1
|
Pios SV, Gelin MF, Domcke W, Chen L. Imaging the Photochemistry of the Hydrogen-Bonded Heptazine-Water Complex with Femtosecond Time-Resolved Spectroscopy: A Computational Study. J Phys Chem A 2025. [PMID: 39977442 DOI: 10.1021/acs.jpca.4c08085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Graphitic carbon nitride (g-CN) has attracted vast interest as a promising inexpensive metal-free photocatalyst for water splitting with solar photons. The heptazine (Hz) molecule is the building block of graphitic carbon nitride. The photochemistry of the Hz molecule and derivatives thereof in protic environments has been the subject of several recent experimental and computational studies. In the present work, the hydrogen-bonded Hz···H2O complex was adopted as a model system for the exploration of photoinduced electron and proton transfer processes in this complex with quasi-classical nonadiabatic trajectory simulations, using the ab initio ADC(2) electronic-structure method and a computationally efficient surface-hopping algorithm. The population of the optically excited bright 1ππ* state of the Hz chromophore relaxes through three 1nπ* states and a low-lying charge-transfer state, which drives proton transfer from H2O to Hz, to the long-lived optically dark S1(ππ*) state of Hz. The imaging of this ultrafast and complex dynamics with femtosecond time-resolved transient absorption (TA) pump-probe (PP) spectroscopy and two-dimensional (2D) electronic spectroscopy (ES) was computationally explored in the framework of the quasi-classical doorway-window approximation. By comparison of the spectra of the Hz···H2O complex with those of the free Hz molecule, the effects of the hydrogen bond on the ultrafast internal conversion dynamics can be identified in the spectroscopic signals. Albeit the TA PP and 2D ES spectroscopies are primarily sensitive to electronic excited-state dynamics and less so to proton transfer dynamics, they nevertheless can provide mechanistic insights which can contribute to the acceleration of the optimization of photocatalysts for water splitting.
Collapse
Affiliation(s)
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | |
Collapse
|
2
|
Espinoza Cangahuala MK, Krishnaswamy SR, Kuevda AV, Pshenichnikov MS, Jansen TLC. The first step of cyanine dye self-assembly: Dimerization. J Chem Phys 2025; 162:054311. [PMID: 39912499 DOI: 10.1063/5.0237531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Self-assembling amphiphilic cyanine dyes, such as C8S3, are promising candidates for energy storage and optoelectronic applications due to their efficient energy transport properties. C8S3 is known to self-assemble in water into double-walled J-aggregates. Thus far, the molecular self-assembly steps remain shrouded in mystery. Here, we employ a multiscale approach to unravel the first self-assembly step: dimerization. Our multiscale approach combines molecular dynamics simulations with quantum chemistry calculations to obtain a Frenkel exciton Hamiltonian, which we then use in spectral calculations to determine the absorption and two-dimensional electronic spectra of C8S3 monomer and dimer systems. We model these systems solvated in both water and methanol, validating our model with experiments in methanol solution. Our theoretical results predict a measurable anisotropy decay upon dimerization, which is experimentally confirmed. Our approach provides a tool for the experimental probing of dimerization. Moreover, molecular dynamics simulations reveal that the dimer conformation is characterized by the interaction between the hydrophobic aliphatic tails rather than the π-π stacking previously reported for other cyanine dyes. Our results pave the way for future research into the mechanism of molecular self-assembly in similar light-harvesting complexes, offering valuable insights for understanding and optimizing self-assembly processes for various (nano)technological applications.
