1
|
Scott MB, Styring AK, McCullagh JSO. Polyphenols: Bioavailability, Microbiome Interactions and Cellular Effects on Health in Humans and Animals. Pathogens 2022; 11:770. [PMID: 35890016 PMCID: PMC9324685 DOI: 10.3390/pathogens11070770] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 12/12/2022] Open
Abstract
Polyphenolic compounds have a variety of functions in plants including protecting them from a range of abiotic and biotic stresses such as pathogenic infections, ionising radiation and as signalling molecules. They are common constituents of human and animal diets, undergoing extensive metabolism by gut microbiota in many cases prior to entering circulation. They are linked to a range of positive health effects, including anti-oxidant, anti-inflammatory, antibiotic and disease-specific activities but the relationships between polyphenol bio-transformation products and their interactions in vivo are less well understood. Here we review the state of knowledge in this area, specifically what happens to dietary polyphenols after ingestion and how this is linked to health effects in humans and animals; paying particular attention to farm animals and pigs. We focus on the chemical transformation of polyphenols after ingestion, through microbial transformation, conjugation, absorption, entry into circulation and uptake by cells and tissues, focusing on recent findings in relation to bone. We review what is known about how these processes affect polyphenol bioactivity, highlighting gaps in knowledge. The implications of extending the use of polyphenols to treat specific pathogenic infections and other illnesses is explored.
Collapse
Affiliation(s)
- Michael B. Scott
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - Amy K. Styring
- School of Archaeology, University of Oxford, Oxford OX1 3TG, UK;
| | - James S. O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
2
|
A multi-herd study shows that saliva is more than a reflection of serum biomarkers in pigs. Animal 2021; 15:100413. [PMID: 34844190 DOI: 10.1016/j.animal.2021.100413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
This study evaluates if biomarkers of porcine health status in saliva samples is a mere reflection of serum to detect disease in pigs under field conditions. Four farms from the same commercial company were included to obtain samples from animals with different pathological conditions. A total of 10 healthy animals and 10-15 animals from each farm with clinical symptoms of the disease were sampled for paired saliva and blood during a veterinary clinical visit. The biomarker panel included acute-phase proteins (APPs), C-reactive protein (CRP), haptoglobin (Hp), an inflammatory marker, adenosine deaminase (ADA), the total antioxidant capacity (TAC), the levels of essential trace elements, copper (Cu) and zinc (Zn), and the measurement of the total protein content (TP). After detailed statistical analysis, the results showed that saliva could replace serum for APP measurements since a good agreement has been observed between the concentrations of APPs in both body fluids. For any other biomarker, no agreement between the concentrations quantified in serum and saliva samples was observed visually. However, salivary ADA and TP concentrations were statistically significantly higher in the diseased, whereas the statistical tests with serum concentrations were inconclusive. Furthermore, greater differentiation between healthy and diseased animals could be observed when the distribution of biomarkers was analysed in saliva than in other serum samples. The diagnostic power to discriminate between healthy and diseased pigs is similar in saliva and in serum samples. Preliminary regression models may offer an optimal combination of biomarkers for disease detection in saliva (Hp, CRP, and TAC) and serum (Hp, CRP, and Cu), which demands less labour, sample, and financial cost for saliva determinations. The contradictory results observed for TAC, Cu, and Zn levels between body fluids indicate a need for further studies. To sum up, saliva-based biomarkers instead of serum-based biomarkers could contribute to more efficient detection of diseased animals.
Collapse
|
3
|
Guo D, Li Y, Wang H, Wang X, Hua W, Tang Q, Miao L, Wang G. Propofol post-conditioning after temporary clipping reverses oxidative stress in aneurysm surgery. Int J Neurosci 2018; 129:155-164. [PMID: 29882696 DOI: 10.1080/00207454.2018.1483920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Animal studies have demonstrated that propofol post-conditioning produces long-term neuroprotection in focal cerebral ischemia-reperfusion injury. However, whether propofol post-conditioning provides neuroprotection in human beings has never been explored. The aim of this study was to evaluate the role of propofol post-conditioning on oxidative stress and post-operative cognitive function following aneurysm clipping. MATERIALS AND METHODS Sixty patients undergoing intracranial aneurysm clipping were randomized into a propofol post-conditioning group or a sevoflurane group. Sevoflurane (0.5-2%) was used for maintenance anesthesia in both groups. In the propofol post-conditioning group, the inhaled concentration of sevoflurane was reduced after temporary clip removal to keep the bispectral index (BIS) value between 40 and 60, and propofol (Cp 1.2 µg/mL) was subsequently started. Blood samples were drawn at six time points: before induction, immediately after clip removal, at the end of the operation, 24-h post-surgery, 3 days post-surgery, and 7 days post-surgery. Oxidative stress and cognitive function were measured. RESULTS Between the conclusion of the operation to 7 days after surgery, propofol post-conditioning decreased the serum concentration of •OH and 8-isoprostane and increased γ-tocopherol and SOD. Reduced micronuclei and nucleoplasmic bridges were observed in the propofol post-conditioning group. Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores were improved by propofol post-conditioning compared to the group that received no propofol. CONCLUSIONS Together, our data suggest that propofol post-conditioning (Cp 1.2 µg/mL) may protect the brain from oxidative stress injury up to 7 days post-surgery after temporary parent artery clipping. Furthermore, the neuroprotection induced by propofol post-conditioning may contribute to improvement in cognitive function.
