Mitochondrial ATP-sensitive K+ channels regulate NMDAR activity in the cortex of the anoxic western painted turtle. J Physiol 2007; 586:1043-58. [PMID: 18079161 DOI: 10.1113/jphysiol.2007.142380] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hypoxic mammalian neurons undergo excitotoxic cell death, whereas painted turtle neurons survive prolonged anoxia without apparent injury. Anoxic survival is possibly mediated by a decrease in N-methyl-d-aspartate receptor (NMDAR) activity and maintenance of cellular calcium concentrations ([Ca(2+)](c)) within a narrow range during anoxia. In mammalian ischaemic models, activation of mitochondrial ATP-sensitive K(+) (mK(ATP)) channels partially uncouples mitochondria resulting in a moderate increase in [Ca(2+)](c) and neuroprotection. The aim of this study was to determine the role of mK(ATP) channels in anoxic turtle NMDAR regulation and if mitochondrial uncoupling and [Ca(2+)](c) changes underlie this regulation. In isolated mitochondria, the K(ATP) channel activators diazoxide and levcromakalim increased mitochondrial respiration and decreased ATP production rates, indicating mitochondria were 'mildly' uncoupled by 10-20%. These changes were blocked by the mK(ATP) antagonist 5-hydroxydecanoic acid (5HD). During anoxia, [Ca(2+)](c) increased 9.3 +/- 0.3% and NMDAR currents decreased 48.9 +/- 4.1%. These changes were abolished by K(ATP) channel blockade with 5HD or glibenclamide, Ca(2+)(c) chelation with 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or by activation of the mitochondrial Ca(2+) uniporter with spermine. Similar to anoxia, diazoxide or levcromakalim increased [Ca(2+)](c) 8.9 +/- 0.7% and 3.8 +/- 0.3%, while decreasing normoxic whole-cell NMDAR currents by 41.1 +/- 6.7% and 55.4 +/- 10.2%, respectively. These changes were also blocked by 5HD or glibenclamide, BAPTA, or spermine. Blockade of mitochondrial Ca(2+)-uptake decreased normoxic NMDAR currents 47.0 +/- 3.1% and this change was blocked by BAPTA but not by 5HD. Taken together, these data suggest mK(ATP) channel activation in the anoxic turtle cortex uncouples mitochondria and reduces mitochondrial Ca(2+) uptake via the uniporter, subsequently increasing [Ca(2+)](c) and decreasing NMDAR activity.
Collapse
Affiliation(s)
- Matthew Edward Pamenter
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3G5
| | | | | | | |
Collapse
|
8
|
Rybnikova E, Vataeva L, Tyulkova E, Gluschenko T, Otellin V, Pelto-Huikko M, Samoilov MO. Mild hypoxia preconditioning prevents impairment of passive avoidance learning and suppression of brain NGFI-A expression induced by severe hypoxia. Behav Brain Res 2004; 160:107-14. [PMID: 15836905 DOI: 10.1016/j.bbr.2004.11.023] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/11/2004] [Accepted: 11/18/2004] [Indexed: 11/18/2022]
Abstract
The aim of this work was to study effects of mild preconditioning hypobaric hypoxia (380 Torr for 2 h, repeated 3 or 6 times spaced at 24 h) on brain NGFI-A immunoreactivity and passive avoidance (PA) behavior in rats exposed to severe hypoxia (160 Torr for 3 h). Severe hypobaric hypoxia produced extensive neuronal loss in hippocampal CA1, while the preceding hypoxic preconditioning had clear protective effect on neuronal viability of vulnerable hippocampal cells. Besides, the hypoxic preconditioning prevented impairment of acquisition and retention of PA caused by severe hypoxia. The six-trial hypobaric preconditioning was more effective in protection against PA learning deficits in severe hypoxia exposed rats than the three-trial preconditioning. The preconditioning up-regulated severe hypoxia-suppressed neocortical and hippocampal expression of NGFI-A, suggesting a possible role for NGFI-A in the neuroprotective mechanisms activated by hypoxic preconditioning.