Collapse
Affiliation(s)
- Mónica K Espinoza Cangahuala
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Sundar Raj Krishnaswamy
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Alexey V Kuevda
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Maxim S Pshenichnikov
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Tucker MJ, Mallon CJ, Hassani M. The Long and Short of Coupling and Uncoupling via 2D IR Spectroscopy. J Phys Chem B 2025; 129:1439-1452. [PMID: 39561088 DOI: 10.1021/acs.jpcb.4c05511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Determining dynamic structural changes along with the functional movements in biological systems has been a significant challenge for scientists for several decades. Utilizing vibrational coupling with the aid of 2D IR probe pairs has aided in uncovering structural dynamics and functional roles of chemical moieties involved in actions such as membrane peptide folding and transport, ion and water transport, and drug-protein interactions. Both native and non-native vibrational probe pairs have been developed for infrared studies, and their efficacy has been tested in various systems. With these probe pairs, 2D IR spectroscopy captures frozen snapshots of the structural events involved in biological function through vibrational coupling and correlated spectral diffusion. In this Perspective, different treatments of vibrational coupling and coupling models will be addressed, and a review of some of the specific vibrational probe pairs used to study these coupling mechanisms is presented. Overall, the intrinsic molecular dynamics detected on these ultrafast time scales will provide an atomic level view of how chosen structures traverse reaction paths. Thus, it is important to evaluate and assess the accuracy of the different vibrational coupling models and their consistency with the prediction of different molecular structures.
Collapse
Affiliation(s)
- Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Christopher J Mallon
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Majid Hassani
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
4
|
Shipp JD, Fernández-Terán RJ, Auty AJ, Carson H, Sadler AJ, Towrie M, Sazanovich IV, Donaldson PM, Meijer AJHM, Weinstein JA. Two-Dimensional Infrared Spectroscopy Resolves the Vibrational Landscape in Donor-Bridge-Acceptor Complexes with Site-Specific Isotopic Labeling. ACS PHYSICAL CHEMISTRY AU 2024; 4:761-772. [PMID: 39634644 PMCID: PMC11613348 DOI: 10.1021/acsphyschemau.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/07/2024]
Abstract
Donor-bridge-acceptor complexes (D-B-A) are important model systems for understanding of light-induced processes. Here, we apply two-color two-dimensional infrared (2D-IR) spectroscopy to D-B-A complexes with a trans-Pt(II) acetylide bridge (D-C≡C-Pt-C≡C-A) to uncover the mechanism of vibrational energy redistribution (IVR). Site-selective 13C isotopic labeling of the bridge is used to decouple the acetylide modes positioned on either side of the Pt-center. Decoupling of the D-acetylide- from the A-acetylide- enables site-specific investigation of vibrational energy transfer (VET) rates, dynamic anharmonicities, and spectral diffusion. Surprisingly, the asymmetrically labeled D-B-A still undergoes intramolecular IVR between acetylide groups even though they are decoupled and positioned across a heavy atom usually perceived as a "vibrational bottleneck". Further, the rate of population transfer from the bridge to the acceptor was both site-specific and distance dependent. We show that vibrational excitation of the acetylide modes is transferred to ligand-centered modes on a subpicosecond time scale, followed by VET to solvent modes on the time scale of a few picoseconds. We also show that isotopic substitution does not affect the rate of spectral diffusion, indicating that changes in the vibrational dynamics are not a result of differences in local environment around the acetylides. Oscillations imprinted on the decay of the vibrationally excited acceptor-localized carbonyl modes show they enter a coherent superposition of states after excitation that dephases over 1-2 ps, and thus cannot be treated as independent in the 2D-IR spectra. These findings elucidate the vibrational landscape governing IR-mediated electron transfer and illustrate the power of isotopic labeling combined with multidimensional IR spectroscopy to disentangle vibrational energy propagation pathways in complex systems.
