1
|
Xia C, Qi X, Song X. Cumulative expression of heterologous XlnR regulatory modules and AraR A731V in Penicillium oxalicum enhances saccharification efficiency of corn stover and corn fiber. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:18. [PMID: 38303075 PMCID: PMC10835966 DOI: 10.1186/s13068-024-02464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Penicillium oxalicum engineered strain DB2 and its mutant strains with multiple regulatory modules were constructed. Mutant strain RE-4-2 with two regulatory modules showed a significant increase in the reducing sugar released from corn stover and corn fiber as well as in the conversion of cellulose than DB2. RE-5-2 with three regulatory modules showed a further increase in reducing sugar released from corn stover and the conversion of cellulose on the basis of RE-4-2. RE-4-2-AraRA731V constructed by overexpressing AraRA731V in RE-4-2 showed an increase of 7.2 times and 1.2 times in arabinofuranosidase and xylosidase activities, respectively. Reducing sugar yield and cellulose conversion of corn stover and corn fiber by RE-4-2-AraRA731V were further increased.
Collapse
Affiliation(s)
- Chengqiang Xia
- College of Animal Science, Shanxi Agriculture University, Minxiannan Road 1, Jinzhong, 030801, Shanxi, China
| | - Xiaoyu Qi
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250100, Shandong, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China.
- National Glycoengineering Research Center, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Ullah SF, Souza AA, Hamann PRV, Ticona ARP, Oliveira GM, Barbosa JARG, Freitas SM, Noronha EF. Structural and functional characterisation of xylanase purified from Penicillium chrysogenum produced in response to raw agricultural waste. Int J Biol Macromol 2019; 127:385-395. [PMID: 30654038 DOI: 10.1016/j.ijbiomac.2019.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/28/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022]
Abstract
Commercial interest in plant cell wall degrading enzymes (PCWDE) is motivated by their potential for energy or bioproduct generation that reduced dependency on non-renewable (fossil-derived) feedstock. Therefore, underlying work analysed the Penicillium chrysogenum isolate for PCWDE production by employing different biomass as a carbon source. Among the produced enzymes, three xylanase isoforms were observed in the culture filtrate containing sugarcane bagasse. Xylanase (PcX1) presenting 35 kDa molecular mass was purified by gel filtration and anion exchange chromatography. Unfolding was probed and analysed using fluorescence, circular dichroism and enzyme assay methods. Secondary structure contents were estimated by circular dichroism 45% α-helix and 10% β-sheet, consistent with the 3D structure predicted by homology. PcX1 optimally active at pH 5.0 and 30 °C, presenting t1/2 19 h at 30 °C and 6 h at 40 °C. Thermodynamic parameters/melting temperature 51.4 °C confirmed the PcX1 stability at pH 5.0. PcX1 have a higher affinity for oat spelt xylan, KM 1.2 mg·mL-1, in comparison to birchwood xylan KM 29.86 mg·mL-1, activity was inhibited by Cu+2 and activated by Zn+2. PcX1 exhibited significant tolerance for vanillin, trans-ferulic acid, ρ-coumaric acid, syringaldehyde and 4-hydroxybenzoic acid, activity slightly inhibited (17%) by gallic and tannic acid.
Collapse
Affiliation(s)
- Sadia Fida Ullah
- Laboratory de Enzymology, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Amanda Araújo Souza
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Pedro Ricardo V Hamann
- Laboratory de Enzymology, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Alonso Roberto P Ticona
- Laboratory de Enzymology, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Gideane M Oliveira
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | | | - Sonia M Freitas
- Laboratory of Molecular Biophysics, Department of Cellular Biology, University of Brasilia, DF, Brazil
| | - Eliane Ferreira Noronha
- Laboratory de Enzymology, Department of Cellular Biology, University of Brasilia, DF, Brazil.