Collapse
Affiliation(s)
- Di Guo
- a Department of Anesthesiology, Key Laboratory of Artificial Cell , Institute of Hepatobiliary Disease, The Third Central Clinical College of Tianjin Medical University, Tianjin the Third Central Hospital , Tianjin , China
| | - Yanli Li
- a Department of Anesthesiology, Key Laboratory of Artificial Cell , Institute of Hepatobiliary Disease, The Third Central Clinical College of Tianjin Medical University, Tianjin the Third Central Hospital , Tianjin , China
| | - Haiyun Wang
- a Department of Anesthesiology, Key Laboratory of Artificial Cell , Institute of Hepatobiliary Disease, The Third Central Clinical College of Tianjin Medical University, Tianjin the Third Central Hospital , Tianjin , China.,b Department of Anesthesiology , Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology , Tianjin , China
| | - Xinyue Wang
- a Department of Anesthesiology, Key Laboratory of Artificial Cell , Institute of Hepatobiliary Disease, The Third Central Clinical College of Tianjin Medical University, Tianjin the Third Central Hospital , Tianjin , China
| | - Wei Hua
- a Department of Anesthesiology, Key Laboratory of Artificial Cell , Institute of Hepatobiliary Disease, The Third Central Clinical College of Tianjin Medical University, Tianjin the Third Central Hospital , Tianjin , China
| | - Qingkai Tang
- a Department of Anesthesiology, Key Laboratory of Artificial Cell , Institute of Hepatobiliary Disease, The Third Central Clinical College of Tianjin Medical University, Tianjin the Third Central Hospital , Tianjin , China
| | - Lumin Miao
- b Department of Anesthesiology , Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology , Tianjin , China
| | - Guolin Wang
- b Department of Anesthesiology , Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology , Tianjin , China
| |
Collapse
|
4
|
Chen X, Li LY, Jiang JL, Li K, Su ZB, Zhang FQ, Zhang WJ, Zhao GQ. Propofol elicits autophagy via endoplasmic reticulum stress and calcium exchange in C2C12 myoblast cell line. PLoS One 2018; 13:e0197934. [PMID: 29795639 PMCID: PMC5967754 DOI: 10.1371/journal.pone.0197934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, we investigated the relationship between propofol and autophagy and examined whether this relationship depends on ER stress, production of ROS (reactive oxygen species), and disruption of calcium (Ca2+) homeostasis. To this end, we measured C2C12 cell apoptosis in vitro, along with Ca2+ levels; ROS production; and expression of proteins and genes associated with autophagy, Ca2+ homeostasis, and ER stress, including LC3 (microtubule-associate protein 1 light chain 3), p62, AMPK (adenosine 5'-monophosphate (AMP)-activated protein kinase), phosphorylated AMPK, mTOR (the mammalian target of rapamycin), phosphorylated mTOR, CHOP (C/BEP homologous protein), and Grp78/Bip (78 kDa glucose-regulated protein). We found that propofol treatment induced autophagy, ER stress, and Ca2+ release. The ratio of phosphorylated AMPK to AMPK increased, whereas the ratio of phosphorylated mTOR to mTOR decreased. Collectively, the data suggested that propofol induced autophagy in vitro through ER stress, resulting in elevated ROS and Ca2+. Additionally, co-administration of an ER stress inhibitor blunted the effect of propofol.
Collapse
Affiliation(s)
- Xi Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Long-Yun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jin-Lan Jiang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhen-Bo Su
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fu-Qiang Zhang
- Department of Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wen-Jing Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
5
|
Chang CY, Chen PH, Lu SC, Hsieh MC, Lin CW, Lee HM, Jawan B, Kao YH. Propofol-enhanced autophagy increases motility and angiogenic capacity of cultured human umbilical vascular endothelial cells. Life Sci 2015; 142:49-59. [DOI: 10.1016/j.lfs.2015.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/07/2015] [Accepted: 10/13/2015] [Indexed: 12/19/2022]
|
6
|
Yen HC, Chen TW, Yang TC, Wei HJ, Hsu JC, Lin CL. Levels of F2-isoprostanes, F4-neuroprostanes, and total nitrate/nitrite in plasma and cerebrospinal fluid of patients with traumatic brain injury. Free Radic Res 2015; 49:1419-30. [PMID: 26271312 DOI: 10.3109/10715762.2015.1080363] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several events occurring during the secondary damage of traumatic brain injury (TBI) can cause oxidative stress. F(2)-isoprostanes (F(2)-IsoPs) and F(4)-neuroprostanes (F(4)-NPs) are specific lipid peroxidation markers generated from arachidonic acid and docosahexaenoic acid, respectively. In this study, we evaluated oxidative stress in patients with moderate and severe TBI. Since sedatives are routinely used to treat TBI patients and propofol has been considered an antioxidant, TBI patients were randomly treated with propofol or midazolam for 72 h postoperation. We postoperatively collected cerebrospinal fluid (CSF) and plasma from 15 TBI patients for 6-10 d and a single specimen of CSF or plasma from 11 controls. Compared with the controls, the TBI patients exhibited elevated levels of F(2)-IsoPs and F(4)-NPs in CSF throughout the postsurgery period regardless of the sedative used. Compared with the group of patients who received midazolam, those who received propofol exhibited markedly augmented levels of plasma F(2)-IsoPs, which were associated with higher F(4)-NPs levels and lower total nitrate/nitrite levels in CSF early in the postsurgery period. Furthermore, the higher CSF F(2)-IsoPs levels correlated with 6-month and 12-month worse outcomes, which were graded according to the Glasgow Outcome Scale. The results demonstrate enhanced oxidative damage in the brain of TBI patients and the association of higher CSF levels of F(2)-IsoPs with a poor outcome. Moreover, propofol treatment might promote lipid peroxidation in the circulation, despite possibly suppressing nitric oxide or peroxynitrite levels in CSF, because of the increased loading of the lipid components from the propofol infusion.
