1
|
Fanter CE, Lin Z, Keenan SW, Janzen FJ, Mitchell TS, Warren DE. Development-specific transcriptomic profiling suggests new mechanisms for anoxic survival in the ventricle of overwintering turtles. J Exp Biol 2019; 223:jeb.213918. [DOI: 10.1242/jeb.213918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022]
Abstract
Oxygen deprivation swiftly damages tissues in most animals, yet some species show remarkable abilities to tolerate little or even no oxygen. Painted turtles exhibit a development-dependent tolerance that allows adults to survive anoxia ∼4x longer than hatchlings: adults survive ∼170 days and hatchlings survive ∼40 days at 3°C. We hypothesized this difference is related to development-dependent differences in ventricular gene expression. Using a comparative ontogenetic approach, we examined whole transcriptomic changes before, during, and five days after a 20-day bout of anoxic submergence at 3°C. Ontogeny accounted for more gene expression differences than treatment (anoxia or recovery): 1,175 vs. 237 genes, respectively. Of the 237 differences, 93 could confer protection against anoxia and reperfusion injury, 68 could be injurious, and 20 may be constitutively protective. Especially striking during anoxia was the expression pattern of all 76 annotated ribosomal protein (R-protein) mRNAs, which decreased in anoxia-tolerant adults, but increased in anoxia-sensitive hatchlings, suggesting adult-specific regulation of translational suppression. These genes, along with 60 others that decreased their levels in adults and either increased or remained unchanged in hatchlings, implicate antagonistic pleiotropy as a mechanism to resolve the long-standing question about why hatchling painted turtles overwinter in terrestrial nests, rather than emerge and overwinter in water during their first year. In sum, developmental differences in the transcriptome of the turtle ventricle revealed potentially protective mechanisms that contribute to extraordinary adult-specific anoxia tolerance, and provide a unique perspective on differences between the anoxia-induced molecular responses of anoxia-tolerant or anoxia-sensitive phenotypes within a species.
Collapse
Affiliation(s)
- Cornelia E. Fanter
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| | - Zhenguo Lin
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| | - Sarah W. Keenan
- South Dakota School of Mines & Technology, Department of Geology and Geological Engineering, 501 East St. Joseph St., Rapid City, South Dakota, 57701, USA
| | - Fredric J. Janzen
- Iowa State University, Department of Ecology, Evolution and Organismal Biology, 251 Bessey Hall, Ames, Iowa, 50011, USA
| | - Timothy S. Mitchell
- University of Minnesota, Department of Ecology, Evolution and Behavior, 1479 Gortner Ave. Saint Paul, MN, 55108, USA
| | - Daniel E. Warren
- Saint Louis University, Department of Biology, 3507 Laclede Ave., St. Louis, Missouri, 63103, USA
| |
Collapse
|
2
|
Overgaard J, Gesser H, Wang T. Tribute to P. L. Lutz: cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles. ACTA ACUST UNITED AC 2008; 210:1687-99. [PMID: 17488932 DOI: 10.1242/jeb.001925] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Freshwater turtles overwintering in ice-covered ponds in North America may be exposed to prolonged anoxia, and survive this hostile environment by metabolic depression. Here, we review their cardiovascular function and regulation, with particular emphasis on the factors limiting cardiac performance. The pronounced anoxia tolerance of the turtle heart is based on the ability to match energy consumption with the low anaerobic ATP production during anoxia. Together with a well-developed temporal and spatial energy buffering by creatine kinase, this allows for cellular energy charge to remain high during anoxia. Furthermore, the turtle heart is well adapted to handle the adverse effects of free phosphate arising when phosphocreatine stores are used. Anoxia causes tenfold reductions in heart rate and blood flows that match the metabolic depression, and blood pressure is largely maintained through increased systemic vascular resistance. Depression of the heart rate is not driven by the autonomic nervous system and seems to arise from direct effects of oxygen lack and the associated hyperkalaemia and acidosis on the cardiac pacemaker. These intra- and extracellular changes also affect cardiac contractility, and both acidosis and hyperkalaemia severely depress cardiac contractility. However, increased levels of adrenaline and calcium may, at least partially, salvage cardiac function under prolonged periods of anoxia.
