1
|
Monticelli S, Giangrande A. Evolutionary Conservation of the Gcm/Glide Cascade: Of Glia and Beyond. BRAIN, BEHAVIOR AND EVOLUTION 2024:1-8. [PMID: 39586239 DOI: 10.1159/000542753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Glia represent a major cell population of the nervous system, and they take part in virtually any process sustaining the development, the functioning, and the pathology of the nervous system. Glial cells diversified significantly during evolution and distinct signals have been adopted to initiate glial development in mammals as compared to flies. In the invertebrate model Drosophila melanogaster, the transcription factor Gcm is necessary and sufficient to generate glial cells. Although Gcm orthologs have been found in protostomes and deuterostomes, they do not act in glial fate commitment as in flies, calling for further investigations of the evolutionarily conserved role of Gcm. SUMMARY Here, we review the impact of the fly Gcm transcription factor in the differentiation of phagocytic competent cells inside and outside the nervous system, glia, and macrophages, respectively. Then, we discuss the evolutionary conservation of Gcm and the neural/nonneural functions of Gcm orthologs. Finally, we present a recent work from Pavlidaki et al. [Cell Rep. 2022;41(3):111506] showing that the Gcm cascade is conserved from fly macrophages to mammalian microglia to counteract acute and chronic inflammation. KEY MESSAGES Gcm has an ancestral role in immunity, and its anti-inflammatory effect is evolutionarily conserved. This opens new avenues to assess Gcm function in other species/animal models, its potential involvement in inflammation-related processes, such as regeneration, and to expand the investigation on glia evolution.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| |
Collapse
|
2
|
Purice MD, Lago-Baldaia I, Fernandes VM, Singhvi A. Molecular profiling of invertebrate glia. Glia 2024. [PMID: 39415317 DOI: 10.1002/glia.24623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Caenorhabditis elegans and Drosophila melanogaster are powerful experimental models for uncovering fundamental tenets of nervous system organization and function. Findings over the last two decades show that molecular and cellular features are broadly conserved between invertebrates and vertebrates, indicating that insights derived from invertebrate models can broadly inform our understanding of glial operating principles across diverse species. In recent years, these model systems have led to exciting discoveries in glial biology and mechanisms of glia-neuron interactions. Here, we summarize studies that have applied current state-of-the-art "-omics" techniques to C. elegans and D. melanogaster glia. Coupled with the remarkable acceleration in the pace of mechanistic studies of glia biology in recent years, these indicate that invertebrate glia also exhibit striking molecular complexity, specificity, and heterogeneity. We provide an overview of these studies and discuss their implications as well as emerging questions where C. elegans and D. melanogaster are well-poised to fill critical knowledge gaps in our understanding of glial biology.
Collapse
Affiliation(s)
- Maria D Purice
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Vilaiwan M Fernandes
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Mrówczyńska E, Machalica K, Mazur AJ. Non-integrin laminin receptor (LamR) plays a role in axonal outgrowth from chicken DRG via modulating the Akt and Erk signaling. Front Cell Dev Biol 2024; 12:1433947. [PMID: 39144252 PMCID: PMC11322362 DOI: 10.3389/fcell.2024.1433947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
37/67 kDa laminin receptor (LamR)/ribosomal protein SA exhibits dual function as both a ribosomal protein and cell surface receptor for laminin. LamR influences critical cellular processes such as invasion, adhesion, and migration when acting as a receptor. Despite the acknowledged importance of LamR/67LR in various cellular processes, its contribution to the peripheral nervous system development is obscure. Thus, this study investigated the biological activity of LamR in peripheral axonal outgrowth in the presence of laminin-1 or Ile-Lys-Val-Ala-Val (IKVAV) peptide, whose important role in dorsal root ganglia (DRG) axonal outgrowth we recently showed. Unexpectedly, we did not observe LamR on the surface of DRG cells or in a conditioned medium, suggesting its intracellular action in the negative regulation of DRG axonal outgrowth. Using C-terminus LamR-targeting IgG, we demonstrated the role of LamR in that process, which is independent of the presence of Schwann cell precursors (SCPs) and is mediated by extracellular signal-regulated kinase (Erk) and Protein kinase B (Akt1/2/3) signaling pathways. Additionally, we show that the action of LamR towards laminin-1-dependent axonal outgrowth is unmasked only when the activity of integrin β1 is perturbed. We believe that modulation of LamR activity provides the basis for its use for inhibiting axon growth as a potential therapeutic agent for regulating abnormal or excessive neurite growth during neurodevelopmental diseases or pathological nerve regeneration.
Collapse
Affiliation(s)
- Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | | | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
4
|
Lago-Baldaia I, Cooper M, Seroka A, Trivedi C, Powell GT, Wilson SW, Ackerman SD, Fernandes VM. A Drosophila glial cell atlas reveals a mismatch between transcriptional and morphological diversity. PLoS Biol 2023; 21:e3002328. [PMID: 37862379 PMCID: PMC10619882 DOI: 10.1371/journal.pbio.3002328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/01/2023] [Accepted: 09/08/2023] [Indexed: 10/22/2023] Open
Abstract
Morphology is a defining feature of neuronal identity. Like neurons, glia display diverse morphologies, both across and within glial classes, but are also known to be morphologically plastic. Here, we explored the relationship between glial morphology and transcriptional signature using the Drosophila central nervous system (CNS), where glia are categorised into 5 main classes (outer and inner surface glia, cortex glia, ensheathing glia, and astrocytes), which show within-class morphological diversity. We analysed and validated single-cell RNA sequencing data of Drosophila glia in 2 well-characterised tissues from distinct developmental stages, containing distinct circuit types: the embryonic ventral nerve cord (VNC) (motor) and the adult optic lobes (sensory). Our analysis identified a new morphologically and transcriptionally distinct surface glial population in the VNC. However, many glial morphological categories could not be distinguished transcriptionally, and indeed, embryonic and adult astrocytes were transcriptionally analogous despite differences in developmental stage and circuit type. While we did detect extensive within-class transcriptomic diversity for optic lobe glia, this could be explained entirely by glial residence in the most superficial neuropil (lamina) and an associated enrichment for immune-related gene expression. In summary, we generated a single-cell transcriptomic atlas of glia in Drosophila, and our extensive in vivo validation revealed that glia exhibit more diversity at the morphological level than was detectable at the transcriptional level. This atlas will serve as a resource for the community to probe glial diversity and function.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Maia Cooper
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Austin Seroka
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, Oregon, United States of America
| | - Chintan Trivedi
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Gareth T. Powell
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Department of Pathology and Immunology, Brain Immunology and Glia Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Janssen R, Budd GE. Expression of netrin and its receptors uncoordinated-5 and frazzled in arthropods and onychophorans suggests conserved and diverged functions in neuronal pathfinding and synaptogenesis. Dev Dyn 2023; 252:172-185. [PMID: 35112412 DOI: 10.1002/dvdy.459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Development of the nervous system and the correct connection of nerve cells require coordinated axonal pathfinding through an extracellular matrix. Outgrowing axons exhibit directional growth toward or away from external guidance cues such as Netrin. Guidance cues can be detected by growth cones that are located at the end of growing axons through membrane-bound receptors such as Uncoordianted-5 and Frazzled. Binding of Netrin causes reformation of the cytoskeleton and growth of the axon toward (or away from) the source of Netrin production. RESULTS Here, we investigate the embryonic mRNA expression patterns of netrin genes and their potential receptors, uncoordinated-5 and frazzled in arthropod species that cover all main branches of Arthropoda, that is, Pancrustacea, Myriapoda, and Chelicerata. We also studied the expression patterns in a closely related outgroup species, the onychophoran Euperipatoides kanangrensis, and provide data on expression profiles of these genes in larval tissues of the fly Drosophila melanogaster including the brain and the imaginal disks. CONCLUSION Our data reveal conserved and diverged aspects of neuronal guidance in Drosophila with respect to the other investigated species and suggest a conserved function in nervous system patterning of the developing appendages.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Bolatto C, Nieves S, Reyes A, Olivera-Bravo S, Cambiazo V. Patched-Related Is Required for Proper Development of Embryonic Drosophila Nervous System. Front Neurosci 2022; 16:920670. [PMID: 36081658 PMCID: PMC9446084 DOI: 10.3389/fnins.2022.920670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Patched-related (Ptr), classified primarily as a neuroectodermal gene, encodes a protein with predicted topology and domain organization closely related to those of Patched (Ptc), the canonical receptor of the Hedgehog (Hh) pathway. To investigate the physiological function of Ptr in the developing nervous system, Ptr null mutant embryos were immunolabeled and imaged under confocal microscopy. These embryos displayed severe alterations in the morphology of the primary axonal tracts, reduced number, and altered distribution of the Repo-positive glia as well as peripheral nervous system defects. Most of these alterations were recapitulated by downregulating Ptr expression, specifically in embryonic nerve cells. Because similar nervous system phenotypes have been observed in hh and ptc mutant embryos, we evaluated the Ptr participation in the Hh pathway by performing cell-based reporter assays. Clone-8 cells were transfected with Ptr-specific dsRNA or a Ptr DNA construct and assayed for changes in Hh-mediated induction of a luciferase reporter. The results obtained suggest that Ptr could act as a negative regulator of Hh signaling. Furthermore, co-immunoprecipitation assays from cell culture extracts premixed with a conditioned medium revealed a direct interaction between Ptr and Hh. Moreover, in vivo Ptr overexpression in the domain of the imaginal wing disc where Engrailed and Ptc coexist produced wing phenotypes at the A/P border. Thus, these results strongly suggest that Ptr plays a crucial role in nervous system development and appears to be a negative regulator of the Hh pathway.