Collapse
Affiliation(s)
- H-C Yen
- a Graduate Institute and Department of Medical Biotechnology and Laboratory Science , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - T-W Chen
- a Graduate Institute and Department of Medical Biotechnology and Laboratory Science , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - T-C Yang
- b Department of Neurosurgery , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan
| | - H-J Wei
- a Graduate Institute and Department of Medical Biotechnology and Laboratory Science , College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - J-C Hsu
- c Department of Anesthesiology , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan
| | - C-L Lin
- b Department of Neurosurgery , Chang Gung Memorial Hospital and Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
7
|
Kadiiska MB, Peddada S, Herbert RA, Basu S, Hensley K, Jones DP, Hatch GE, Mason RP. Biomarkers of oxidative stress study VI. Endogenous plasma antioxidants fail as useful biomarkers of endotoxin-induced oxidative stress. Free Radic Biol Med 2015; 81:100-6. [PMID: 25614459 PMCID: PMC4467900 DOI: 10.1016/j.freeradbiomed.2015.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/31/2022]
Abstract
This is the newest report in a series of publications aiming to identify a blood-based antioxidant biomarker that could serve as an in vivo indicator of oxidative stress. The goal of the study was to test whether acutely exposing Göttingen mini pigs to the endotoxin lipopolysaccharide (LPS) results in a loss of antioxidants from plasma. We set as a criterion that a significant effect should be measured in plasma and seen at both doses and at more than one time point. Animals were injected with two doses of LPS at 2.5 and 5 µg/kg iv. Control plasma was collected from each animal before the LPS injection. After the LPS injection, plasma samples were collected at 2, 16, 48, and 72 h. Compared with the controls at the same time point, statistically significant losses were not found for either dose at multiple time points in any of the following potential markers: ascorbic acid, tocopherols (α, δ, γ), ratios of GSH/GSSG and cysteine/cystine, mixed disulfides, and total antioxidant capacity. However, uric acid, total GSH, and total Cys were significantly increased, probably because LPS had a harmful effect on the liver. The leakage of substances from damaged cells into the plasma may have increased plasma antioxidant concentrations, making changes difficult to interpret. Although this study used a mini-pig animal model of LPS-induced oxidative stress, it confirmed our previous findings in different rat models that measurement of antioxidants in plasma is not useful for the assessment of oxidative damage in vivo.
Collapse
Affiliation(s)
- Maria B Kadiiska
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - Shyamal Peddada
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ronald A Herbert
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Samar Basu
- Oxidative Stress and Inflammation, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
| | - Kenneth Hensley
- Department of Pathology, University of Toledo Medical Center, Toledo, OH 43614, USA
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Gary E Hatch
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Ronald P Mason
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
8
|
Bharathidasan M, Thirumurugan R, William BJ, George RS, Arunprasad A, Kannan TA, Viramuthu S. Xylazine-ketamine immobilization and propofol anesthesia for surgical excision of sebaceous adenoma in a jaguar (Panthera onca). Vet World 2014. [DOI: 10.14202/vetworld.2014.986-990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Akın M, Ayoglu H, Okyay D, Ayoglu F, Gür A, Can M, Yurtlu S, Hancı V, Küçükosman G, Turan I. [Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity]. Rev Bras Anestesiol 2014; 65:51-60. [PMID: 25497750 DOI: 10.1016/j.bjan.2014.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVES In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. METHODS 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5mgkg(-1) propofol, 1mgkg(-1) lidocaine and 0.6mgkg(-1) rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4Lmin(-1), 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4Lmin(-1) 6mgkgh(-1) propofol and 1μgkgh(-1) fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. RESULTS It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. CONCLUSION According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system.
Collapse
Affiliation(s)
- Mehmet Akın
- Departamento de Anestesiologia e Reanimação, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| | - Hilal Ayoglu
- Departamento de Anestesiologia e Reanimação, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia.
| | - Dilek Okyay
- Departamento de Anestesiologia e Reanimação, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| | - Ferruh Ayoglu
- Departamento de Saúde Pública, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| | - Abdullah Gür
- Departamento de Anestesiologia e Reanimação, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| | - Murat Can
- Departamento de Bioquímica, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| | - Serhan Yurtlu
- Departamento de Anestesiologia e Reanimação, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| | - Volkan Hancı
- Departamento de Anestesiologia e Reanimação, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| | - Gamze Küçükosman
- Departamento de Anestesiologia e Reanimação, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| | - Işıl Turan
- Departamento de Anestesiologia e Reanimação, Bülent Ecevit University, School of Medicine, Zonguldak, Turquia
| |
Collapse
|
10
|
Basu S, Meisert I, Eggensperger E, Krieger E, Krenn CG. Time course and attenuation of ischaemia-reperfusion induced oxidative injury by propofol in human renal transplantation. Redox Rep 2013; 12:195-202. [DOI: 10.1179/135100007x200281] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
11
|
Mirzakhani H, Nozari A, Ehrenfeld JM, Peterfreund R, Szabo M, Walsh JL, Jiang Y, Sandberg W, Rosow C, Wang J. Case report: profound hypotension after anesthetic induction with propofol in patients treated with rifampin. Anesth Analg 2013; 117:61-4. [PMID: 23687230 DOI: 10.1213/ane.0b013e318292cbd0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Rifampin is commonly used for the treatment of tuberculosis and staphylococcal infections, as well as for prevention of infection in cardiac valve and bone surgeries. We report a case of profound hypotension after anesthesia induction with propofol in a patient who was treated with two 600 mg doses of rifampin for prophylaxis of infection before surgery. In a retrospective case-control study of 75 patients, we confirmed this potentially serious drug-drug interaction. After rifampin, there was a significant and prolonged arterial blood pressure reduction when patients received propofol, but not thiopental.
Collapse
Affiliation(s)
- Hooman Mirzakhani
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, GRJ-4-416, 55 Fruit St., Boston, MA 02114-2696, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yoon SH. Concerns of the anesthesiologist: anesthetic induction in severe sepsis or septic shock patients. Korean J Anesthesiol 2012; 63:3-10. [PMID: 22870358 PMCID: PMC3408511 DOI: 10.4097/kjae.2012.63.1.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 06/20/2012] [Indexed: 01/20/2023] Open
Abstract
Septic patients portray instable hemodynamic states because of hypotension or cardiomyopathy, caused by vasodilation, thus, impairing global tissue perfusion and oxygenation threatening functions of critical organs. Therefore, it has become the primary concern of anesthesiologists in conducting anesthesia (induction, maintenance, recovery, and postoperative care), especially in the induction of those who are prone to fall into hemodynamic crisis, due to hemodynamic instability. The anesthesiologist must have a precise anesthetic plan based on a thorough preanesthetic evaluation because many cases are emergent. Primary circulatory status of patients, including mental status, blood pressure, urine output, and skin perfusion, are necessary, as well as more active assessment methods on intravascular volume status and cardiovascular function. Because it is difficult to accurately evaluate the intravascular volume, only by central venous pressure (CVP) measurements, the additional use of transthoracic echocardiography is recommended for the evaluation of myocardial performance and hemodynamic state. In order to hemodynamically stabilize septic patients, adequate fluid resuscitation must be given before induction. Most anesthetic induction agents cause blood pressure decline, however, it may be useful to use drugs, such as ketamine or etomidate, which carry less cardiovascular instability effects than propofol, thiopental and midazolam. However, if blood pressure is unstable, despite these efforts, vasopressors and inotropic agents must be administered to maintain adequate perfusion of organs and cellular oxygen uptake.