Collapse
Affiliation(s)
- Johannes Overgaard
- National Environmental Research Institute, Aarhus University, Silkeborg, Denmark
| | | | | |
Collapse
|
3
|
Storey KB. Anoxia tolerance in turtles: Metabolic regulation and gene expression. Comp Biochem Physiol A Mol Integr Physiol 2007; 147:263-76. [PMID: 17035057 DOI: 10.1016/j.cbpa.2006.03.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/14/2006] [Accepted: 03/24/2006] [Indexed: 01/08/2023]
Abstract
Freshwater turtles of the Trachemys and Chrysemys genera are champion facultative anaerobes able to survive for several months without oxygen during winter hibernation in cold water. They have been widely used as models to identify and understand the molecular mechanisms of natural anoxia tolerance and the molecular basis of the hypoxic/ischemic injuries that occur in oxygen-sensitive systems and underlie medical problems such as heart attack and stroke. Peter L. Lutz spent much of his career investigating turtle anaerobiosis with a particular focus on the mechanisms of brain ion homeostasis and neurotransmitter responses to anoxia exposure and the mechanisms that suppress brain ion channel function and neuronal excitability during anaerobiosis. Our interests intersected over the mechanisms of metabolic rate depression which is key to long term anoxia survival. Studies in my lab have shown that a key mechanism of metabolic arrest is reversible protein phosphorylation which provides coordinated suppression of the rates of multiple ATP-producing, ATP-utilizing and related cellular processes to allow organisms to enter a stable hypometabolic state. Anoxia tolerance is also supported by selective gene expression as revealed by recent studies using cDNA library and DNA array screening. New studies with both adult T. scripta elegans and hatchling C. picta marginata have identified prominent groups of genes that are up-regulated under anoxia in turtle organs, in several cases suggesting aspects of cell function and metabolic regulation that have not previously been associated with anaerobiosis. These groups of anoxia-responsive genes include mitochondrially-encoded subunits of electron transport chain proteins, iron storage proteins, antioxidant enzymes, serine protease inhibitors, transmembrane solute carriers, neurotransmitter receptors and transporters, and shock proteins.
Collapse
Affiliation(s)
- Kenneth B Storey
- Institute of Biochemistry, College of Natural Sciences, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|
4
|
RVitelli M, Filippelli A, Rinaldi B, Rossi S, Palazzo E, Rossi F, Berrino L. Effects of docosahexaenoic acid on [Ca(2+)](i) increase induced by doxorubicin in ventricular rat cardiomyocytes. Life Sci 2002; 71:1905-16. [PMID: 12175705 DOI: 10.1016/s0024-3205(02)01960-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clinical use of doxorubicin (DXR) is limited by cardiotoxicity partially due to interference with intracellular Ca(2+) homeostasis and involving the activation of the sarcoplasmic reticulum (SR) Ca(2+) release channels. It is known that docosahexaenoic acid (DHA) is able to potentiate the sensitivity of cancer cells to DXR. The aim of our study was to further evaluate the effects of DHA on [Ca(2+)](i) overload induced by DXR in adult rat ventricular cardiomyocytes in order to verify if DHA interferes with DXR-induced cardiotoxicity too. [Ca(2+)](i) was measured by microfluorimetry. Our data demonstrated that 100 microM DXR induced a statistically significant [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 560.2 +/- 49 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 551.1 +/- 35 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min significantly suppressed DXR [Ca(2+)](i)- increase in cells perfused with CaCl(2) Krebs solution (142.3 +/- 12 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (100.4 +/- 12 nM, n = 9, p < 0.01). Caffeine 10 mM significantly increased [Ca(2+)](i) in cardiomyocytes perfused with CaCl(2) Krebs solution (from 135.7 +/- 15 nM to 979.2 +/- 17.8 nM, n = 9, p < 0.01) and with Ca(2+)-free Krebs solution (from 89.3 +/- 15 nM to 891.1 +/- 30 nM, n = 9, p < 0.01). Treatment with 10 microM DHA for 20 min suppressed caffeine [Ca(2+)](i)-increase in cardiomyocytes perfused with CaCl(2) Krebs solution (174.2 +/- 28 nM, n = 9, p < 0.01) and in Ca(2+)-free procedures (161.9 +/- 34 nM, n = 9, p < 0.01). In conclusion, our results suggest that DHA is able to prevent acute modifications of calcium homeostasis induced by DXR probably interfering with SR Ca(2+) release channels.