Collapse
Affiliation(s)
- Carmen Bolatto
- Developmental Biology Laboratory, Histology and Embryology Department, Faculty of Medicine, Universidad de la República (UdelaR), Montevideo, Uruguay
- Cell and Molecular Neurobiology Laboratory, Computational and Integrative Neuroscience (NCIC) Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- *Correspondence: Carmen Bolatto
| | - Sofía Nieves
- Developmental Biology Laboratory, Histology and Embryology Department, Faculty of Medicine, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Agustina Reyes
- Developmental Biology Laboratory, Histology and Embryology Department, Faculty of Medicine, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Cell and Molecular Neurobiology Laboratory, Computational and Integrative Neuroscience (NCIC) Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Verónica Cambiazo
- Bioinformatic and Gene Expression Laboratory, Institute of Nutrition and Food Technology (INTA)-Universidad de Chile and Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| |
Collapse
|
7
|
Drosophila Tet Is Required for Maintaining Glial Homeostasis in Developing and Adult Fly Brains. eNeuro 2022; 9:ENEURO.0418-21.2022. [PMID: 35396259 PMCID: PMC9045479 DOI: 10.1523/eneuro.0418-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Ten-eleven translocation (TET) proteins are crucial epigenetic regulators highly conserved in multicellular organisms. TETs’ enzymatic function in demethylating 5-methyl cytosine in DNA is required for proper development and TETs are frequently mutated in cancer. Recently, Drosophila melanogaster Tet (dTet) was shown to be highly expressed in developing fly brains and discovered to play an important role in brain and muscle development as well as fly behavior. Furthermore, dTet was shown to have different substrate specificity compared with mammals. However, the exact role dTet plays in glial cells and how ectopic TET expression in glial cells contributes to tumorigenesis and glioma is still not clear. Here, we report a novel role for dTet specifically in glial cell organization and number. We show that loss of dTet affects the organization of a specific glia population in the optic lobe, the “optic chiasm” glia. Additionally, we find irregularities in axon patterns in the ventral nerve cord (VNC) both, in the midline and longitudinal axons. These morphologic glia and axonal defects were accompanied by locomotor defects in developing larvae escalating to immobility in adult flies. Furthermore, glia homeostasis was disturbed in dTet-deficient brains manifesting in gain of glial cell numbers and increased proliferation. Finally, we establish a Drosophila model to understand the impact of human TET3 in glia and find that ectopic expression of hTET3 in dTet-expressing cells causes glia expansion in larval brains and affects sleep/rest behavior and the circadian clock in adult flies.
Collapse
|
8
|
Zhou D, Stobdan T, Visk D, Xue J, Haddad GG. Genetic interactions regulate hypoxia tolerance conferred by activating Notch in excitatory amino acid transporter 1-positive glial cells in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab038. [PMID: 33576765 PMCID: PMC8022968 DOI: 10.1093/g3journal/jkab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is a critical pathological element in many human diseases, including ischemic stroke, myocardial infarction, and solid tumors. Of particular significance and interest of ours are the cellular and molecular mechanisms that underlie susceptibility or tolerance to low O2. Previous studies have demonstrated that Notch signaling pathway regulates hypoxia tolerance in both Drosophila melanogaster and humans. However, the mechanisms mediating Notch-conferred hypoxia tolerance are largely unknown. In this study, we delineate the evolutionarily conserved mechanisms underlying this hypoxia tolerant phenotype. We determined the role of a group of conserved genes that were obtained from a comparative genomic analysis of hypoxia-tolerant D.melanogaster populations and human highlanders living at the high-altitude regions of the world (Tibetans, Ethiopians, and Andeans). We developed a novel dual-UAS/Gal4 system that allows us to activate Notch signaling in the Eaat1-positive glial cells, which remarkably enhances hypoxia tolerance in D.melanogaster, and, simultaneously, knock down a candidate gene in the same set of glial cells. Using this system, we discovered that the interactions between Notch signaling and bnl (fibroblast growth factor), croc (forkhead transcription factor C), or Mkk4 (mitogen-activated protein kinase kinase 4) are important for hypoxia tolerance, at least in part, through regulating neuronal development and survival under hypoxic conditions. Becausethese genetic mechanisms are evolutionarily conserved, this group of genes may serve as novel targets for developing therapeutic strategies and have a strong potential to be translated to humans to treat/prevent hypoxia-related diseases.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tsering Stobdan
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - DeeAnn Visk
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabriel G Haddad
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
9
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
10
|
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018; 399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Drosophila melanogaster is an important model organism used to study the brain development of organisms ranging from insects to mammals. The central nervous system in fruit flies is formed primarily in two waves of neurogenesis, one of which occurs in the embryo and one of which occurs during larval stages. In order to understand neurogenesis, it is important to research the behavior of progenitor cells that give rise to the neural networks which make up the adult nervous system. This behavior has been shown to be influenced by different factors including interactions with other cells within the progenitor niche, or local tissue microenvironment. Glial cells form a crucial part of this niche and play an active role in the development of the brain. Although in the early years of neuroscience it was believed that glia were simply scaffolding for neurons and passive components of the nervous system, their importance is nowadays recognized. Recent discoveries in progenitors and niche cells have led to new understandings of how the developing brain shapes its diverse regions. In this review, we attempt to summarize the distinct neural progenitors and glia in the Drosophila melanogaster central nervous system, from embryo to late larval stages, and make note of homologous features in mammals. We also outline the recent advances in this field in order to define the impact that glial cells have on progenitor cell niches, and we finally emphasize the importance of communication between glia and progenitor cells for proper brain formation.
Collapse
Affiliation(s)
- Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
11
|
Yalonetskaya A, Mondragon AA, Elguero J, McCall K. I Spy in the Developing Fly a Multitude of Ways to Die. J Dev Biol 2018; 6:E26. [PMID: 30360387 PMCID: PMC6316796 DOI: 10.3390/jdb6040026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cell proliferation and cell death are two opposing, yet complementary fundamental processes in development. Cell proliferation provides new cells, while developmental programmed cell death adjusts cell numbers and refines structures as an organism grows. Apoptosis is the best-characterized form of programmed cell death; however, there are many other non-apoptotic forms of cell death that occur throughout development. Drosophila is an excellent model for studying these varied forms of cell death given the array of cellular, molecular, and genetic techniques available. In this review, we discuss select examples of apoptotic and non-apoptotic cell death that occur in different tissues and at different stages of Drosophila development. For example, apoptosis occurs throughout the nervous system to achieve an appropriate number of neurons. Elsewhere in the fly, non-apoptotic modes of developmental cell death are employed, such as in the elimination of larval salivary glands and midgut during metamorphosis. These and other examples discussed here demonstrate the versatility of Drosophila as a model organism for elucidating the diverse modes of programmed cell death.