Collapse
Affiliation(s)
- Seok Hwa Yoon
- Department of Anesthesiology and Pain Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
13
|
Milatovic D, Montine TJ, Aschner M. Prostanoid signaling: dual role for prostaglandin E2 in neurotoxicity. Neurotoxicology 2011; 32:312-9. [PMID: 21376752 PMCID: PMC3090136 DOI: 10.1016/j.neuro.2011.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 02/03/2011] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
The prostanoids, a naturally occurring subclass of eicosanoids, are lipid mediators generated through oxidative pathways from arachidonic acid. These cyclooxygenase metabolites, consisting of the prostaglandins (PG), prostacyclin and tromboxane, are released in response to a variety of physiological and pathological stimuli in almost all organs, including the brain. They are produced by various cell types and act upon targeted cells via specific G protein-coupled receptors. The existence of multiple receptors, cross-reactivity and coupling to different signal transduction pathways for each prostanoid, collectively establish their diverse effects. Notably, these effects can occur in functionally opposing directions within the same cell or organ. Prostaglandin E(2) (PGE(2)) is the most versatile prostanoid because of its receptors, E Prostanoid (EP) receptor subtypes 1 through 4, its biological heterogeneity and its differential expression on neuronal and glial cells throughout the central nervous system. Since PGE(2) plays an important role in processes associated with various neurological diseases, this review focuses on its dual neuroprotective and neurotoxic role in EP receptor subtype signaling pathways in different models of brain injury.
Collapse
Affiliation(s)
- Dejan Milatovic
- Department of Pediatrics, Division of Clinical Pharmacology and Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | | |
Collapse
|
14
|
Mas E, Barden AE, Corcoran TB, Phillips M, Roberts LJ, Mori TA. Effects of spinal or general anesthesia on F₂-isoprostanes and isofurans during ischemia/reperfusion of the leg in patients undergoing knee replacement surgery. Free Radic Biol Med 2011; 50:1171-6. [PMID: 21262345 DOI: 10.1016/j.freeradbiomed.2011.01.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 12/01/2022]
Abstract
General and spinal anesthesia are used extensively in orthopedic surgery. However, these methods of anesthesia may result in different amounts of oxygen being delivered to the patient. Ischemia/reperfusion injury after release of the tourniquet initiates free radical-mediated oxidative stress. F₂-isoprostanes are reliable markers of in vivo lipid peroxidation. However, under conditions of high oxygen tension, isofurans are formed. We aimed to compare plasma isofurans and F₂-isoprostanes in spinal versus general anesthesia in patients undergoing knee-replacement surgery in a randomized, blinded study. Thirty-nine patients were randomized to spinal (SA; n = 19) or general anesthesia (GA; n = 20). Blood was collected before anesthesia, and a tourniquet was then applied to the limb during surgery. After release of the tourniquet, blood samples were collected at 30 min, 2 h, and 24 h for measurement of plasma F₂-isoprostanes and isofurans by gas chromatography-mass spectrometry. The two groups were comparable in age and body mass index. Plasma F₂-isoprostanes were significantly lower in the GA patients compared with the SA patients (p = 0.045). In contrast, the GA patients had significantly elevated plasma isofurans (p = 0.032). Increased isofurans during GA compared with SA are likely to reflect increased oxidative stress due to elevated oxygen concentrations during GA. Further studies are required to assess the implications of these findings on perioperative outcomes.
Collapse
Affiliation(s)
- Emilie Mas
- School of Medicine and Pharmacology, University of Western Australia, Perth, WA 6000, Australia.
| | | | | | | | | | | |
Collapse
|
15
|
Basu S, Miclescu A, Sharma H, Wiklund L. Propofol mitigates systemic oxidative injury during experimental cardiopulmonary cerebral resuscitation. Prostaglandins Leukot Essent Fatty Acids 2011; 84:123-30. [PMID: 21316209 DOI: 10.1016/j.plefa.2010.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/25/2010] [Accepted: 11/26/2010] [Indexed: 11/22/2022]
Abstract
Effects of propofol, an intravenous anesthetic agent that exerts potent antioxidant properties, were investigated in an experimental model of cardiac arrest and cardiopulmonary resuscitation. An extended cardiac arrest with 15 randomized piglets was studied to assess the effect of propofol or its solvent intralipid as the control group. Oxidative stress (as measured by a major F(2)-isoprostane) and inflammation (a major metabolite of PGF(2α)) were evaluated in addition to the hemodynamic evaluation, protein S-100β and in situ tissue brain damage by immunochemistry at sacrifice after 3h of reperfusion following cardiac arrest and restoration of spontaneous circulation (ROSC). ROSC increased jugular bulb plasma levels of F(2)-isoprostane and PGF(2α) metabolite significantly more in controls than in the propofol-treated group. In situ tissue damage after ischemia-reperfusion was variable among the pigs at sacrifice, but tended to be greater in the control than the propofol-treated group. Propofol significantly reduced an ROSC-mediated oxidative stress in the brain.