| |
Collapse
|
3
|
Partial Purification and Characterization of a Thermostable β-Mannanase from Aspergillus foetidus. APPLIED SCIENCES-BASEL 2015. [DOI: 10.3390/app5040881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
de Souza Moreira LR, de Carvalho Campos M, de Siqueira PHVM, Silva LP, Ricart CAO, Martins PA, Queiroz RML, Filho EXF. Two β-xylanases from Aspergillus terreus: Characterization and influence of phenolic compounds on xylanase activity. Fungal Genet Biol 2013; 60:46-52. [DOI: 10.1016/j.fgb.2013.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/16/2022]
|
5
|
Anand A, Kumar V, Satyanarayana T. Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles 2013; 17:357-66. [DOI: 10.1007/s00792-013-0524-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
|
6
|
Use of Residual Biomass from the Textile Industry as Carbon Source for Production of a Low-Molecular-Weight Xylanase from Aspergillus oryzae. APPLIED SCIENCES-BASEL 2012. [DOI: 10.3390/app2040754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Silva AJD, Gómez-Mendoza DP, Junqueira M, Domont GB, Ximenes Ferreira Filho E, de Sousa MV, Ricart CAO. Blue native-PAGE analysis of Trichoderma harzianum secretome reveals cellulases and hemicellulases working as multienzymatic complexes. Proteomics 2012; 12:2729-38. [DOI: 10.1002/pmic.201200048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Adelson Joel da Silva
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Diana Paola Gómez-Mendoza
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Magno Junqueira
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | | | | | - Marcelo Valle de Sousa
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| | - Carlos André Ornelas Ricart
- Laboratório de Bioquímica e Química de Proteínas,; Departamento de Biologia Celular; Universidade de Brasília; Brasília DF Brazil
| |
Collapse
|
8
|
Do Vale LHF, Gómez-Mendoza DP, Kim MS, Pandey A, Ricart CAO, Edivaldo XFF, Sousa MV. Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 2012; 12:2716-28. [DOI: 10.1002/pmic.201200063] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/24/2012] [Accepted: 05/30/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Luis H. F. Do Vale
- Brazilian Center for Protein Research; Laboratory of Protein Chemistry and Biochemistry; Department of Cell Biology; University of Brasilia; Brasilia; DF; Brazil
| | - Diana P. Gómez-Mendoza
- Brazilian Center for Protein Research; Laboratory of Protein Chemistry and Biochemistry; Department of Cell Biology; University of Brasilia; Brasilia; DF; Brazil
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine; Johns Hopkins University School of Medicine; Baltimore; MD; USA
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine; Johns Hopkins University School of Medicine; Baltimore; MD; USA
| | - Carlos A. O. Ricart
- Brazilian Center for Protein Research; Laboratory of Protein Chemistry and Biochemistry; Department of Cell Biology; University of Brasilia; Brasilia; DF; Brazil
| | | | - Marcelo V. Sousa
- Brazilian Center for Protein Research; Laboratory of Protein Chemistry and Biochemistry; Department of Cell Biology; University of Brasilia; Brasilia; DF; Brazil
| |
Collapse
|
9
|
Kinetic and thermodynamic study of cloned thermostable endo-1,4-β-xylanase from Thermotoga petrophila in mesophilic host. Mol Biol Rep 2012; 39:7251-61. [PMID: 22322560 DOI: 10.1007/s11033-012-1555-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
The 1,044 bp endo-1,4-β-xylanase gene of a hyperthermophilic Eubacterium, "Thermotoga petrophila RKU 1" (T. petrophila) was amplified, from the genomic DNA of donor bacterium, cloned and expressed in mesophilic host E. coli strain BL21 Codon plus. The extracellular target protein was purified by heat treatment followed by anion and cation exchange column chromatography. The purified enzyme appeared as a single band, corresponding to molecular mass of 40 kDa, upon SDS-PAGE. The pH and temperature profile showed that enzyme was maximally active at 6.0 and 95 °C, respectively against birchwood xylan as a substrate (2,600 U/mg). The enzyme also exhibited marked activity towards beech wood xylan (1,655 U/mg). However minor activity against CMC (61 U/mg) and β-Glucan barley (21 U/mg) was observed. No activity against Avicel, Starch, Laminarin and Whatman filter paper 42 was observed. The K(m), V(max) and K (cat) of the recombinant enzyme were found to be 3.5 mg ml(-1), 2778 μmol mg(-1)min(-1) and 2,137,346.15 s(-1), respectively against birchwood xylan as a substrate. The recombinant enzyme was found very stable and exhibited half life (t(½)) of 54.5 min even at temperature as high as 96 °C, with enthalpy of denaturation (ΔH*(D)), free energy of denaturation (ΔG*(D)) and entropy of denaturation (ΔS*(D)) of 513.23 kJ mol(-1), 104.42 kJ mol(-1) and 1.10 kJ mol(-1)K(-1), respectively at 96 °C. Further the enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) for birchwood xylan hydrolysis by recombinant endo-1,4-β-xylanase were calculated at 95 °C as 62.45 kJ mol(-1), 46.18 kJ mol(-1) and 44.2 J mol(-1) K(-1), respectively.