Collapse
Affiliation(s)
- Alla Yalonetskaya
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Albert A Mondragon
- Molecular Biology, Cell Biology, and Biochemistry Program, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Johnny Elguero
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Kimberly McCall
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
- Molecular Biology, Cell Biology, and Biochemistry Program, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
12
|
Allen AM, Anreiter I, Vesterberg A, Douglas SJ, Sokolowski MB. Pleiotropy of the Drosophila melanogaster foraging gene on larval feeding-related traits. J Neurogenet 2018; 32:256-266. [PMID: 30303018 PMCID: PMC6309726 DOI: 10.1080/01677063.2018.1500572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Little is known about the molecular underpinning of behavioral pleiotropy. The Drosophila melanogaster foraging gene is highly pleiotropic, affecting many independent larval and adult phenotypes. Included in foraging's multiple phenotypes are larval foraging path length, triglyceride levels, and food intake. foraging has a complex structure with four promoters and 21 transcripts that encode nine protein isoforms of a cGMP dependent protein kinase (PKG). We examined if foraging's complex molecular structure underlies the behavioral pleiotropy associated with this gene. Using a promotor analysis strategy, we cloned DNA fragments upstream of each of foraging's transcription start sites and generated four separate forpr-Gal4s. Supporting our hypothesis of modular function, they had discrete, restricted expression patterns throughout the larva. In the CNS, forpr1-Gal4 and forpr4-Gal4 were expressed in neurons while forpr2-Gal4 and forpr3-Gal4 were expressed in glia cells. In the gastric system, forpr1-Gal4 and forpr3-Gal4 were expressed in enteroendocrine cells of the midgut while forpr2-Gal4 was expressed in the stem cells of the midgut. forpr3-Gal4 was expressed in the midgut enterocytes, and midgut and hindgut visceral muscle. forpr4-Gal4's gastric system expression was restricted to the hindgut. We also found promoter specific expression in the larval fat body, salivary glands, and body muscle. The modularity of foraging's molecular structure was also apparent in the phenotypic rescues. We rescued larval path length, triglyceride levels (bordered on significance), and food intake of for0 null larvae using different forpr-Gal4s to drive UAS-forcDNA. In a foraging null genetic background, forpr1-Gal4 was the only promoter driven Gal4 to rescue larval path length, forpr3-Gal4 altered triglyceride levels, and forpr4-Gal4 rescued food intake. Our results refine the spatial expression responsible for foraging's associated phenotypes, as well as the sub-regions of the locus responsible for their expression. foraging's pleiotropy arises at least in part from the individual contributions of its four promoters.
Collapse
Affiliation(s)
- A. M. Allen
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
- Current address: Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK, OX1 3SR
| | - I. Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, Ontario, Canada, M5G 1M1
| | - A. Vesterberg
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - S. J. Douglas
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
| | - M. B. Sokolowski
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada, M5S 3G5
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
- Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, Ontario, Canada, M5G 1M1
| |
Collapse
|
13
|
Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo. J Neurosci 2017; 38:1850-1865. [PMID: 29167399 DOI: 10.1523/jneurosci.0346-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 02/06/2023] Open
Abstract
Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila, both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies.SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT-dependent mechanism that maintains symmetry of a developing system affected by chiral forces. Furthermore, POMTs were found to be required for proper axon connectivity of sensory neurons, suggesting that O-mannosylation regulates the sensory feedback controlling muscle contractions. This novel POMT function in the peripheral nervous system may shed light on analogous functions in mammals and help to elucidate pathomechanisms of neurological abnormalities in muscular dystrophies.
Collapse
|
14
|
Pearson JC, McKay DJ, Lieb JD, Crews ST. Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers. Development 2017; 143:3723-3732. [PMID: 27802137 DOI: 10.1242/dev.136895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/30/2016] [Indexed: 12/25/2022]
Abstract
One of the key issues in studying transcriptional regulation during development is how to employ genome-wide assays that reveals sites of open chromatin and transcription factor binding to efficiently identify biologically relevant genes and enhancers. Analysis of Drosophila CNS midline cell development provides a useful system for studying transcriptional regulation at the genomic level due to a large, well-characterized set of midline-expressed genes and in vivo validated enhancers. In this study, FAIRE-seq on FACS-purified midline cells was performed and the midline FAIRE data were compared with whole-embryo FAIRE data. We find that regions of the genome with a strong midline FAIRE peak and weak whole-embryo FAIRE peak overlap with known midline enhancers and provide a useful predictive tool for enhancer identification. In a complementary analysis, we compared a large dataset of fragments that drive midline expression in vivo with the FAIRE data. Midline enhancer fragments with a midline FAIRE peak tend to be near midline-expressed genes, whereas midline enhancers without a midline FAIRE peak were often distant from midline-expressed genes and unlikely to drive midline transcription in vivo.
Collapse
Affiliation(s)
- Joseph C Pearson
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Daniel J McKay
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA .,Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Jason D Lieb
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| | - Stephen T Crews
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA .,Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
15
|
Banerjee S, Mino RE, Fisher ES, Bhat MA. A versatile genetic tool to study midline glia function in the Drosophila CNS. Dev Biol 2017; 429:35-43. [PMID: 28602954 PMCID: PMC5554714 DOI: 10.1016/j.ydbio.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 11/30/2022]
Abstract
Neuron-glial interactions are crucial for growth, guidance and ensheathment of axons across species. In the Drosophila CNS midline, neuron-glial interactions underlie ensheathment of commissural axons by midline glial (MG) cells in a manner similar to mammalian oligodendrocytes. Although there has been some advance in the study of neuron-glial interactions and ensheathment of axons in the CNS midline, key aspects of axonal ensheathment are still not fully understood. One of the limitations has been the unavailability of MG membrane markers that could highlight the glial processes wrapping the axons. Previous studies have identified two key molecular players from the neuronal and glial cell types in the CNS midline. These are the neuronal transmembrane protein Neurexin IV (Nrx IV) and the membrane-anchored MG protein Wrapper, both of which interact in trans to mediate neuron-glial interactions and ensheathment of commissural axons. In the current study, we attempt to further our understanding of MG biology and try to overcome some of the technical difficulties posed by the lack of a robust MG driver that will specifically allow expression or knockdown of genes in MG. We report the generation of BAC transgenic flies of wrapper-GAL4 and demonstrate how these flies could be used as a genetic tool to understand MG biology. We have utilized the GAL4/UAS system to drive GFP-reporter lines (membrane-bound mCD8-GFP; microtubule-associated tau-GFP) and nuclear lacZ using wrapper-GAL4 to highlight the MG cells and/or their processes that surround and perform axonal ensheathment functions in the embryonic midline. We also describe the utility of the wrapper-GAL4 driver line to down-regulate known MG genes specifically in Wrapper-positive cells. Finally, we validate the functionality of the wrapper-GAL4 driver by rescue of wrapper mutant phenotypes and lethality. Together, these studies provide us with a versatile genetic tool to investigate MG functions and will aid in future investigations where genetic screens using wrapper-GAL4 could be designed to identify novel molecular players at the Drosophila midline and unravel key aspects of MG biology.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | - Rosa E Mino
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Elizabeth S Fisher
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
16
|
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci 2016; 10:566. [PMID: 27877121 PMCID: PMC5099170 DOI: 10.3389/fnhum.2016.00566] [Citation(s) in RCA: 351] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Stephen C. Noctor
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND InstituteSacramento, CA, USA
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Elly M. Hol
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
17
|
Mino RE, Rogers SL, Risinger AL, Rohena C, Banerjee S, Bhat MA. Drosophila Ringmaker regulates microtubule stabilization and axonal extension during embryonic development. J Cell Sci 2016; 129:3282-94. [PMID: 27422099 DOI: 10.1242/jcs.187294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022] Open
Abstract
Axonal growth and targeting are fundamental to the organization of the nervous system, and require active engagement of the cytoskeleton. Polymerization and stabilization of axonal microtubules is central to axonal growth and maturation of neuronal connectivity. Studies have suggested that members of the tubulin polymerization promoting protein (TPPP, also known as P25α) family are involved in cellular process extension. However, no in vivo knockout data exists regarding its role in axonal growth during development. Here, we report the characterization of Ringmaker (Ringer; CG45057), the only Drosophila homolog of long p25α proteins. Immunohistochemical analyses indicate that Ringer expression is dynamically regulated in the embryonic central nervous system (CNS). ringer-null mutants show cell misplacement, and errors in axonal extension and targeting. Ultrastructural examination of ringer mutants revealed defective microtubule morphology and organization. Primary neuronal cultures of ringer mutants exhibit defective axonal extension, and Ringer expression in cells induced microtubule stabilization and bundling into rings. In vitro assays showed that Ringer directly affects tubulin, and promotes microtubule bundling and polymerization. Together, our studies uncover an essential function of Ringer in axonal extension and targeting through proper microtubule organization.