Collapse
Affiliation(s)
- James D. Shipp
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Ricardo J. Fernández-Terán
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
- Department
of Physical Chemistry, University of Geneva, CH-1205 Geneva, Switzerland
| | - Alexander J. Auty
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Heather Carson
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Andrew J. Sadler
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| | - Michael Towrie
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | - Igor V. Sazanovich
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | - Paul M. Donaldson
- STFC
Central Laser Facility, Research Complex at Harwell, Research Complex
at Harwell, Harwell Science and Innovation Campus, Didcot, Oxford OX11 0QX, U.K.
| | | | - Julia A. Weinstein
- Department
of Chemistry, University of Sheffield. Sheffield S3 7HF, U.K.
| |
Collapse
|
5
|
Guerrieri L, Hall S, Luther BM, Krummel AT. Signatures of coherent vibrational dynamics in ethylene carbonate. J Chem Phys 2024; 161:164504. [PMID: 39469963 DOI: 10.1063/5.0216515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Despite having practical applications in battery technology and serving as a model system for Fermi resonance coupling, ethylene carbonate (EC) receives little direct attention as a vibrational probe in nonlinear vibrational spectroscopy experiments. EC contains a Fermi resonance that is well-characterized in the linear spectrum, and the environmental sensitivity of its Fermi resonance peaks could make it a good molecular probe for two-dimensional infrared spectroscopy (2DIR) experiments. As a model system, we investigate the linear and 2DIR vibrational spectrum of the carbonyl stretching region of ethylene carbonate in tetrahydrofuran. The 2DIR spectrum reveals peak dynamics that evolve coherently. We characterize these dynamics in the context of Redfield theory and find evidence that EC dynamics proceed through coherent pathways, including singular coherence transfer pathways that have not been widely observed in other studies. We find that coherent contributions play a significant role in the observed dynamics of cross-peaks in the 2DIR spectrum, which must be accounted for to extract accurate measurements of early waiting time dynamics.
Collapse
Affiliation(s)
- Luke Guerrieri
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Sarah Hall
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Brad M Luther
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Amber T Krummel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
6
|
Pios SV, Gelin MF, Luis Vasquez, Hauer J, Chen L. On-the-Fly Simulation of Two-Dimensional Fluorescence-Excitation Spectra. J Phys Chem Lett 2024; 15:8728-8735. [PMID: 39162319 DOI: 10.1021/acs.jpclett.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Two-dimensional (2D) fluorescence-excitation (2D-FLEX) spectroscopy is a recently proposed nonlinear femtosecond technique for the detection of photoinduced dynamics. The method records a time-resolved fluorescence signal in its excitation- and detection-frequency dependence and hence combines the exclusive detection of excited state dynamics (fluorescence) with signals resolved in both excitation and emission frequencies (2D electronic spectroscopy). In this work, we develop an on-the-fly protocol for the simulation of 2D-FLEX spectra of molecular systems, which is based on interfacing the classical doorway-window representation of spectroscopic responses with trajectory surface hopping simulations. Applying this methodology to gas-phase pyrazine, we show that femtosecond 2D-FLEX spectra can deliver detailed information that is otherwise obtainable via attosecond spectroscopy.
Collapse
Affiliation(s)
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Luis Vasquez
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | |
Collapse
|
7
|
Hess KA, Rohler CK, Boutwell DR, Snyder JM, Buchanan LE. Suppressing sidechain modes and improving structural resolution for 2D IR spectroscopy via vibrational lifetimes. J Chem Phys 2024; 161:054201. [PMID: 39087534 PMCID: PMC11296734 DOI: 10.1063/5.0207523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Vibrational spectroscopy of protein structure often utilizes 13C18O-labeling of backbone carbonyls to further increase structural resolution. However, sidechains such as arginine, aspartate, and glutamate absorb within the same spectral region, complicating the analysis of isotope-labeled peaks. In this study, we report that the waiting time between pump and probe pulses in two-dimensional infrared spectroscopy can be used to suppress sidechain modes in favor of backbone amide I' modes based on differences in vibrational lifetimes. Furthermore, differences in the lifetimes of 13C18O-amide I' modes can aid in the assignment of secondary structure for labeled residues. Using model disordered and β-sheet peptides, it was determined that while β-sheets exhibit a longer lifetime than disordered structures, amide I' modes in both secondary structures exhibit longer lifetimes than sidechain modes. Overall, this work demonstrates that collecting 2D IR data at delayed waiting times, based on differences in vibrational lifetime between modes, can be used to effectively suppress interfering sidechain modes and further identify secondary structures.