Collapse
Affiliation(s)
- Samar Basu
- Oxidative Stress and Inflammation (SB), Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
16
|
Yeh CH, Cho W, So E, Chu CC, Lin MC, Wang JJ, Hsing CH. Propofol inhibits lipopolysaccharide-induced lung epithelial cell injury by reducing hypoxia-inducible factor-1α expression. Br J Anaesth 2011; 106:590-599. [DOI: 10.1093/bja/aer005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
17
|
Tang J, Sun Y, Wu WKK, Zhong T, Liu Y, Xiao J, Tao T, Zhao Z, Gu M. Propofol lowers serum PF4 level and partially corrects hypercoagulopathy in endotoxemic rats. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1895-901. [DOI: 10.1016/j.bbapap.2010.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 05/30/2010] [Accepted: 06/21/2010] [Indexed: 12/17/2022]
|
18
|
Kruger H. Anaesthesia for ICU-based procedures: the advantages of and options available for inhalational anaesthesia. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2010. [DOI: 10.1080/22201173.2010.10872684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Lee CJ, Lee RP, Subeq YM, Lee CC, Peng TC, Hsu BG. Propofol protects against hemorrhagic shock-induced organ damage in conscious spontaneously hypertensive rats. Biol Res Nurs 2009; 11:152-62. [PMID: 19419978 DOI: 10.1177/1099800409334750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Patients with hypertension have higher mortality rates from hemorrhagic shock (HS) than normotensive patients. Several inflammatory mediators such as tumor necrosis factor alpha (TNF-alpha) and interleukin 10 (IL-10) can be produced by HS and lead to multiple organ dysfunction and death. We investigated the effects of high dose (10 mg/kg/hr) and low dose (1 mg/kg/hr) propofol treatment after HS in conscious spontaneously hypertensive rats (SHRs). By withdrawing 40% of total blood volume from a femoral arterial catheter (6 ml/100 g body weight [BW]) for more than 30 min, HS was induced. The mean arterial pressure (MAP) and heart rate (HR) were monitored continuously for 24 hr after the start of blood withdrawal. Levels of biochemical parameters, including glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea nitrogen (BUN), creatinine (Cre), creatine phosphokinase (CPK), and lactic dehydrogenase (LDH) were measured 30 min before and 0, 1, 3, 6, 9, 12, 18, and 24 hr after the 30-min blood withdrawal period. Cytokine levels, including TNF-alpha and IL-10 in the serum, were measured 1 hr after HS. The kidney, liver, and lung were removed for pathology assessment at 48 hr after HS. HS significantly increased blood GOT, GPT, BUN, LDH, CPK, TNF-alpha, and IL-10 levels in conscious SHRs. Posttreatment propofol decreased serum TNF-alpha level, increased serum IL-10 level, attenuated the severity of organ damage, and improved survival rate after HS. This treatment protected SHRs against HS-induced organ damage. Moreover, high-dose propofol had a more protective effect than low-dose propofol against HS in conscious SHRs.
Collapse
Affiliation(s)
- Chung-Jen Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Basu S. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal 2008; 10:1405-34. [PMID: 18522490 DOI: 10.1089/ars.2007.1956] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress is implicated as one of the major underlying mechanisms behind many acute and chronic diseases, and involved in normal aging. However, the measurement of free radicals or their end products is complicated. Thus, proof of association of free radicals in pathologic conditions has been absent. Isoprostanes are prostaglandin-like bioactive compounds that are biosynthesized in vivo independent of cyclooxygenases, principally through free-radical catalyzation of arachidonic acid. Isoprostanes are now considered to be reliable biomarkers of oxidative stress, as evidenced by an autonomous study organized recently by the National Institutes of Health (NIH) in the United States. A number of these compounds have potent biologic activities such as vasoconstrictive and certain inflammatory properties. Isoprostanes are involved in many human diseases. Additionally, elevated levels of F(2)-isoprostanes have been seen in normal human pregnancy and after intake of some fatty acids, but their physiologic assignments have not yet been distinctive. This evidence indicates that measurement of bioactive F(2)-isoprostanes in body fluids offers a unique noninvasive analytic utensil to study the role of free radicals in physiology, oxidative stress-related diseases, experimental acute or chronic inflammatory conditions, and also in the assessment of various antioxidants, radical scavengers, and drugs.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Abstract
OBJECTIVE To clarify the effect of combined treatment with propofol and dexamethasone on hemodynamics, organ injury, and survival rate in rats with endotoxemia. DESIGN Randomized, prospective animal experiment. SETTING Academic research laboratory. SUBJECTS Male Wistar rats. INTERVENTIONS Rats were divided into five groups: a control group, a group of conscious rats infused with Escherichia coli lipopolysaccharide, two groups of lipopolysaccharide rats treated with either propofol or dexamethasone, and a group of lipopolysaccharide rats with combined treatment of propofol and dexamethasone. MEASUREMENTS AND MAIN RESULTS All hemodynamic and biochemical variables were measured during the 6-hr observation. Propofol plus dexamethasone attenuated hypotension and delayed hypoglycemia and metabolic acidosis caused by coadministration of E. coli lipopolysaccharide. In addition, propofol plus dexamethasone attenuated the lipopolysaccharide-induced multiple organ dysfunctions, such as lung, liver, and kidney. The increases in serum tumor necrosis factor-alpha, tissue nitric oxide, and superoxide anion levels were attenuated by propofol plus dexamethasone in lipopolysaccharide rats. Microscopic findings confirmed that propofol plus dexamethasone attenuated the substantial swelling and cell infiltration in lung and kidney caused by endotoxin. The 22-hr survival rate after endotoxin injection was markedly increased in lipopolysaccharide rats with combined treatment compared with the lipopolysaccharide rats (80% vs. 0%). CONCLUSIONS The combined treatment with propofol plus dexamethasone reduced mortality rate and attenuated organ injury in conscious rats treated with lipopolysaccharide. These protective effects may be associated with their anti-inflammatory capacity and antioxidant activity.
Collapse
|
22
|
Lipcsey M, Söderberg E, Basu S, Larsson A, Sjölin J, Aström M, Eriksson MB. F2-isoprostane, inflammation, cardiac function and oxygenation in the endotoxaemic pig. Prostaglandins Leukot Essent Fatty Acids 2008; 78:209-17. [PMID: 18387796 DOI: 10.1016/j.plefa.2008.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 11/30/2022]
Abstract
Prostaglandins are profoundly involved in endotoxaemic shock. Twenty pigs were given endotoxin at various doses (0.063-16 microg kg(-1) h(-1)). Three non-endotoxaemic pigs served as controls. Two eicosanoids were measured in plasma (8-iso-PGF(2alpha), a free radical-mediated lipid peroxidation product, and 15-keto-dihydro-PGF(2alpha) a major metabolite of COX activity) and evaluated against the pathophysiological responses that occur during endotoxaemic shock. Endotoxin mediates an increase in both 8-iso-PGF(2alpha) and 15-keto-dihydro-PGF(2alpha). An increase in the endotoxin dose induced significant log-linear responses in 8-iso-PGF(2alpha) and 15-keto-dihydro-PGF(2alpha). Oxidative injury correlated to the TNF-alpha, IL-6, reductions in cardiac performance and to oxygen delivery and utilisation. COX-mediated inflammatory responses correlated to TNF-alpha, IL-6 and to reductions in arterial oxygen tension. Thus, oxidative injury and COX-mediated inflammation play a central role in the manifestation of endotoxaemic shock. Furthermore, formation of these eicosanoids on endotoxin-mediated alterations in pulmonary hypertension, oxygen delivery and oxygen utilisation seems to be independent of the administered endotoxin dose.