Collapse
Affiliation(s)
- M RVitelli
- Department of Experimental Medicine, Section of Pharmacology Leonardo Donatelli, Faculty of Medicine and Surgery, 2nd University of Naples, via Costantinopoli 16, 80138 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
5
|
Rinaldi B, Di Pierro P, Vitelli MR, D'Amico M, Berrino L, Rossi F, Filippelli A. Effects of docosahexaenoic acid on calcium pathway in adult rat cardiomyocytes. Life Sci 2002; 71:993-1004. [PMID: 12088759 DOI: 10.1016/s0024-3205(02)01792-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this study we examined the effect of polyunsaturated fatty acids (PUFAs), in particular of docosahexaenoic acid (DHA), on calcium homeostasis in isolated adult rat cardiomyocytes exposed to KCl, ET-1 and anoxia. Free [Ca(2+)](i) in rat cardiomyocytes was 135.7 +/- 0.5 nM. Exposure to 50 mM KCl or 100 nM ET-1 resulted in a rise in free [Ca(2+)](i) in freshly isolated cells (465.4 +/- 15.6 nM and 311.3 +/- 12.6 nM, respectively) and in cultured cells (450.8 +/- 14.8 nM and 323.5 +/- 14.8 nM respectively). An acute treatment (20 minutes) with 10 microM DHA significantly reduced the KCl- and ET-1-induced [Ca(2+)](i) increase (300.9 +/- 18.1 nM and 232.08 +/- 11.8 nM, respectively). This reduction was greater after chronic treatment with DHA (72 h; 257.7 +/- 13.08 nM and 192.18 +/- 9.8 nM, respectively). Rat cardiomyocytes exposed to a 20 minute superfusion with anoxic solution, obtained by replacing O(2) with N(2) in gas mixture, showed a massive increase in cytosolic calcium (1200.2 +/- 50.2 nM). Longer exposure to anoxia induced hypercontraction and later death of rat cardiomyocytes. Preincubation with DHA reduced the anoxic effect on [Ca(2+)](i) (498.4 +/- 7.3 nM in acute and 200.2 +/- 12.2 nM in chronic treatment). In anoxic conditions 50 mM KCl and 100 nM ET-1 produced extreme and unmeasurable increases of [Ca(2+)](i.) Preincubation for 20 minutes with DHA reduced this phenomenon (856.1 +/- 20.3 nM and 782.3 +/- 7.6 nM, respectively). This reduction is more evident after a chronic treatment with DHA (257.7 +/- 10.6 nM and 232.2 +/- 12.5 nM, respectively). We conclude that in rat cardiomyocytes KCl, ET-1 and anoxia interfered with intracellular calcium concentrations by either modifying calcium levels or impairing calcium homeostasis. Acute, and especially chronic, DHA administration markedly reduced the damage induced by calcium overload in those cells.
Collapse
Affiliation(s)
- B Rinaldi
- Department of Experimental Medicine, Section of Pharmacology "Leonardo Donatelli", Faculty of Medicine, 2nd University of Naples, Via Costantinopoli 16, 80138, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Lo LW, Cheng JJ, Chiu JJ, Wung BS, Liu YC, Wang DL. Endothelial exposure to hypoxia induces Egr-1 expression involving PKCalpha-mediated Ras/Raf-1/ERK1/2 pathway. J Cell Physiol 2001; 188:304-12. [PMID: 11473356 DOI: 10.1002/jcp.1124] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoxia induces endothelial dysfunction that results in a series of cardiovascular injuries. Early growth response-1 (Egr-1) has been indicated as a common theme in vascular injury. Here we demonstrates that in bovine aortic endothelial cells (ECs) subjected to hypoxia (PO(2) approximately 23 mmHg), rapidly increased Egr-1 mRNA expression which peaked within 30 min and decreased afterwards. Treatment of ECs with PD98059, a specific inhibitor to mitogen-activated protein kinase (MAPK/ERK), inhibited this hypoxia-induced Egr-1 expression. The involvement of ERK pathway was further substantiated by the inhibition of Egr-1 promoter activities when ECs were co-transfected with a dominant negative mutant of Ras (RasN17), Raf-1 (Raf 301), or a catalytically inactive mutant of ERK2 (mERK). In addition, the hypoxia-induced transcriptional activity of Elk-1, an ERK substrate, was abolished by administration of PD98059. Addition of calphostin C, a protein kinase C (PKC) inhibitor, completely blocked the hypoxia-augmented Egr-1 expression. The likewise occurred while exposing ECs to D609 to inhibit phospholipase C and BAPTA/AM to chelate intracellular calcium. Hypoxia to ECs increased ERK phosphorylation within 10 min and which was abolished by administration of PD98095, calphostin C, and BAPTA/AM. Hypoxia triggered a transient translocation of PKCalpha from cytosol to membrane fraction concurrent with the association of PKCalpha to Raf-1. Involvement of PKCalpha in mediating ERK activation was further confirmed by the inhibition of ERK and the subsequent Egr-1 gene induction with antisense oligonucleotides to PKCalpha. These results indicate that ECs under hypoxia induce Egr-1 expression and this induction requires calcium, phospholipase C activation, and PKCalpha-mediated Ras/Raf-1/ERK1/2 signaling pathway. Our finding support the importance of specific PKC isozyme linked to MAPK pathway in the regulation of endothelial responses to hypoxia.