Collapse
Affiliation(s)
- Kayla A. Hess
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Cade K. Rohler
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Dalton R. Boutwell
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Jason M. Snyder
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| | - Lauren E. Buchanan
- Department of Chemistry, Vanderbilt University, 1234 Stevenson Center Lane, Nashville, Tennessee 37235, USA
| |
Collapse
|
8
|
Mehmood A, Silfies MC, Durden AS, Allison TK, Levine BG. Simulating ultrafast transient absorption spectra from first principles using a time-dependent configuration interaction probe. J Chem Phys 2024; 161:044107. [PMID: 39041880 DOI: 10.1063/5.0215890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/30/2024] [Indexed: 07/24/2024] Open
Abstract
Transient absorption spectroscopy (TAS) is among the most common ultrafast photochemical experiments, but its interpretation remains challenging. In this work, we present an efficient and robust method for simulating TAS signals from first principles. Excited-state absorption and stimulated emission (SE) signals are computed using time-dependent complete active space configuration interaction (TD-CASCI) simulations, leveraging the robustness of time-domain simulation to minimize electronic structure failure. We demonstrate our approach by simulating the TAS signal of 1'-hydroxy-2'-acetonapthone (HAN) from ab initio multiple spawning nonadiabatic molecular dynamics simulations. Our results are compared to gas-phase TAS data recorded from both jet-cooled (T ∼ 40 K) and hot (∼403 K) molecules via cavity-enhanced TAS (CE-TAS). Decomposition of the computed spectrum allows us to assign a rise in the SE signal to excited-state proton transfer and the ultimate decay of the signal to relaxation through a twisted conical intersection. The total cost of computing the observable signal (∼1700 graphics processing unit hours for ∼4 ns of electron dynamics) was markedly less than that of performing the ab initio multiple spawning calculations used to compute the underlying nonadiabatic dynamics.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Myles C Silfies
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Andrew S Durden
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| | - Thomas K Allison
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Benjamin G Levine
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
9
|
Zhong K, Nguyen HL, Do TN, Tan HS, Knoester J, Jansen TLC. Coarse-Grained Approach to Simulate Signatures of Excitation Energy Transfer in Two-Dimensional Electronic Spectroscopy of Large Molecular Systems. J Chem Theory Comput 2024; 20:6111-6124. [PMID: 38996082 PMCID: PMC11270824 DOI: 10.1021/acs.jctc.4c00413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) has proven to be a highly effective technique in studying the properties of excited states and the process of excitation energy transfer in complex molecular assemblies, particularly in biological light-harvesting systems. However, the accurate simulation of 2DES for large systems still poses a challenge because of the heavy computational demands it entails. In an effort to overcome this limitation, we devised a coarse-grained 2DES method. This method encompasses the treatment of the entire system by dividing it into distinct weakly coupled segments, which are assumed to communicate predominantly through incoherent exciton transfer. We first demonstrate the efficiency of this method through simulation on a model dimer system, which demonstrates a marked improvement in calculation efficiency, with results that exhibit good concordance with reference spectra calculated with less approximate methods. Additionally, the application of this method to the light-harvesting antenna 2 (LH2) complex of purple bacteria showcases its advantages, accuracy, and limitations. Furthermore, simulating the anisotropy decay in LH2 induced by energy transfer and its comparison with experiments confirm that the method is capable of accurately describing dynamical processes in a biologically relevant system. This method presented lends itself to an extension that accounts for the effect of intrasegment relaxation processes on the 2DES spectra, which for computational efficiency are ignored in the implementation reported here. It is envisioned that the method will be employed in the future to accurately and efficiently calculate 2D spectra of more extensive systems, such as photosynthetic supercomplexes.