Collapse
Affiliation(s)
- Miklós Lipcsey
- Section of Anaesthesiology and Intensive Care, Department of Surgical Sciences, Uppsala University Hospital, 751 85 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
23
|
Basu S. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2alpha from physiology to new principles in inflammation. Med Res Rev 2007; 27:435-68. [PMID: 17191216 DOI: 10.1002/med.20098] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostaglandin F2alpha (PGF2alpha), a foremost stable vasoactive cyclooxygenase (COX)-catalyzed prostaglandin, regulates a number of key physiological functions such as luteolysis, ovarian function, luteal maintenance of pregnancy, and parturition as a constitutive part of ongoing reproductive processes of the body. It has recently been implicated in the regulation of intricate pathophysiological processes, such as acute and chronic inflammation, cardiovascular and rheumatic diseases. Since the discovery of a second isoform of COXs, it has been shown that PGF2alpha can be formed in vivo from arachidonic acid through both isoforms of COXs, namely cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Being synthesized in various parts of the body, it metabolizes instantly to a number of rather inactive metabolites mainly in the lungs, liver, kidney, and efficiently excretes into the urine. 15-Keto-dihydro-PGF2alpha, a major stable metabolite of PGF2alpha that reflects in vivo PGF2alpha biosynthesis, is found in larger quantities than its parent compound in the circulation and urine in basal physiological conditions, with short-lived pulses during luteolysis, induced termination of pregnancy and parturition, and is increased in tissues and various body fluids during acute, sub-chronic, and severe chronic inflammation. Further, the close relationship of PGF2alpha with a number of risk factors for atherosclerosis indicates its major role in inflammation pathology. This review addresses multiple aspects of PGF2alpha in addition to its emerging role in physiology to inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala Science Park, Uppsala, Sweden.
| |
Collapse
|
24
|
Wang X, Svedin P, Nie C, Lapatto R, Zhu C, Gustavsson M, Sandberg M, Karlsson JO, Romero R, Hagberg H, Mallard C. N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 2007; 61:263-71. [PMID: 17253623 DOI: 10.1002/ana.21066] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Maternal inflammation/infection alone or in combination with birth asphyxia increases the risk for perinatal brain injury. Free radicals are implicated as major mediators of inflammation and hypoxia-ischemia (HI)-induced perinatal brain injury. This study evaluated the neuroprotective efficacy of a scavenging agent, N-acetylcysteine (NAC), in a clinically relevant model. METHODS Lipopolysaccharide (LPS)-sensitized HI brain injury was induced in 8-day-old neonatal rats. NAC was administered in multiple doses, and brain injury was evaluated at 7 days after HI. RESULTS NAC (200mg/kg) provided marked neuroprotection with up to 78% reduction of brain injury in the pre+post-HI treatment group and 41% in the early (0 hour) post-HI treatment group, which was much more pronounced protection than another free radical scavenger, melatonin. Protection by NAC was associated with the following factors: (1) reduced isoprostane activation and nitrotyrosine formation; (2) increased levels of the antioxidants glutathione, thioredoxin-2, and (3) inhibition of caspase-3, calpain, and caspase-1 activation. INTERPRETATION NAC provides substantial neuroprotection against brain injury in a model that combines infection/inflammation and HI. Protection by NAC was associated with improvement of the redox state and inhibition of apoptosis, suggesting that these events play critical roles in the development of lipopolysaccharide-sensitized HI brain injury.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Perinatal Center, Department of Physiology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lykkesfeldt J, Svendsen O. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet J 2006; 173:502-11. [PMID: 16914330 DOI: 10.1016/j.tvjl.2006.06.005] [Citation(s) in RCA: 426] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 06/05/2006] [Accepted: 06/20/2006] [Indexed: 12/28/2022]
Abstract
Important infectious diseases in farm animals, such as pneumonia and enteritis, are thought to be associated with the so-called oxidative stress, i.e. a chemical phenomenon involving an imbalance in the redox status of the individual animal. The specifics of oxidative stress and how it may result in disease or be prevented are complex questions with no simple answers. However, the considerable literature on the subject suggests that many researchers consider oxidative stress-related mechanisms to be important early events in disease development. A particularly intriguing aspect is that, at least theoretically, oxidative stress should be easily prevented with antioxidants yet the use of antioxidants as therapy remains controversial. The present knowledge on oxidative stress in farm animals is the topic of this review.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary Pathobiology, Royal Veterinary and Agricultural University, Copenhagen, Denmark.
| | | |
Collapse
|
26
|
Mutschler DK, Gustafsson U, Basu S, Larsson AO, Eriksson MB. Ropivacaine may have advantages compared to bupivacaine in porcine endotoxemic shock. Ups J Med Sci 2006; 111:189-99. [PMID: 16961174 DOI: 10.3109/2000-1967-035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Patients that undergo major abdominal surgery often receive epidural postoperative analgesia. Septic complications are frequently seen in this cohort. In a porcine model of endotoxemic shock, resembling human gram-negative septic shock, we evaluated the effects of two widely used local anaesthetics, bupivacaine and ropivacaine given intravenously. In the endotoxin-ropivacaine group mixed venous saturation and platelet count were higher as compared to endotoxemic controls. Mean arterial blood pressure and platelet count were higher in ropivacaine-endotoxin pigs than in bupivacaine-endotoxin ones. Bupivacaine augmented endotoxin-mediated decrease in left ventricular stroke work index. Ropivacaine displays pathophysiological advantages compared to bupivacaine in septic shock, which may be explained by improved tissue perfusion by ropivacaine.