Collapse
Affiliation(s)
- Elena Rybnikova
- Laboratory of Neuroendocrinology, Pavlov Institute of Physiology Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
9
|
Semenov DG, Miller OL, Samoilov MO. Effect of in vivo hypoxic preconditioning on changes in intracellular calcium content induced by long-term anoxia in rat brain slices. Bull Exp Biol Med 2004. [DOI: 10.1007/s10517-004-0005-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Englund M, Bjurling M, Edin F, Hyllienmark L, Brismar T. Hypoxic excitability changes and sodium currents in hippocampus CA1 neurons. Cell Mol Neurobiol 2004; 24:685-94. [PMID: 15485138 DOI: 10.1023/b:cemn.0000036405.53992.78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. The objective of the present study was to distinguish if inhibition of neuronal activity by hypoxia is related to a block of voltage-gated Na+ channels. 2. The effect of chemical hypoxia induced by cyanide (0.5 mM, 10 min perfusion) was studied with patch-clamp technique in visualized intact CA1 pyramidal neurons in rat brain slices. Action potentials were elicited in whole cell current-clamp recordings and the threshold was estimated by current pulses of 50-ms duration and incremental amplitudes (n = 31). The effect of cyanide on the Na+ current and conductance was studied in voltage clamp recordings from cell-attached patches (n = 13). 3. Cyanide perfusion during 10 min increased the threshold for excitation by 73 +/- 79 pA (p = 0.001), which differed from the effect in control cells (11 +/- 41 pA, ns). The change in current threshold was correlated to a change in membrane potential (r = -0.88, p < 0.0001). Cyanide had no significant effect on the peak amplitude, duration, or rate of rise of the action potential. 4. Cyanide perfusion did not change the Na+ current size, but caused a small decrease in ENa (-17 +/- 22 mV, ns) and a slight increase in Na+ conductance (+14 +/- 26%, ns), which differed (p = 0.045) from controls (-19 +/- 23 %, ns). 5. In conclusion, chemical hypoxia does not cause a decrease in Na+ conductance. The decreased excitability during hypoxia can be explained by an increase in the current threshold, which is correlated with the effect on the membrane potential.
Collapse
Affiliation(s)
- M Englund
- Department of Clinical Neurophysiology, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Ladewig T, Kloppenburg P, Lalley PM, Zipfel WR, Webb WW, Keller BU. Spatial profiles of store-dependent calcium release in motoneurones of the nucleus hypoglossus from newborn mouse. J Physiol 2003; 547:775-87. [PMID: 12562905 PMCID: PMC2342737 DOI: 10.1113/jphysiol.2002.033605] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Accepted: 12/19/2002] [Indexed: 11/08/2022] Open
Abstract
Hypoglossal motoneurones (HMN) are selectively damaged in both human amyotrophic lateral sclerosis (ALS) and corresponding mouse models of this neurodegenerative disease, a process which has been linked to their low endogenous Ca2+ buffering capacity and an exceptional vulnerability to Ca2+-mediated excitotoxic events. In this report, we investigated local Ca2+ profiles in low buffered HMNs by utilizing multiphoton microscopy, CCD imaging and patch clamp recordings in slice preparations. Bath application of caffeine induced highly localized Ca2+ release events, which displayed an initial peak followed by a slow 'shoulder' lasting several seconds. Peak amplitudes were paralleled by Ca2+-activated, apamin-sensitive K+ currents (IKCa), demonstrating a functional link between Ca2+ stores and HMN excitability. The potential involvement of mitochondria was investigated by bath application of CCCP, which collapses the electrochemical potential across the inner mitochondrial membrane. CCCP reduced peak amplitudes of caffeine responses and consequently IKCa, indicating that functionally intact mitochondria were critical for store-dependent modulation of HMN excitability. Taken together, our results indicate localized Ca2+ release profiles in HMNs, where low buffering capacities enhance the role of Ca2+-regulating organelles as local determinants of [Ca2+]i. This might expose HMN to exceptional risks during pathophysiological organelle disruptions and other ALS-related, cellular disturbances.
Collapse
Affiliation(s)
- Thomas Ladewig
- Centre of Physiology, Humboldtallee 23, University of Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Rybnikova E, Tulkova E, Pelto-Huikko M, Samoilov M. Mild preconditioning hypoxia modifies nerve growth factor-induced gene A messenger RNA expression in the rat brain induced by severe hypoxia. Neurosci Lett 2002; 329:49-52. [PMID: 12161260 DOI: 10.1016/s0304-3940(02)00577-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of preconditioning (PC) on the changes of nerve growth factor-induced gene A (NGFI-A) expression induced by severe hypobaric hypoxia was studied by in situ hybridization. A PC consisted of three trials of mild hypobaric hypoxia (360 Torr, 2 h) spaced at 24 h. The last trial was followed by severe hypoxia (SH; 180 Torr, 3 h) 24 h later. The PC hypoxia prevented the NGFI-A messenger RNA (mRNA) increase in the cortex, neostriatum, piriform cortex, amygdala and hippocampus detected 3 h after SH. The preconditioned SH caused a peak in NGFI-A mRNA expression at the 24 h time-point and thus abolished the dramatic decrease of the mRNA in vulnerable areas seen by 24 and 72 h after SH. The findings suggest a role of brain NGFI-A in the protective effect of hypoxic/ischemic PC.
Collapse
Affiliation(s)
- Elena Rybnikova
- Department of Developmental Biology, Medical School of Tampere University and Department of Pathology, Tampere University Hospital, 33014 Tampere, Finland
| | | | | | | |
Collapse
|