Collapse
Affiliation(s)
- L W Lo
- Departmant of Applied Chemistry, National Chi Nan University, Nantou, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
7
|
McNichols RJ, Coté GL, Wasser JS, Wright SM. Simultaneous optical and nuclear magnetic resonance spectroscopy for monitoring cardiac energetics in vivo. IEEE Trans Biomed Eng 2000; 47:1261-5. [PMID: 11008427 DOI: 10.1109/10.867960] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There are a number of applications in which it is useful to simultaneously collect data from what are traditionally separate instrumentation modalities. In particular, in vivo physiological investigations in which data from parallel experiments must be correlated would benefit from simultaneous data collection through 1) elimination of subject variability, 2) elimination of treatment variability, and 3) a reduction in the number of animal preparations required. Here we describe the simultaneous collection of fluo-3 optical fluorescence and 31P nuclear magnetic resonance (NMR) spectra to measure intracellular calcium levels and high-energy phosphate metabolism, respectively, in vivo. This work is part of ongoing research into the profound anoxia tolerance exhibited by the hearts of certain turtle species. An NMR compatible optical fluorescence spectrometer was constructed and tested. In the 31-cm bore of a 2 T superconducting magnet, NMR and optical spectra were collected every 10-15 min from the in situ, in vivo hearts of anesthetized turtle subjects prior to and during one to three hours of anoxia. It was found that while PCr stores became significantly depleted during anoxia, beta-adenosine triphosphate (ATP) levels remained within 20% of control values, and intracellular diastolic calcium levels did not vary by more than 10%. The ability to make simultaneous phosphorus and calcium measurements on a single subject is important to understanding the exact relationship between phosphorus energy state and maintenance of calcium homeostasis.
Collapse
|
8
|
Larsson D, Larsson B, Lundgren T, Sundell K. The effect of pH and temperature on the dissociation constant for fura-2 and their effects on [Ca(2+)](i) in enterocytes from a poikilothermic animal, Atlantic cod (Gadus morhua). Anal Biochem 1999; 273:60-5. [PMID: 10452799 DOI: 10.1006/abio.1999.4210] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated the validity of the fluorescent probe fura-2 in determinations of intracellular Ca(2+) concentrations ([Ca(2+)](i)), at physiological temperatures, in poikilothermic animals living at low temperatures. The K(d) for fura-2 was found to decrease with increasing temperature (5-37 degrees C) and DeltaH, in the Van't Hoff isochore equation, was determined to be 11.03 kJ/mol, when pH was corrected to 7.2 for all temperatures tested. The absorption maxima (340 nm) and isobestic point (360 nm) for the UV spectra of fura-2 were not affected by temperature. Thus, if pH- and temperature-dependent changes in K(d) are corrected for, fura-2 is a suitable tool for measurements of [Ca(2+)](i) at temperatures of 5-37 degrees C. The present study demonstrates that Atlantic cod enterocytes, acclimated to 37 degrees C, show a lower basal [Ca(2+)](i) (65 +/- 8 nM) compared to enterocytes acclimated to 10 degrees C (161 +/- 6 nM). Furthermore, addition of 10 mM Ca(2+) increases the [Ca(2+)](i) by 526%, when compared to basal [Ca(2+)](i), in cells at 37 degrees C but only by 36%, in cells kept at 10 degrees C. Thus, performing experiments at unphysiological temperatures results in cellular responses that would not be observed under physiological conditions.
Collapse
Affiliation(s)
- D Larsson
- Department of Zoology/Zoophysiology, Göteborg University, Sweden.
| | | | | | | |
Collapse
|