Collapse
Affiliation(s)
- Diana K Mutschler
- Department of Surgical Sciences, Anaesthesia and Intensive Care, Uppsala University Hospital, SE-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
27
|
Abstract
Propofol (2,6-diisopropylphenol) is a potent intravenous hypnotic agent widely administered for induction and maintenance of anesthesia and for sedation in the intensive care unit. Propofol is insoluble in water and therefore is formulated in a lipid emulsion. In addition, a preservative (ethylenediaminetetraacetic acid [EDTA] or sodium metabisulfite) is added to retard bacterial growth. Propofol has antiinflammatory properties, decreasing production of proinflammatory cytokines, altering expression of nitric oxide, and inhibiting neutrophil function. Propofol also is a potent antioxidant. The added preservatives have biologic activity; EDTA has antiinflammatory properties, whereas metabisulfite may cause lipid peroxidation. The antiinflammatory and antioxidant properties of propofol may have beneficial effects in patients with sepsis and systemic inflammatory response syndrome.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
28
|
Abstract
Discovery of the F2-isoprostanes, a group of prostaglandin F2-like compounds biosynthesized from arachidonic acid nonenzymatically, has uncovered a new and novel facet of free radical biology. Some of these compounds are bioactive and thus may mediate adverse effects associated with oxidant stress. F2-Isoprostanes have also been shown to be reliable biomarkers of lipid peroxidation. Factors influencing their formation and metabolism have been studied to some extent, although much remains to be determined. The purpose of this review is to summarize our current knowledge of conditions that modulate endogenous generation of these compounds. Isoprostanes have a wide daily variation in secretion in humans. Although normal levels can be defined, these compounds are found in increased concentrations in various pathophysiological states, including ischemia-reperfusion injury, atherosclerosis, and diabetes, and in experimental conditions of oxidative stress and inflammation. Alterations in isoprostane biosynthesis, secretion, and excretion in normal physiology and in pathophysiological states are due to the various types of endogenous and exogenous regulatory mechanisms that control the availability of precursors required for isoprostane synthesis, such as dietary and tissue arachidonic acid content, oxygen concentration, and the generation of various free radical species. Selected aspects of issues related to isoprostane formation and metabolism in vivo will be examined herein.
Collapse
Affiliation(s)
- Samar Basu
- Section of Geriatrics and Clinical Nutrition Research, Faculty of Medicine, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
29
|
Abstract
Isoprostanes, are a novel group of prostaglandin-like compounds that are biosynthesised from esterified polyunsaturated fatty acid (PUFA) through a non-enzymatic free radical-catalysed reaction. Several of these compounds possess potent biological activity, as evidenced mainly through their pulmonary and renal vasoconstrictive effects, and have short half-lives. It has been shown that isoprostanes act as full or partial agonists through thromboxane receptors. Both human and experimental studies have indicated associations of isoprostanes and severe inflammatory conditions, ischemia-reperfusion, diabetes and atherosclerosis. Reports have shown that F2-isoprostanes are authentic biomarkers of lipid peroxidation and can be used as potential in vivo indicators of oxidant stress in various clinical conditions, as well as in evaluations of antioxidants or drugs for their free radical-scavenging properties. Higher levels of F2-isoprostanes have been found in the normal human pregnancy compared to non-pregnancy, but their physiological role has not been well studied so far. Since bioactive F2-isoprostanes are continuously formed in various tissues and large amounts of these potent compounds are found unmetabolised in their free acid form in the urine in normal basal conditions with a wide inter-individual variation, their role in the regulation of normal physiological functions could be of further biological interest, but has yet to be disclosed. Their potent biological activity has attracted great attention among scientists, since these compounds are found in humans and animals in both physiological and pathological conditions and can be used as reliable biomarkers of lipid peroxidation.
Collapse
Affiliation(s)
- Samar Basu
- Section of Geriatrics and Clinical Nutrition Research, Faculty of Medicine, Uppsala University, Box 609, SE-751 25 Uppsala, Sweden.
| |
Collapse
|
30
|
Tyner TR, Shahbazian R, Nakashima J, Kane S, Sian K, Yamaguchi KT. Propofol Improves Skin Flap Survival in a Rat Model. Ann Plast Surg 2004; 53:273-7. [PMID: 15480016 DOI: 10.1097/01.sap.0000116382.30876.bb] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Accumulation of neutrophils in a random pattern skin flap has been demonstrated to contribute to the necrosis of distal flap tissue. This study proposes that administration of propofol anesthesia can effectively reduce neutrophil activity and enhance skin flap survival. The study was a randomized controlled trial using male Sprague-Dawley rats as subjects. For flap survival studies, a 3- by 12-cm, dorsal, cranial-based, random pattern skin flap was elevated and reapproximated. Flaps were examined for viability 10 days postsurgery. To assess neutrophil activity, flap biopsies were taken 12, 24, or 48 hours postsurgery from distal, middle, and proximal flap regions, and myeloperoxidase enzyme content was analyzed. Animals were randomly assigned to 1 of 4 groups: group 1, ketamine anesthesia (controls); group 2, propofol anesthesia; group 3, ketamine anesthesia plus 10% lipid emulsion (propofol vehicle); group 4, ketamine anesthesia without flap elevation (nonoperated controls for myeloperoxidase study). Flap survival was significantly improved in the propofol group compared with both the ketamine and vehicle control groups (P <0.01). Increased flap viability was correlated with a reduction in myeloperoxidase content in the propofol group compared with control operated animals, with minor variations observed in the different flap regions and time points tested. This study indicates that the use of propofol can potentially improve skin flap survival. The beneficial effects may be attributed to a reduction in neutrophil activity within the flap.
Collapse
Affiliation(s)
- Tim R Tyner
- Department of Surgery, University Medical Center, Veterans Administration Medical Center, University of California--San Francisco Fresno Medical Education Program, Fresno, CA 93702, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
This study was undertaken to clarify the effects of propofol on endotoxin-induced acute lung injury. Rabbits were randomly assigned to one of four groups. Each group received intravenous infusion of saline only, saline and Escherichia coli endotoxin, propofol (1 mg/kg bolus, then 5 mg/kg/hr) and endotoxin, or propofol (4 mg/kg bolus, then 20 mg/kg/hr) and endotoxin respectively. Infusion of saline or propofol was started 0.5 hr before the infusion of saline or endotoxin, and continued for 6 hr thereafter. The lungs of rabbits were ventilated with 40% oxygen. Mean blood pressure, heart rate, arterial oxygen tension (PaO2), and peripheral blood leukocyte and platelet count were recorded. The wet/dry (W/D) weight ratio of lung and lung injury score were measured, and analysis of bronchoalveolar lavage fluid (BALF) was done. Endotoxin decreased PaO2, and peripheral blood leukocyte and platelet count. And it increased W/D ratio of lung, lung injury score and leukocyte count, percentage of PMN cells, concentration of albumin, thromboxane B2 and IL-8 in BALF. Propofol attenuated all these changes except the leukocyte count in peripheral blood. In conclusion, propofol attenuated endotoxin-induced acute lung injury in rabbits mainly by inhibiting neutrophil and IL-8 responses, which may play a central role in sepsis-related lung injury.