Collapse
Affiliation(s)
- Kai Zhong
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Hoang Long Nguyen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Thanh Nhut Do
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Howe-Siang Tan
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Jasper Knoester
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
- Faculty
of Science, Leiden University, Einsteinweg 55, 2300 RA Leiden, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Rode AJ, Arpin PC, Turner DB. Theoretical model of femtosecond coherence spectroscopy of vibronic excitons in molecular aggregates. J Chem Phys 2024; 160:164101. [PMID: 38647298 DOI: 10.1063/5.0200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
When used as pump pulses in transient absorption spectroscopy measurements, femtosecond laser pulses can produce oscillatory signals known as quantum beats. The quantum beats arise from coherent superpositions of the states of the sample and are best studied in the Fourier domain using Femtosecond Coherence Spectroscopy (FCS), which consists of one-dimensional amplitude and phase plots of a specified oscillation frequency as a function of the detection frequency. Prior works have shown ubiquitous amplitude nodes and π phase shifts in FCS from excited-state vibrational wavepackets in monomer samples. However, the FCS arising from vibronic-exciton states in molecular aggregates have not been studied theoretically. Here, we use a model of vibronic-exciton states in molecular dimers based on displaced harmonic oscillators to simulate FCS for dimers in two important cases. Simulations reveal distinct spectral signatures of excited-state vibronic-exciton coherences in molecular dimers that may be used to distinguish them from monomer vibrational coherences. A salient result is that, for certain relative orientations of the transition dipoles, the key resonance condition between the electronic coupling and the frequency of the vibrational mode may yield strong enhancement of the quantum-beat amplitude and, perhaps, also cause a significant decrease of the oscillation frequency to a value far lower than the vibrational frequency. Future studies using these results will lead to new insights into the excited-state coherences generated in photosynthetic pigment-protein complexes.
Collapse
Affiliation(s)
- Alexander J Rode
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Paul C Arpin
- Department of Physics, California State University, Chico, Chico, California 95929, USA
| | - Daniel B Turner
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
11
|
Xu C, Lin C, Peng J, Zhang J, Lin S, Gu FL, Gelin MF, Lan Z. On-the-fly simulation of time-resolved fluorescence spectra and anisotropy. J Chem Phys 2024; 160:104109. [PMID: 38477337 DOI: 10.1063/5.0201204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
We combine on-the-fly trajectory surface hopping simulations and the doorway-window representation of nonlinear optical response functions to create an efficient protocol for the evaluation of time- and frequency-resolved fluorescence (TFRF) spectra and anisotropies of the realistic polyatomic systems. This approach gives the effective description of the proper (e.g., experimental) pulse envelopes, laser field polarizations, and the proper orientational averaging of TFRF signals directly from the well-established on-the-fly nonadiabatic dynamic simulations without extra computational cost. To discuss the implementation details of the developed protocol, we chose cis-azobenzene as a prototype to simulate the time evolution of the TFRF spectra governed by its nonadiabatic dynamics. The results show that the TFRF is determined by the interplay of several key factors, i.e., decays of excited-state populations, evolution of the transition dipole moments along with the dynamic propagation, and scaling factor of the TFRF signals associated with the cube of emission frequency. This work not only provides an efficient and effective approach to simulate the TFRF and anisotropies of realistic polyatomic systems but also discusses the important relationship between the TFRF signals and the underlining nonadiabatic dynamics.