Collapse
|
10
|
Vervoort L, der Plancken IV, Grauwet T, Verjans P, Courtin CM, Hendrickx ME, Van Loey A. Xylanase B from the hyperthermophile Thermotoga maritima as an indicator for temperature gradients in high pressure high temperature processing. INNOV FOOD SCI EMERG 2011. [DOI: 10.1016/j.ifset.2011.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Characterization of a novel beta-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Environ Microbiol 2010; 77:719-26. [PMID: 21131522 DOI: 10.1128/aem.01511-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 1,914-bp open reading frame of xylC from Thermoanaerobacterium saccharolyticum JW/SL-YS485 encodes a calculated 73-kDa β-xylosidase, XylC, different from any glycosyl hydrolase in the database and representing a novel glycohydrolase family. Hydrolysis occurred under retention of the anomeric configuration, and transglycosylation occurred in the presence of alcohols as acceptors. With the use of vector pHsh, expression of XylC, the third β-xylosidase in this bacterium, increased approximately 4-fold when a loop within the translational initiation region in the mRNA was removed by site-directed mutagenesis. The increased expression of xylC(m) is due to removal of a stem-loop structure without a change of the amino acid sequence of the heterologously expressed enzyme (XylC(rec)). When gel filtration was applied, purified XylC had molecular masses of 210 kDa and 265 kDa using native gradient gel electrophoresis. The protein consisted of 78-kDa subunits based on SDS gel electrophoresis and contained 6% carbohydrates. XylC and XylC(rec) exhibited maximum activity at 65°C and pH(65°C) 6.0, a 1-h half-life at 67°C, a K(m) for p-nitrophenyl-β-D-xyloside of 28 mM, and a V(max) of 276 U/mg and retained 70% activity in the presence of 200 mM xylose, suggesting potential for industrial applications.
Collapse
|
12
|
de Carvalho CCCR. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 2010; 29:75-83. [PMID: 20837129 DOI: 10.1016/j.biotechadv.2010.09.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
The use of enzymes and whole bacterial cells has allowed the production of a plethora of compounds that have been used for centuries in foods and beverages. However, only recently we have been able to master techniques that allow the design and development of new biocatalysts with high stability and productivity. Rational redesign and directed evolution have lead to engineered enzymes with new characteristics whilst the understanding of adaptation mechanisms in bacterial cells has allowed their use under new operational conditions. Bacteria able to thrive under the most extreme conditions have also provided new and extraordinary catalytic processes. In this review, the new tools available for the improvement of biocatalysts are presented and discussed.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
13
|
Tramice A, Melck D, Virno A, Randazzo A, Motta A, Trincone A. Enzymatic synthesis and 3-D structure of anti-proliferative acidic (MeGlcUA) xylotetrasaccharide. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Practical application of different enzymes immobilized on sepabeads. Bioprocess Biosyst Eng 2008; 31:163-71. [DOI: 10.1007/s00449-008-0199-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/03/2008] [Indexed: 10/22/2022]
|
15
|