Collapse
Affiliation(s)
- Sang Hyun Kwak
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School, 8 Hakdong, Dong-gu, Gwangju 501-757, Korea. s
| | | | | |
Collapse
|
32
|
Ziser A, Strickland RA, Murray MJ. Propofol does not induce pulmonary dysfunction in stressed endotoxic pigs receiving Intralipid. Crit Care Med 2003; 31:2029-33. [PMID: 12847400 DOI: 10.1097/01.ccm.0000070445.76287.6e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the effect of diisopropyl phenol (propofol), with and without Intralipid, on the cardiopulmonary system and on thromboxane production in endotoxic pigs. DESIGN Prospective, randomized animal study. SETTING Animal research laboratory at a major teaching hospital. SUBJECTS Twenty-four pigs, divided into three groups (n = 8). INTERVENTIONS Pulmonary arterial catheters and arterial cannulas were inserted into all pigs. Each pig received a 30 ng/kg bolus of endotoxin at 1 hr, followed by a continuous infusion of endotoxin at 24 ng x kg-1 x hr-1. Diisopropyl phenol at 25, 75, and 200 microg x kg-1 x min-1 was administered to all pigs, beginning at 1, 2, and 3 hrs, respectively. The pigs were divided into three groups to receive 0.25 g x kg-1 x hr-1, 0.08 g x kg-1 x hr-1, or no Intralipid, starting at time t = 0. Heart rate and mean arterial, central venous, and pulmonary arterial pressures were recorded continuously. Core temperature, arterial blood gases, mixed venous oxygen saturation, pulmonary arterial occlusion pressure, and cardiac output were measured intermittently. Thromboxane B(2) concentrations were measured at baseline and at 60, 75, 120, 135, 180, 195, and 240 mins. Data are expressed as mean +/- sd. Groups were compared by using repeated analysis of variance, with p <.05 used for statistical significance. MEASUREMENTS AND MAIN RESULTS All pigs completed the 4-hr study. Marked variabilities were noted for individual pigs. Following the infusion of endotoxin, compared with baseline, there was a significant increase in pulmonary vascular resistance and a decrease in Pao(2) (p <.001 and p <.008, respectively). This response was not affected by the increasing dose of diisopropyl phenol, nor were there differences between the Intralipid and control groups. Pao(2) remained significantly lower in all groups, compared with the baseline measurements (p <.001) over the 4 hrs of the experiment. Thromboxane B(2) concentrations remained elevated compared with baseline and were significantly higher (p <.05) in the high-dose Intralipid group, compared with the low-dose and the control groups, during the last hour of the experiment. CONCLUSIONS Small doses of endotoxin, when given to pigs, induce major perturbations of cardiopulmonary function. Neither Intralipid, high vs. low dose, nor diisopropyl phenol, at sedating vs. anesthetizing doses, worsened the physiologic derangement associated with the stress of low-dose endotoxemia.
Collapse
|
33
|
Gao J, Zeng B, Zhou L, Yuan S, Zhang S. Therapeutic effect of propofol in the treatment of endotoxin-induced shock in rats. Curr Med Sci 2003; 23:320-3. [PMID: 14526447 DOI: 10.1007/bf02829527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Indexed: 11/24/2022]
Abstract
To assess the potential therapeutic effect of propofol in the treatment of endotoxemia, 76 rats were randomly assigned to 5 groups: control group(A), endotoxemic group(B), pre-treatment group(C), simultaneous treatment group(D) and post-treatment group(E). Five h after endotoxin injection, PO2, pH, MAP, plasma concentrations of Nitrite/nitrate (NO2-/NO3-) and mortality rates were assessed in each group. After the rats were sacrificed, lung tissue was sampled to measure myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)-alpha contents. It was found that endotoxin injection produced progressive hypotension, metabolic acidosis, and a large increase in the plasma NO2-/NO3- concentrations and increased mortality rates in 5 h. Endotoxin injection significantly increased MPO activity and TNF-alpha contents in lung tissue (P < 0.01 or P < 0.05). These changes response to endotoxin were significantly attenuated in the groups B, C and D. But these beneficial effects were blunted in the group E. The results suggest that propofol administration may offer advantages in endotoxemia.
Collapse
Affiliation(s)
- Ju Gao
- Department of Anesthesiology, Xiehe Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022
| | | | | | | | | |
Collapse
|
34
|
Basu S, Michaëlsson K, Olofsson H, Johansson S, Melhus H. Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 2001; 288:275-9. [PMID: 11594785 DOI: 10.1006/bbrc.2001.5747] [Citation(s) in RCA: 361] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Free radicals have been shown to be involved in bone resorption in vitro and in rodents. We studied the effect of oxidative stress on bone mineral density (BMD) in 48 women and 53 men from a population-based study. The levels of 8-iso-PGF(2alpha) (a major F(2)-isoprostane and a biomarker of oxidative stress) and a control, 15-keto-dihydro-PGF(2alpha) (a biomarker of inflammatory response), were measured in urinary samples and their association with BMD and quantitative ultrasound (QUS) measurements were examined. In multivariate linear regression analyses, 8-iso-PGF(2alpha) levels were negatively associated with both BMD and QUS. In contrast, no association was found for 15-keto-dihydro-PGF(2alpha). Our findings establish a biochemical link between increased oxidative stress and reduced bone density and provide a rational for further studies investigating the role of pro- and antioxidants in osteoporosis.
Collapse
Affiliation(s)
- S Basu
- Sections of Geriatrics and Clinical Nutrition Research, Uppsala University Hospital, S-751 25 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|