Collapse
Affiliation(s)
- Rosa E Mino
- Department of Physiology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA
| | - Stephen L Rogers
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - April L Risinger
- Department of Pharmacology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA
| | - Cristina Rohena
- Department of Pharmacology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Swati Banerjee
- Department of Physiology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA
| | - Manzoor A Bhat
- Department of Physiology, University of Texas School of Medicine, Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
18
|
Syed DS, Gowda SBM, Reddy OV, Reichert H, VijayRaghavan K. Glial and neuronal Semaphorin signaling instruct the development of a functional myotopic map for Drosophila walking. eLife 2016; 5:e11572. [PMID: 26926907 PMCID: PMC4805548 DOI: 10.7554/elife.11572] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 02/28/2016] [Indexed: 12/29/2022] Open
Abstract
Motoneurons developmentally acquire appropriate cellular architectures that ensure connections with postsynaptic muscles and presynaptic neurons. In Drosophila, leg motoneurons are organized as a myotopic map, where their dendritic domains represent the muscle field. Here, we investigate mechanisms underlying development of aspects of this myotopic map, required for walking. A behavioral screen identified roles for Semaphorins (Sema) and Plexins (Plex) in walking behavior. Deciphering this phenotype, we show that PlexA/Sema1a mediates motoneuron axon branching in ways that differ in the proximal femur and distal tibia, based on motoneuronal birth order. Importantly, we show a novel role for glia in positioning dendrites of specific motoneurons; PlexB/Sema2a is required for dendritic positioning of late-born motoneurons but not early-born motoneurons. These findings indicate that communication within motoneurons and between glia and motoneurons, mediated by the combined action of different Plexin/Semaphorin signaling systems, are required for the formation of a functional myotopic map. DOI:http://dx.doi.org/10.7554/eLife.11572.001 Nerve cells enable us to both sense the world around us and to move about it. The nerves responsible for movement are called motor neurons. While one end of a motor neuron stimulates the muscle it is connected to, the other end receives signals from nerves in the spinal cord that relay messages about movement from the brain. Motor neuron connections in the spinal cord, or its equivalent in insects, the ventral nerve cord, are organized into an arrangement known as a myotopic map, which reflects the anatomical arrangement of the muscles in the body. Much remains to be learnt about how these maps form. Syed et al. have investigated how the myotopic map develops for motor neurons in the legs of fruit flies by reducing the function of chosen genes in the ventral nerve cord and asking how this affects the myotopic map. The experiments disrupted a signaling system called the Semaphorin signaling pathway that guides motor neurons to the right target muscle and consists of different receptor-signaling molecule pairs. By looking for flies with an abnormal walk and with disrupted motor neuron organization, Syed et al. identified receptor-signal pairs that guide motor neurons to different leg muscles. Specific receptor-signal pairs also guide the organisation of motor neurons in the ventral nerve cord. This guidance depends on when neurons are ‘born’. While a receptor-signal pair targets early born neurons to one leg muscle, the same receptor-signal pair regulates a different aspect of guidance in late-born neurons. Cells called glia, which are related to neurons, also help to position the connections of late-born motor neurons in the ventral nerve cord. Overall, the Semaphorin signaling system assists communication both within motor neurons and between glia cells and motor neurons during the formation of the myotopic map for leg motor neurons. These discoveries open new avenues of investigation into how else these cells communicate with each other to aid the development and organization of motor neurons. DOI:http://dx.doi.org/10.7554/eLife.11572.002
Collapse
Affiliation(s)
- Durafshan Sakeena Syed
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Swetha B M Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,Manipal University, Manipal, India
| | - O Venkateswara Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | | | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
19
|
Ou J, Gao Z, Song L, Ho MS. Analysis of Glial Distribution in Drosophila Adult Brains. Neurosci Bull 2016; 32:162-70. [PMID: 26810782 DOI: 10.1007/s12264-016-0014-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
Neurons and glia are the two major cell types in the nervous system and work closely with each other to program neuronal interplay. Traditionally, neurons are thought to be the major cells that actively regulate processes like synapse formation, plasticity, and behavioral output. Glia, on the other hand, serve a more supporting role. To date, accumulating evidence has suggested that glia are active participants in virtually every aspect of neuronal function. Despite this, fundamental features of how glia interact with neurons, and their spatial relationships, remain elusive. Here, we describe the glial cell population in Drosophila adult brains. Glial cells extend and tightly associate their processes with major structures such as the mushroom body (MB), ellipsoid body (EB), and antennal lobe (AL) in the brain. Glial cells are distributed in a more concentrated manner in the MB. Furthermore, subsets of glia exhibit distinctive association patterns around different neuronal structures. Whereas processes extended by astrocyte-like glia and ensheathing glia wrap around the MB and infiltrate into the EB and AL, cortex glia stay where cell bodies of neurons are and remain outside of the synaptic regions structured by EB or AL.
Collapse
Affiliation(s)
- Jiayao Ou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zongbao Gao
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Li Song
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Margaret S Ho
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China. .,Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, No. 150 Jimo Road, Shanghai, 200092, China. .,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
20
|
Araújo SJ. The Hedgehog Signalling Pathway in Cell Migration and Guidance: What We Have Learned from Drosophila melanogaster. Cancers (Basel) 2015; 7:2012-22. [PMID: 26445062 PMCID: PMC4695873 DOI: 10.3390/cancers7040873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
Cell migration and guidance are complex processes required for morphogenesis, the formation of tumor metastases, and the progression of human cancer. During migration, guidance molecules induce cell directionality and movement through complex intracellular mechanisms. Expression of these molecules has to be tightly regulated and their signals properly interpreted by the receiving cells so as to ensure correct navigation. This molecular control is fundamental for both normal morphogenesis and human disease. The Hedgehog (Hh) signaling pathway is evolutionarily conserved and known to be crucial for normal cellular growth and differentiation throughout the animal kingdom. The relevance of Hh signaling for human disease is emphasized by its activation in many cancers. Here, I review the current knowledge regarding the involvement of the Hh pathway in cell migration and guidance during Drosophila development and discuss its implications for human cancer origin and progression.
Collapse
Affiliation(s)
- Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, C. Baldiri Reixac 10,08028 Barcelona, Spain.
| |
Collapse
|
21
|
Altenhein B, Cattenoz PB, Giangrande A. The early life of a fly glial cell. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015. [DOI: 10.1002/wdev.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Angela Giangrande
- Department of Functional Genomics and Cancer; IGBMC; Illkirch France
| |
Collapse
|
22
|
Altenhein B. Glial cell progenitors in the Drosophila embryo. Glia 2015; 63:1291-302. [PMID: 25779863 DOI: 10.1002/glia.22820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Abstract
Development and general organization of the nervous system is comparable between insects and vertebrates. Our current knowledge on the formation of neurogenic anlagen and the generation of neural stem cells is deeply influenced by work done in invertebrate model organisms such as Drosophila and Caenorhabditis elegans. It is the aim of this review to summarize the most important steps in neurogenesis in the Drosophila embryo with a special emphasis on glial cell progenitors and the specification of glial cells. Induction of neurogenic regions during early embryogenesis and determination of neural stem cells are briefly described. Special attention is given to the formation of neural precursors called neuroblasts (NB) and their lineages. NBs divide in a stem cell mode to generate a cell clone of either neurons and/or glial cells. The latter require the activation of the transcription factor glial cells missing (gcm), thus providing a binary switch between neuronal and glial cell fates. Further aspects of glial cell specification and the resulting heterogeneity of the glial population in Drosophila are discussed.
Collapse
Affiliation(s)
- Benjamin Altenhein
- Department of Neurobiology, Neurodevelopment, Zoological Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Abstract
Molecular genetic approaches in small model organisms like Drosophila have helped to elucidate fundamental principles of neuronal cell biology. Much less is understood about glial cells, although interest in using invertebrate preparations to define their in vivo functions has increased significantly in recent years. This review focuses on our current understanding of the three major neuron-associated glial cell types found in the Drosophila central nervous system (CNS)-astrocytes, cortex glia, and ensheathing glia. Together, these cells act like mammalian astrocytes: they surround neuronal cell bodies and proximal neurites, are coupled to the vasculature, and associate closely with synapses. Exciting recent work has shown essential roles for these CNS glial cells in neural circuit formation, function, plasticity, and pathology. As we gain a more firm molecular and cellular understanding of how Drosophila CNS glial cells interact with neurons, it is becoming clear they share significant molecular and functional attributes with mammalian astrocytes.
Collapse
|
24
|
|
25
|
A comparison of midline and tracheal gene regulation during Drosophila development. PLoS One 2014; 9:e85518. [PMID: 24465586 PMCID: PMC3896416 DOI: 10.1371/journal.pone.0085518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 11/28/2013] [Indexed: 11/19/2022] Open
Abstract
Within the Drosophila embryo, two related bHLH-PAS proteins, Single-minded and Trachealess, control development of the central nervous system midline and the trachea, respectively. These two proteins are bHLH-PAS transcription factors and independently form heterodimers with another bHLH-PAS protein, Tango. During early embryogenesis, expression of Single-minded is restricted to the midline and Trachealess to the trachea and salivary glands, whereas Tango is ubiquitously expressed. Both Single-minded/Tango and Trachealess/Tango heterodimers bind to the same DNA sequence, called the CNS midline element (CME) within cis-regulatory sequences of downstream target genes. While Single-minded/Tango and Trachealess/Tango activate some of the same genes in their respective tissues during embryogenesis, they also activate a number of different genes restricted to only certain tissues. The goal of this research is to understand how these two related heterodimers bind different enhancers to activate different genes, thereby regulating the development of functionally diverse tissues. Existing data indicates that Single-minded and Trachealess may bind to different co-factors restricted to various tissues, causing them to interact with the CME only within certain sequence contexts. This would lead to the activation of different target genes in different cell types. To understand how the context surrounding the CME is recognized by different bHLH-PAS heterodimers and their co-factors, we identified and analyzed novel enhancers that drive midline and/or tracheal expression and compared them to previously characterized enhancers. In addition, we tested expression of synthetic reporter genes containing the CME flanked by different sequences. Taken together, these experiments identify elements overrepresented within midline and tracheal enhancers and suggest that sequences immediately surrounding a CME help dictate whether a gene is expressed in the midline or trachea.