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Congru Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiawei Peng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Juanjuan Zhang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Shichen Lin
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Zhenggang Lan
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education and Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety; School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
12
|
Kim J, Lee HS, Kim CH. Observation of Coherent Symmetry-Breaking Vibration by Polarization-Dependent Femtosecond Spectroscopy. J Phys Chem B 2024; 128:1053-1060. [PMID: 38253009 DOI: 10.1021/acs.jpcb.3c08151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding photoinduced chemical reactions beyond the Born-Oppenheimer paradigm requires a comprehensive examination of vibronic interactions. Although femtosecond studies have unveiled the influence of vibrational modes strongly coupled to ultrafast intramolecular reactions in the excited state, they often lack direct observations of how vibrations modulate electronic properties due to the rapid disappearance of reactants. To address this gap, our research investigates the dynamics of photoexcited molecules that do not react. Specifically, we focus on the coherent librational motion of molecular transition dipole moments, discovering that the coherent libration primarily originates from symmetry-breaking components in vibronically excited vibrational modes. Symmetry breaking motion can significantly impact the excited-state dynamics of highly symmetric molecules, potentially leading to nonadiabatic transitions. In essence, the data analysis framework introduced in this study can be harnessed to uncover potential reactivity in photoexcited molecules, further enhancing our understanding of the mechanisms governing these reactions.
Collapse
Affiliation(s)
- JunWoo Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
13
|
Cai MR, Zhang X, Cheng ZQ, Yan TF, Dong H. Cross-phase modulation in two-dimensional spectroscopy. OPTICS EXPRESS 2024; 32:2929-2941. [PMID: 38297529 DOI: 10.1364/oe.503686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/31/2023] [Indexed: 02/02/2024]
Abstract
Developing from transient absorption (TA) spectroscopy, two-dimensional (2D) spectroscopy with pump-probe geometry has emerged as a versatile approach for alleviating the difficulty in implementing 2D spectroscopy with other geometries. However, the presence of cross-phase modulation (XPM) in TA spectroscopy introduces significant spectral distortions, particularly when the pump and probe pulses overlap. We demonstrate that this phenomenon is extended to the 2D spectroscopy with pump-probe geometry and the XPM is induced by the interference of the two pump pulses. We present the oscillatory behavior of XPM in the 2D spectrum and its displacement with respect to the waiting time delay through both experimental measurements and numerical simulations. Additionally, we explore the influence of probe pulse chirp on XPM and discover that by compressing the chirp, the impact of XPM on the desired signal can be reduced.
Collapse
|
14
|
Seliya P, Bonn M, Grechko M. On selection rules in two-dimensional terahertz-infrared-visible spectroscopy. J Chem Phys 2024; 160:034201. [PMID: 38230809 DOI: 10.1063/5.0179041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Two-dimensional terahertz-infrared-visible (2D TIRV) spectroscopy directly measures the coupling between quantum high-frequency vibrations and classical low-frequency modes of molecular motion. In addition to coupling strength, the signal intensity in 2D TIRV spectroscopy can also depend on the selection rules of the excited transitions. Here, we explore the selection rules in 2D TIRV spectroscopy by studying the coupling between the high-frequency CH3 stretching and low-frequency vibrations of liquid dimethyl sulfoxide (DMSO). Different excitation pathways are addressed using variations in laser pulse timing and different polarizations of exciting pulses and detected signals. The DMSO signals generated via different excitation pathways can be readily distinguished in the spectrum. The intensities of different excitation pathways vary unequally with changes in polarization. We explain how this difference stems from the intensities of polarized and depolarized Raman and hyper-Raman spectra of high-frequency modes. These results apply to various systems and will help design and interpret new 2D TIRV spectroscopy experiments.