Liu L, Wang M, Shao W, Li W. A novel model to determine the dipeptides responsible for optimum temperature in F/10 xylanase. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Efficacy of amphiphile-modified laccase in enzymatic oxidation and removal of phenolics in aqueous solution. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Villalonga R, Fernández M, Fragoso A, Cao R, Di Pierro P, Mariniello L, Porta R. Transglutaminase-catalyzed synthesis of trypsin-cyclodextrin conjugates: kinetics and stability properties. Biotechnol Bioeng 2003; 81:732-7. [PMID: 12529888 DOI: 10.1002/bit.10520] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bovine pancreatic trypsin was modified by the mono-6-amino-6-deoxy derivatives of alpha-, beta-, and gamma-cyclodextrin through a transglutaminase-catalyzed reaction. The trypsin-cyclodextrin conjugates, containing about 3 mol of oligosaccharide per mole of protein, were tested for their catalytic and stability properties. The specific esterolytic activity and the kinetics constants of trypsin were significantly improved following the transglutaminase-induced structural modifications. Trypsin-cyclodextrin conjugates were also found markedly (sixfold) more resistant to autolytic degradation at alkaline pH, and their thermal stability profile was improved by about 16 degrees C. Moreover, they were particularly resistant to heat inactivation when treated at different temperatures ranging from 45 degrees C to 70 degrees C for different periods of time.
Collapse
Affiliation(s)
- Reynaldo Villalonga
- Enzyme Technology Group, Center for Biotechnological Studies, University of Matanzas, Autopista a Varadero, Matanzas, Cuba
| | | | | | | | | | | | | |
Collapse
|
18
|
Fernández M, Fragoso A, Cao R, Baños M, Villalonga R. Chemical conjugation of trypsin with monoamine derivatives of cyclodextrins. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00151-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Gomes J, Gomes I, Terler K, Gubala N, Ditzelmüller G, Steiner W. Optimisation of culture medium and conditions for alpha-l-Arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus. Enzyme Microb Technol 2000; 27:414-422. [PMID: 10938421 DOI: 10.1016/s0141-0229(00)00229-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The culture medium for Rhodothermus marinus was optimised on a shake-flask scale by using statistical factorial designs for enhanced production of a highly thermostable alpha-L-arabinofuranosidase (AFase). The medium containing 3.6 g/l birch wood xylan and 8.2 g/l yeast extract yielded a maximum of 110 nkat/ml AFase activity together with 125 nkat/ml xylanase and 65 nkat/ml beta-xylosidase activity. In addition, low levels of beta-mannanase (30 nkat/ml), alpha-galactosidase (0.2 nkat/ml), beta-galactosidase (0.3 nkat/ml), endoglucanase (5 nkat/ml) and beta-glucosidase (30 nkat/ml) were detected in the culture filtrate. Among the various carbon sources tested, birchwood xylan was most effective for the formation of AFase and xylanase activities, followed by oat spelt and beechwood xylans, and xylan-rich lignocelluoses (e.g., starch-free sugar beet pulp and wheat bran). Constitutive levels of enzyme activities were detected when the bacterium was grown on other polysaccharides and low-molecular-weight carbohydrates. A fermentation in a 5-l fermenter (3-l working volume) using the optimised medium yielded 60 nkat/ml AFase associated with 65 nkat/ml xylanase and 35 nkat/ml beta-xylosidase activities. The crude AFase displayed optimal activity between pH 5.5 and 7 and at 85 degrees C. It had half-lives of 8.3 h at 85 degrees C and 17 min at 90 degrees C. It showed high stability between pH 5 and 9 (24 h at 65 degrees C). The combined use of AFase-rich xylanase and mannanase from R. marinus in the prebleaching of softwood kraft pulp gave a brightness increase of 1.8% ISO. To our knowledge, this is the first report on the production of a high AFase activity by an extreme thermophilic bacterium and this enzyme is the most thermostable AFase reported so far.
Collapse
Affiliation(s)
- J Gomes
- Institute for Biotechnology, Technical University Graz, Petersgasse 12, A-8010, Graz, Austria
| | | | | | | | | | | |
Collapse
|