Collapse
|
26
|
McIlroy G, Foldi I, Aurikko J, Wentzell JS, Lim MA, Fenton JC, Gay NJ, Hidalgo A. Toll-6 and Toll-7 function as neurotrophin receptors in the Drosophila melanogaster CNS. Nat Neurosci 2013; 16:1248-56. [PMID: 23892553 PMCID: PMC4634317 DOI: 10.1038/nn.3474] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/20/2013] [Indexed: 02/07/2023]
Abstract
Neurotrophin receptors corresponding to vertebrate Trk, p75NTR or Sortilin have not been identified in Drosophila, thus it is unknown how neurotrophism may be implemented in insects. Two Drosophila neurotrophins, DNT1 and DNT2, have nervous system functions, but their receptors are unknown. The Toll receptor superfamily has ancient evolutionary origins and a universal function in innate immunity. Here we show that Toll paralogues unrelated to the mammalian neurotrophin receptors function as neurotrophin receptors in fruit-flies. Toll-6 and Toll-7 are expressed in the central nervous system throughout development, and regulate locomotion, motoraxon targeting and neuronal survival. DNT1 and 2 interact genetically with Toll-6 and 7, bind to Toll-7 and 6 promiscuously, and are distributed in vivo in complementary or overlapping domains. We conclude that in fruit-flies, Tolls are not only involved in development and immunity but also in neurotrophism, revealing an unforeseen relationship between the neurotrophin and Toll protein families.
Collapse
Affiliation(s)
- Graham McIlroy
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
We have defined functions of MEK in regulating gliogenesis in developing cerebral cortex using loss- and gain-of-function mouse genetics. Radial progenitors deficient in both Mek1 and Mek2 fail to transition to the gliogenic mode in late embryogenesis, and astrocyte and oligodendroglial precursors fail to appear. In exploring mechanisms, we found that the key cytokine-regulated gliogenic pathway is attenuated. Further, the Ets transcription family member Etv5/Erm is strongly regulated by MEK and Erm overexpression can rescue the gliogenic potential of Mek-deleted progenitors. Remarkably, Mek1/2-deleted mice surviving postnatally exhibit cortices almost devoid of astrocytes and oligodendroglia and exhibit neurodegeneration. Conversely, expression of constitutively active MEK1 leads to a major increase in numbers of astrocytes in the adult brain. We conclude that MEK is essential for acquisition of gliogenic competence by radial progenitors and that levels of MEK activity regulate gliogenesis in the developing cortex.
Collapse
|
28
|
Bossing T, Barros CS, Fischer B, Russell S, Shepherd D. Disruption of microtubule integrity initiates mitosis during CNS repair. Dev Cell 2012; 23:433-40. [PMID: 22841498 PMCID: PMC3420022 DOI: 10.1016/j.devcel.2012.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 04/18/2012] [Accepted: 06/04/2012] [Indexed: 11/15/2022]
Abstract
Mechanisms of CNS repair have vital medical implications. We show that traumatic injury to the ventral midline of the embryonic Drosophila CNS activates cell divisions to replace lost cells. A pilot screen analyzing transcriptomes of single cells during repair pointed to downregulation of the microtubule-stabilizing GTPase mitochondrial Rho (Miro) and upregulation of the Jun transcription factor Jun-related antigen (Jra). Ectopic Miro expression can prevent midline divisions after damage, whereas Miro depletion destabilizes cortical β-tubulin and increases divisions. Disruption of cortical microtubules, either by chemical depolymerization or by overexpression of monomeric tubulin, triggers ectopic mitosis in the midline and induces Jra expression. Conversely, loss of Jra renders midline cells unable to replace damaged siblings. Our data indicate that upon injury, the integrity of the microtubule cytoskeleton controls cell division in the CNS midline, triggering extra mitosis to replace lost cells. The conservation of the identified molecules suggests that similar mechanisms may operate in vertebrates.
Collapse
Affiliation(s)
- Torsten Bossing
- School of Biological Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, UK.
| | | | | | | | | |
Collapse
|
29
|
Mao H, Lv Z, Ho MS. Gcm proteins function in the developing nervous system. Dev Biol 2012; 370:63-70. [PMID: 22842100 DOI: 10.1016/j.ydbio.2012.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022]
Abstract
A fundamental issue during nervous system development is how individual cells are formed from the undefined precursors. Differentiated neurons and glia, two major cell types mediating neuronal function, are acquired from immature precursors via a series of explicit controls exerted by transcription factors such as proteins in the family of Glial cells missing (Gcm). In mammals, Gcm proteins are involved in placenta and parathyroid gland development, whereas in the invertebrate organism Drosophila, Gcm proteins act as fate determinants for glial cell fate, regulate neural stem cell (NSC) induction and conversion, and promote glial proliferation. In particular, Gcm protein levels are carefully tuned for Drosophila gliogenesis and their stability is under precise control via the ubiquitin-proteasome system (UPS). Here we summarize recent advances on Gcm proteins function. In addition to describe various features of Gcm protein family, the significance of their functions in the developing nervous system is also discussed.
Collapse
Affiliation(s)
- Haian Mao
- Department of Nuclear Medicine, Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China
| | | | | |
Collapse
|
30
|
Stork T, Bernardos R, Freeman MR. Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 2012; 2012:1-17. [PMID: 22194269 DOI: 10.1101/pdb.top067587] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glial cells are the most abundant cell type in our brains, yet we understand very little about their development and function. An accumulating body of work over the last decade has revealed that glia are critical regulators of nervous system development, function, and health. Based on morphological and molecular criteria, glia in Drosophila melanogaster are very similar to their mammalian counterparts, suggesting that a detailed investigation of fly glia has the potential to add greatly to our understanding of fundamental aspects of glial cell biology. In this article, we provide an overview of the subtypes of glial cells found in Drosophila and discuss our current understanding of their functions, the development of a subset of well-defined glial lineages, and the molecular-genetic tools available for manipulating glial subtypes in vivo.
Collapse
|
31
|
Zhang Y, Wheatley R, Fulkerson E, Tapp A, Estes PA. Mastermind mutations generate a unique constellation of midline cells within the Drosophila CNS. PLoS One 2011; 6:e26197. [PMID: 22046261 PMCID: PMC3203113 DOI: 10.1371/journal.pone.0026197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 09/22/2011] [Indexed: 02/05/2023] Open
Abstract
Background The Notch pathway functions repeatedly during the development of the central nervous system in metazoan organisms to control cell fate and regulate cell proliferation and asymmetric cell divisions. Within the Drosophila midline cell lineage, which bisects the two symmetrical halves of the central nervous system, Notch is required for initial cell specification and subsequent differentiation of many midline lineages. Methodology/Principal Findings Here, we provide the first description of the role of the Notch co-factor, mastermind, in the central nervous system midline of Drosophila. Overall, zygotic mastermind mutations cause an increase in midline cell number and decrease in midline cell diversity. Compared to mutations in other components of the Notch signaling pathway, such as Notch itself and Delta, zygotic mutations in mastermind cause the production of a unique constellation of midline cell types. The major difference is that midline glia form normally in zygotic mastermind mutants, but not in Notch and Delta mutants. Moreover, during late embryogenesis, extra anterior midline glia survive in zygotic mastermind mutants compared to wild type embryos. Conclusions/Significance This is an example of a mutation in a signaling pathway cofactor producing a distinct central nervous system phenotype compared to mutations in major components of the pathway.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Randi Wheatley
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Eric Fulkerson
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Amanda Tapp
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Patricia A. Estes
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
32
|
Embryonic expression of Drosophila ceramide synthase schlank in developing gut, CNS and PNS. Gene Expr Patterns 2011; 11:501-10. [PMID: 21907829 DOI: 10.1016/j.gep.2011.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/17/2011] [Accepted: 08/19/2011] [Indexed: 12/17/2022]
Abstract
Schlank is a member of the highly conserved ceramide synthase family and controls growth and body fat in Drosophila. Ceramide synthases are key enzymes in the sphingolipid de novo synthesis pathway. Ceramide synthase proteins and the (dihydro)ceramide produced are involved in a variety of biological processes among them apoptosis and neurodegeneration. The full extent of their involvement in these processes will require a precise analysis of the distribution and expression pattern of ceramide synthases. Paralogs of the ceramide synthase family have been found in all eukaryotes studied, however the mRNA and protein expression patterns have not yet been analysed systematically. In this study, we use antibodies that specifically recognize Schlank, a schlank mRNA probe and an endogenous schlank promoter driven LacZ reporter line to reveal the expression pattern of Schlank throughout embryogenesis. We found that Schlank is expressed in all embryonic epithelia during embryogenesis including the developing epidermis and the gastrointestinal tract. In addition, Schlank is upregulated in the developing central (CNS) and peripheral nervous system (PNS). Co-staining experiments with neuronal and glial markers revealed specific expression of Schlank in glial and neuronal cells of the CNS and PNS.
Collapse
|
33
|
Hartenstein V. Morphological diversity and development of glia in Drosophila. Glia 2011; 59:1237-52. [PMID: 21438012 DOI: 10.1002/glia.21162] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/25/2011] [Indexed: 12/31/2022]
Abstract
Insect glia represents a conspicuous and diverse population of cells and plays a role in controlling neuronal progenitor proliferation, axonal growth, neuronal differentiation and maintenance, and neuronal function. Genetic studies in Drosophila have elucidated many aspects of glial structure, function, and development. Just as in vertebrates, it appears as if different classes of glial cells are specialized for different functions. On the basis of topology and cell shape, glial cells of the central nervous system fall into three classes (Fig. 1A-C): (i) surface glia that extend sheath-like processes to wrap around the entire brain; (ii) cortex glia (also called cell body-associated glia) that encapsulate neuronal somata and neuroblasts which form the outer layer (cortex) of the central nervous system; (iii) neuropile glia that are located at the interface between the cortex and the neuropile, the central domain of the nervous system formed by the highly branched neuronal processes and their synaptic contacts. Surface glia is further subdivided into an outer, perineurial layer, and an inner, subperineurial layer. Likewise, neuropile glia comprises a class of cells that remain at the surface of the neuropile (ensheathing glia), and a second class that forms profuse lamellar processes around nerve fibers within the neuropile (astrocyte-like or reticular glia). Glia also surrounds the peripheral nerves and sensory organs; here, one also recognizes perineurial and subperineurial glia, and a third type called "wrapping glia" that most likely corresponds to the ensheathing glia of the central nervous system. Much more experimental work is needed to determine how fundamental these differences between classes of glial cells are, or how and when during development they are specified. To aid in this work the following review will briefly summarize our knowledge of the classes of glial cells encountered in the Drosophila nervous system, and then survey their development from the embryo to adult.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
34
|
Slováková J, Carmena A. Canoe functions at the CNS midline glia in a complex with Shotgun and Wrapper-Nrx-IV during neuron-glia interactions. Development 2011; 138:1563-71. [PMID: 21389054 DOI: 10.1242/dev.056192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vertebrates and insects alike use glial cells as intermediate targets to guide growing axons. Similar to vertebrate oligodendrocytes, Drosophila midline glia ensheath and separate axonal commissures. Neuron-glia interactions are crucial during these events, although the proteins involved remain largely unknown. Here, we show that Canoe (Cno), the Drosophila ortholog of AF-6, and the DE-cadherin Shotgun (Shg) are highly restricted to the interface between midline glia and commissural axons. cno mutant analysis, genetic interactions and co-immunoprecipitation assays unveil Cno function as a novel regulator of neuron-glia interactions, forming a complex with Shg, Wrapper and Neurexin IV, the homolog of vertebrate Caspr/paranodin. Our results also support additional functions of Cno, independent of adherens junctions, as a regulator of adhesion and signaling events in non-epithelial tissues.
Collapse
Affiliation(s)
- Jana Slováková
- Instituto de Neurociencias de Alicante, CSIC/UMH, Sant Joan d'Alacant, Alicante, Spain
| | | |
Collapse
|
35
|
Oland LA, Tolbert LP. Roles of glial cells in neural circuit formation: insights from research in insects. Glia 2010; 59:1273-95. [PMID: 21732424 DOI: 10.1002/glia.21096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 09/22/2010] [Indexed: 11/09/2022]
Abstract
Investigators over the years have noted many striking similarities in the structural organization and function of neural circuits in higher invertebrates and vertebrates. In more recent years, the discovery of similarities in the cellular and molecular mechanisms that guide development of these circuits has driven a revolution in our understanding of neural development. Cellular mechanisms discovered to underlie axon pathfinding in grasshoppers have guided productive studies in mammals. Genes discovered to play key roles in the patterning of the fruitfly's central nervous system have subsequently been found to play key roles in mice. The diversity of invertebrate species offers to investigators numerous opportunities to conduct experiments that are harder or impossible to do in vertebrate species, but that are likely to shed light on mechanisms at play in developing vertebrate nervous systems. These experiments elucidate the broad suite of cellular and molecular interactions that have the potential to influence neural circuit formation across species. Here we focus on what is known about roles for glial cells in some of the important steps in neural circuit formation in experimentally advantageous insect species. These steps include axon pathfinding and matching to targets, dendritic patterning, and the sculpting of synaptic neuropils. A consistent theme is that glial cells interact with neurons in two-way, reciprocal interactions. We emphasize the impact of studies performed in insects and explore how insect nervous systems might best be exploited next as scientists seek to understand in yet deeper detail the full repertory of functions of glia in development.
Collapse
Affiliation(s)
- Lynne A Oland
- Department of Neuroscience, University of Arizona, Tucson, Arizona 85721-0077, USA.
| | | |
Collapse
|
36
|
Hidalgo A, Kato K, Sutcliffe B, McIlroy G, Bishop S, Alahmed S. Trophic neuron-glia interactions and cell number adjustments in the fruit fly. Glia 2010; 59:1296-303. [PMID: 21732425 DOI: 10.1002/glia.21092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/20/2010] [Indexed: 11/09/2022]
Abstract
Trophic interactions between neurons and enwrapping glia, and between neurons and target cells, provide plasticity to the mammalian nervous system. Here, we review evidence that analogous cell interactions operate in the development of the nervous system of the fruit-fly Drosophila. Homologues of the canonical mammalian trophic factors also maintain neuronal and glial survival in Drosophila, adjusting cell populations to enable appropriate function, and revealing commonalities in nervous system development across the animals. There are also differences between neuron-glia interactions in flies and humans, not surprisingly, because we are only related to flies through a remote common ancestor. Nevertheless, the shared cellular and molecular mechanisms underlying developmental plasticity and enwrapping glial functions, strengthen the opportunity to use Drosophila to understand the brain, to model brain diseases and to understand the involvement of glial cells in nervous system regeneration.
Collapse
Affiliation(s)
- Alicia Hidalgo
- Neurodevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
37
|
Fulkerson E, Estes PA. Common motifs shared by conserved enhancers of Drosophila midline glial genes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 316:61-75. [PMID: 21154525 DOI: 10.1002/jez.b.21382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/07/2010] [Accepted: 09/28/2010] [Indexed: 12/12/2022]
Abstract
Coding sequences are usually the most highly conserved sectors of DNA, but genomic regions controlling the expression pattern of certain genes can also be conserved across diverse species. In this study, we identify five enhancers capable of activating transcription in the midline glia of Drosophila melanogaster and each contains sequences conserved across at least 11 Drosophila species. In addition, the conserved sequences contain reiterated motifs for binding sites of the known midline transcriptional activators, Single-minded, Tango, Dichaete, and Pointed. To understand the molecular basis for the highly conserved genomic subregions within enhancers of the midline genes, we tested the ability of various motifs to affect midline expression, both individually and in combination, within synthetic reporter constructs. Multiple copies of the binding site for the midline regulators Single-minded and Tango can drive expression in midline cells; however, small changes to the sequences flanking this transcription factor binding site can inactivate expression in midline cells and activate expression in tracheal cells instead. For the midline genes described in this study, the highly conserved sequences appear to juxtapose positive and negative regulatory factors in a configuration that activates genes specifically in the midline glia, while maintaining them inactive in other tissues, including midline neurons and tracheal cells.
Collapse
Affiliation(s)
- Eric Fulkerson
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|
38
|
Evans IR, Hu N, Skaer H, Wood W. Interdependence of macrophage migration and ventral nerve cord development in Drosophila embryos. Development 2010; 137:1625-33. [PMID: 20392742 PMCID: PMC2860247 DOI: 10.1242/dev.046797] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2010] [Indexed: 11/20/2022]
Abstract
During embryonic development, Drosophila macrophages (haemocytes) undergo a series of stereotypical migrations to disperse throughout the embryo. One major migratory route is along the ventral nerve cord (VNC), where haemocytes are required for the correct development of this tissue. We show, for the first time, that a reciprocal relationship exists between haemocytes and the VNC and that defects in nerve cord development prevent haemocyte migration along this structure. Using live imaging, we demonstrate that the axonal guidance cue Slit and its receptor Robo are both required for haemocyte migration, but signalling is not autonomously required in haemocytes. We show that the failure of haemocyte migration along the VNC in slit mutants is not due to a lack of chemotactic signals within this structure, but rather to a failure in its detachment from the overlying epithelium, creating a physical barrier to haemocyte migration. This block of haemocyte migration in turn disrupts the formation of the dorsoventral channels within the VNC, further highlighting the importance of haemocyte migration for correct neural development. This study illustrates the important role played by the three-dimensional environment in directing cell migration in vivo and reveals an intriguing interplay between the developing nervous system and the blood cells within the fly, demonstrating that their development is both closely coupled and interdependent.
Collapse
Affiliation(s)
- Iwan R. Evans
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Nan Hu
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Helen Skaer
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Will Wood
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
39
|
Banerjee S, Blauth K, Peters K, Rogers SL, Fanning AS, Bhat MA. Drosophila neurexin IV interacts with Roundabout and is required for repulsive midline axon guidance. J Neurosci 2010; 30:5653-67. [PMID: 20410118 PMCID: PMC2869042 DOI: 10.1523/jneurosci.6187-09.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/26/2010] [Accepted: 03/14/2010] [Indexed: 11/21/2022] Open
Abstract
Slit/Roundabout (Robo) signaling controls midline repulsive axon guidance. However, proteins that interact with Slit/Robo at the cell surface remain largely uncharacterized. Here, we report that the Drosophila transmembrane septate junction-specific protein Neurexin IV (Nrx IV) functions in midline repulsive axon guidance. Nrx IV is expressed in the neurons of the developing ventral nerve cord, and nrx IV mutants show crossing and circling of ipsilateral axons and fused commissures. Interestingly, the axon guidance defects observed in nrx IV mutants seem independent of its other binding partners, such as Contactin and Neuroglian and the midline glia protein Wrapper, which interacts in trans with Nrx IV. nrx IV mutants show diffuse Robo localization, and dose-dependent genetic interactions between nrx IV/robo and nrx IV/slit indicate that they function in a common pathway. In vivo biochemical studies reveal that Nrx IV associates with Robo, Slit, and Syndecan, and interactions between Robo and Slit, or Nrx IV and Slit, are affected in nrx IV and robo mutants, respectively. Coexpression of Nrx IV and Robo in mammalian cells confirms that these proteins retain the ability to interact in a heterologous system. Furthermore, we demonstrate that the extracellular region of Nrx IV is sufficient to rescue Robo localization and axon guidance phenotypes in nrx IV mutants. Together, our studies establish that Nrx IV is essential for proper Robo localization and identify Nrx IV as a novel interacting partner of the Slit/Robo signaling pathway.
Collapse
Affiliation(s)
| | | | - Kimberly Peters
- Department of Biology, Carolina Center for Genome Sciences, Lineberger Cancer Center
| | - Stephen L. Rogers
- Department of Biology, Carolina Center for Genome Sciences, Lineberger Cancer Center
| | | | - Manzoor A. Bhat
- Department of Cell and Molecular Physiology
- Curriculum in Neurobiology
- University of North Carolina Neuroscience Center, and
- Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine Chapel Hill, Chapel Hill, North Carolina 27599-7545
| |
Collapse
|
40
|
von Hilchen CM, Hein I, Technau GM, Altenhein B. Netrins guide migration of distinct glial cells in the Drosophila embryo. Development 2010; 137:1251-62. [DOI: 10.1242/dev.042853] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Development of the nervous system and establishment of complex neuronal networks require the concerted activity of different signalling events and guidance cues, which include Netrins and their receptors. In Drosophila, two Netrins are expressed during embryogenesis by cells of the ventral midline and serve as attractant or repellent cues for navigating axons. We asked whether glial cells, which are also motile, are guided by similar cues to axons, and analysed the influence of Netrins and their receptors on glial cell migration during embryonic development. We show that in Netrin mutants, two distinct populations of glial cells are affected: longitudinal glia (LG) fail to migrate medially in the early stages of neurogenesis, whereas distinct embryonic peripheral glia (ePG) do not properly migrate laterally into the periphery. We further show that early Netrin-dependent guidance of LG requires expression of the receptor Frazzled (Fra) already in the precursor cell. At these early stages, Netrins are not yet expressed by cells of the ventral midline and we provide evidence for a novel Netrin source within the neurogenic region that includes neuroblasts. Later in development, most ePG transiently express uncoordinated 5 (unc5) during their migratory phase. In unc5 mutants, however, two of these cells in particular exhibit defective migration and stall in, or close to, the central nervous system. Both phenotypes are reversible in cell-specific rescue experiments, indicating that Netrin-mediated signalling via Fra (in LG) or Unc5 (in ePG) is a cell-autonomous effect.
Collapse
Affiliation(s)
| | - Irina Hein
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| | - Gerhard M. Technau
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| | - Benjamin Altenhein
- Institute of Genetics, University of Mainz, Saarstrasse 21, D-55122 Mainz, Germany
| |
Collapse
|
41
|
|
42
|
Blauth K, Banerjee S, Bhat MA. Axonal ensheathment and intercellular barrier formation in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:93-128. [PMID: 20801419 DOI: 10.1016/s1937-6448(10)83003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glial cells are critical players in every major aspect of nervous system development, function, and disease. Other than their traditional supportive role, glial cells perform a variety of important functions such as myelination, synapse formation and plasticity, and establishment of blood-brain and blood-nerve barriers in the nervous system. Recent studies highlight the striking functional similarities between Drosophila and vertebrate glia. In both systems, glial cells play an essential role in neural ensheathment thereby isolating the nervous system and help to create a local ionic microenvironment for conduction of nerve impulses. Here, we review the anatomical aspects and the molecular players that underlie ensheathment during different stages of nervous system development in Drosophila and how these processes lead to the organization of neuroglial junctions. We also discuss some key aspects of the invertebrate axonal ensheathment and junctional organization with that of vertebrate myelination and axon-glial interactions. Finally, we highlight the importance of intercellular junctions in barrier formation in various cellular contexts in Drosophila. We speculate that unraveling the genetic and molecular mechanisms of ensheathment across species might provide key insights into human myelin-related disorders and help in designing therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Blauth
- Curriculum in Neurobiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | | | | |
Collapse
|
43
|
Spokony RF, Restifo LL. Broad Complex isoforms have unique distributions during central nervous system metamorphosis in Drosophila melanogaster. J Comp Neurol 2009; 517:15-36. [PMID: 19711379 DOI: 10.1002/cne.22119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Broad Complex (BRC) is a highly conserved, ecdysone-pathway gene essential for metamorphosis in Drosophila melanogaster, and possibly all holometabolous insects. Alternative splicing among duplicated exons produces several BRC isoforms, each with one zinc-finger DNA-binding domain (Z1, Z2, Z3, or Z4), highly expressed at the onset of metamorphosis. BRC-Z1, BRC-Z2, and BRC-Z3 represent distinct genetic functions (BRC complementation groups rbp, br, and 2Bc, respectively) and are required at discrete stages spanning final-instar larva through very young pupa. We showed previously that morphogenetic movements necessary for adult CNS maturation require BRC-Z1, -Z2, and -Z3, but not at the same time: BRC-Z1 is required in the mid-prepupa, BRC-Z2 and -Z3 are required earlier, at the larval-prepupal transition. To explore how BRC isoforms controlling the same morphogenesis events do so at different times, we examined their central nervous system (CNS) expression patterns during the approximately 16 hours bracketing the hormone-regulated start of metamorphosis. Each isoform had a unique pattern, with BRC-Z3 being the most distinctive. There was some colocalization of isoform pairs, but no three-way overlap of BRC-Z1, -Z2, and -Z3. Instead, their most prominent expression was in glia (BRC-Z1), neuroblasts (BRC-Z2), or neurons (BRC-Z3). Despite sequence similarity to BRC-Z1, BRC-Z4 was expressed in a unique subset of neurons. These data suggest a switch in BRC isoform choice, from BRC-Z2 in proliferating cells to BRC-Z1, BRC-Z3, or BRC-Z4 in differentiating cells. Together with isoform-selective temporal requirements and phenotype considerations, this cell-type-selective expression suggests a model of BRC-dependent CNS morphogenesis resulting from intercellular interactions, culminating in BRC-Z1-controlled, glia-mediated CNS movements in late prepupa.
Collapse
Affiliation(s)
- Rebecca F Spokony
- Graduate Interdisciplinary Program in Insect Science, University of Arizona, Tucson, Arizona 85721-0108, USA.
| | | |
Collapse
|
44
|
Two distinct mechanisms segregate Prospero in the longitudinal glia underlying the timing of interactions with axons. ACTA ACUST UNITED AC 2009; 3:75-88. [PMID: 18634579 PMCID: PMC2547925 DOI: 10.1017/s1740925x07000610] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prospero is required in dividing longitudinal glia (LG) during axon guidance; initially to enable glial division in response to neuronal contact, and subsequently to maintain glial precursors in a quiescent state with mitotic potential. Only Prospero-positive LG respond to neuronal ablation by over-proliferating, mimicking a glial-repair response. Prospero is distributed unequally through the progeny cells of the longitudinal glioblast lineage. Just before axon contact the concentration of Prospero is higher in two of the four progeny cells, and after axon guidance Prospero is present only in six out of ten progeny LG. Here we ask how Prospero is distributed unequally in these two distinct phases. We show that before neuronal contact, longitudinal glioblasts undergo invaginating divisions, perpendicular to the ectodermal layer. Miranda is required to segregate Prospero asymmetrically up to the four glial-progeny stage. After neuronal contact, Prospero is present in only the LG that activate Notch signalling in response to Serrate provided by commissural axons, and Numb is restricted to the glia that do not contain Prospero. As a result of this dual regulation of Prospero deployment, glia are coupled to the formation and maintenance of axonal trajectories.
Collapse
|
45
|
Wheeler SR, Stagg SB, Crews ST. MidExDB: a database of Drosophila CNS midline cell gene expression. BMC DEVELOPMENTAL BIOLOGY 2009; 9:56. [PMID: 19903351 PMCID: PMC2777870 DOI: 10.1186/1471-213x-9-56] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 11/10/2009] [Indexed: 05/25/2023]
Abstract
Background The Drosophila CNS midline cells are an excellent model system to study neuronal and glial development because of their diversity of cell types and the relative ease in identifying and studying the function of midline-expressed genes. In situ hybridization experiments generated a large dataset of midline gene expression patterns. To help synthesize these data and make them available to the scientific community, we developed a web-accessible database. Description MidExDB (Drosophila CNS Midline Gene Expression Database) is comprised of images and data from our in situ hybridization experiments that examined midline gene expression. Multiple search tools are available to allow each type of data to be viewed and compared. Descriptions of each midline cell type and their development are included as background information. Conclusion MidExDB integrates large-scale gene expression data with the ability to identify individual cell types providing the foundation for detailed genetic, molecular, and biochemical studies of CNS midline cell neuronal and glial development and function. This information has general relevance for the study of nervous system development in other organisms, and also provides insight into transcriptional regulation.
Collapse
Affiliation(s)
- Scott R Wheeler
- Program in Molecular Biology and Biophysics, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| | | | | |
Collapse
|
46
|
Lin N, Zhang C, Pang J, Zhou L. By design or by chance: cell death during Drosophila embryogenesis. Apoptosis 2009; 14:935-42. [PMID: 19466551 DOI: 10.1007/s10495-009-0360-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell death plays an essential role during Drosophila embryogenesis. However, it remains an enigma as to what mechanisms determine (or select) the specific cells to be eliminated at a particular developmental stage. Is it mostly dependent on the lineage of the cell, signifying genetic predetermination, or is it due to the failure of a cell to compete for growth factors, which is more or less by chance? Recent developments in studying the molecular mechanism of cell death during Drosophila embryogenesis has provided much insight into our understanding of the relative importance of, and the interaction between, these two mechanisms in shaping the embryo.
Collapse
Affiliation(s)
- Nianwei Lin
- Department of Molecular Genetics and Microbiology, UF Shands Cancer Center, University of Florida, Gainesville, FL 32610-0232, USA
| | | | | | | |
Collapse
|
47
|
Lüer K, Technau GM. Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy. Neural Dev 2009; 4:30. [PMID: 19650920 PMCID: PMC2736940 DOI: 10.1186/1749-8104-4-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 08/03/2009] [Indexed: 11/10/2022] Open
Abstract
Background The Drosophila embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. Results To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development in vitro, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their in situ counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop in situ. Conclusion This in vitro analysis allows for the first time a comparison of the developmental capacities in situ and in vitro of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in the embryo. However, presumptive neuroblasts, once specified in the neuroectoderm, exhibit a higher degree of autonomy regarding generation of their lineages compared to mesectodermal midline progenitors.
Collapse
Affiliation(s)
- Karin Lüer
- Institute of Genetics, University of Mainz, Germany.
| | | |
Collapse
|
48
|
Wheeler SR, Banerjee S, Blauth K, Rogers SL, Bhat MA, Crews ST. Neurexin IV and Wrapper interactions mediate Drosophila midline glial migration and axonal ensheathment. Development 2009; 136:1147-57. [PMID: 19270173 DOI: 10.1242/dev.030254] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glia play crucial roles in ensheathing axons, a process that requires an intricate series of glia-neuron interactions. The membrane-anchored protein Wrapper is present in Drosophila midline glia and is required for ensheathment of commissural axons. By contrast, Neurexin IV is present on the membranes of neurons and commissural axons, and is highly concentrated at their interfaces with midline glia. Analysis of Neurexin IV and wrapper mutant embryos revealed identical defects in glial migration, ensheathment and glial subdivision of the commissures. Mutant and misexpression experiments indicated that Neurexin IV membrane localization is dependent on interactions with Wrapper. Cell culture aggregation assays and biochemical experiments demonstrated the ability of Neurexin IV to promote cell adhesion by binding to Wrapper. These results show that neuronal-expressed Neurexin IV and midline glial-expressed Wrapper act as heterophilic adhesion molecules that mediate multiple cellular events involved in glia-neuron interactions.
Collapse
Affiliation(s)
- Scott R Wheeler
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
49
|
Gocht D, Wagner S, Heinrich R. Recognition, presence, and survival of locust central nervous glia in situ and in vitro. Microsc Res Tech 2009; 72:385-97. [PMID: 19115332 DOI: 10.1002/jemt.20683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insect glial cells serve functions for the formation, maintenance, and performance of the central nervous system in ways similar to their vertebrate counterparts. Characterization of physiological mechanisms that underlie the roles of glia in invertebrates is largely incomplete, partly due to the lack of markers that universally label all types of glia throughout all developmental stages in various species. Studies on primary cell cultures from brains of Locusta migratoria demonstrated that the absence of anti-HRP immunoreactivity, which has previously been used to identify glial cells in undissociated brains, can also serve as a reliable glial marker in vitro, but only in combination with a viability test. As cytoplasmic membranes of cultured cells are prone to degradation when they lose viability, only cells that are both anti-HRP immunonegative and viable should be regarded as glial cells, whereas the lack of anti-HRP immunoreactivity alone is not sufficient. Cell viability can be assessed by the pattern of nuclear staining with DAPI (4',6-diamidino-2-phenylindole), a convenient, sensitive labeling method that can be used in combination with other immunocytochemical cellular markers. We determined the glia-to-neuron ratio in central brains of fourth nymphal stage of Locusta migratoria to be 1:2 both in situ and in dissociated primary cell cultures. Analysis of primary cell cultures revealed a progressive reduction of glial cells and indicated that dead cells detach from the substrate and vanish from the analysis. Such changes in the composition of cell cultures should be considered in future physiological studies on cell cultures from insect nervous systems.
Collapse
Affiliation(s)
- Daniela Gocht
- Department of Neurobiology, Institute for Zoology, University of Göttingen, Berliner Strasse 28, Göttingen, Germany
| | | | | |
Collapse
|
50
|
Stork T, Thomas S, Rodrigues F, Silies M, Naffin E, Wenderdel S, Klämbt C. Drosophila Neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper. Development 2009; 136:1251-61. [PMID: 19261699 DOI: 10.1242/dev.032847] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ensheathment of axons by glial membranes is a key feature of complex nervous systems ensuring the separation of single axons or axonal fascicles. Nevertheless, the molecules that mediate the recognition and specific adhesion of glial and axonal membranes are largely unknown. We use the Drosophila midline of the embryonic central nervous system as a model to investigate these neuron glia interactions. During development, the midline glial cells acquire close contact to commissural axons and eventually extend processes into the commissures to wrap individual axon fascicles. Here, we show that this wrapping of axons depends on the interaction of the neuronal transmembrane protein Neurexin IV with the glial Ig-domain protein Wrapper. Although Neurexin IV has been previously described to be an essential component of epithelial septate junctions (SJ), we show that its function in mediating glial wrapping at the CNS midline is independent of SJ formation. Moreover, differential splicing generates two different Neurexin IV isoforms. One mRNA is enriched in septate junction-forming tissues, whereas the other mRNA is expressed by neurons and recruited to the midline by Wrapper. Although both Neurexin IV isoforms are able to bind Wrapper, the neuronal isoform has a higher affinity for Wrapper. We conclude that Neurexin IV can mediate different adhesive cell-cell contacts depending on the isoforms expressed and the context of its interaction partners.
Collapse
Affiliation(s)
- Tobias Stork
- Institut für Neurobiologie, Universität Münster, Badestrasse 9, D-48149 Münster, Germany
| | | | | | | | | | | | | |
Collapse
|