Collapse
Affiliation(s)
- Pankaj Seliya
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Mischa Bonn
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Maksim Grechko
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| |
Collapse
|
15
|
Whaley-Mayda L, Guha A, Tokmakoff A. Multimode vibrational dynamics and orientational effects in fluorescence-encoded infrared spectroscopy. I. Response function theory. J Chem Phys 2023; 159:194201. [PMID: 37966137 DOI: 10.1063/5.0171939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Fluorescence-encoded infrared (FEIR) spectroscopy is an emerging technique for performing vibrational spectroscopy in solution with detection sensitivity down to single molecules. FEIR experiments use ultrashort pulses to excite a fluorescent molecule's vibrational and electronic transitions in a sequential, time-resolved manner, and are therefore sensitive to intervening vibrational dynamics on the ground state, vibronic coupling, and the relative orientation of vibrational and electronic transition dipole moments. This series of papers presents a theoretical treatment of FEIR spectroscopy that describes these phenomena and examines their manifestation in experimental data. This first paper develops a nonlinear response function description of Fourier-transform FEIR experiments for a two-level electronic system coupled to multiple vibrations, which is then applied to interpret experimental measurements in the second paper [L. Whaley-Mayda et al., J. Chem. Phys. 159, 194202 (2023)]. Vibrational coherence between pairs of modes produce oscillatory features that interfere with the vibrations' population response in a manner dependent on the relative signs of their respective Franck-Condon wavefunction overlaps, leading to time-dependent distortions in FEIR spectra. The orientational response of population and coherence contributions are analyzed and the ability of polarization-dependent experiments to extract relative transition dipole angles is discussed. Overall, this work presents a framework for understanding the full spectroscopic information content of FEIR measurements to aid data interpretation and inform optimal experimental design.
Collapse
Affiliation(s)
- Lukas Whaley-Mayda
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Abhirup Guha
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
16
|
Fujihashi Y, Miwa K, Higashi M, Ishizaki A. Probing exciton dynamics with spectral selectivity through the use of quantum entangled photons. J Chem Phys 2023; 159:114201. [PMID: 37712788 DOI: 10.1063/5.0169768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Quantum light is increasingly recognized as a promising resource for developing optical measurement techniques. Particular attention has been paid to enhancing the precision of the measurements beyond classical techniques by using nonclassical correlations between quantum entangled photons. Recent advances in the quantum optics technology have made it possible to manipulate spectral and temporal properties of entangled photons, and photon correlations can facilitate the extraction of matter information with relatively simple optical systems compared to conventional schemes. In these respects, the applications of entangled photons to time-resolved spectroscopy can open new avenues for unambiguously extracting information on dynamical processes in complex molecular and materials systems. Here, we propose time-resolved spectroscopy in which specific signal contributions are selectively enhanced by harnessing nonclassical correlations of entangled photons. The entanglement time characterizes the mutual delay between an entangled twin and determines the spectral distribution of photon correlations. The entanglement time plays a dual role as the knob for controlling the accessible time region of dynamical processes and the degrees of spectral selectivity. In this sense, the role of the entanglement time is substantially equivalent to the temporal width of the classical laser pulse. The results demonstrate that the application of quantum entangled photons to time-resolved spectroscopy leads to monitoring dynamical processes in complex molecular and materials systems by selectively extracting desired signal contributions from congested spectra. We anticipate that more elaborately engineered photon states would broaden the availability of quantum light spectroscopy.
Collapse
Affiliation(s)
- Yuta Fujihashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Kuniyuki Miwa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Okazaki 444-8585, Japan
| |
Collapse
|
17
|
Yang J, Gelin MF, Chen L, Šanda F, Thyrhaug E, Hauer J. Two-dimensional fluorescence excitation spectroscopy: A novel technique for monitoring excited-state photophysics of molecular species with high time and frequency resolution. J Chem Phys 2023; 159:074201. [PMID: 37581414 DOI: 10.1063/5.0156297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
We propose a novel UV/Vis femtosecond spectroscopic technique, two-dimensional fluorescence-excitation (2D-FLEX) spectroscopy, which combines spectral resolution during the excitation process with exclusive monitoring of the excited-state system dynamics at high time and frequency resolution. We discuss the experimental feasibility and realizability of 2D-FLEX, develop the necessary theoretical framework, and demonstrate the high information content of this technique by simulating the 2D-FLEX spectra of a model four-level system and the Fenna-Matthews-Olson antenna complex. We show that the evolution of 2D-FLEX spectra with population time directly monitors energy transfer dynamics and can thus yield direct qualitative insight into the investigated system. This makes 2D-FLEX a highly efficient instrument for real-time monitoring of photophysical processes in polyatomic molecules and molecular aggregates.
Collapse
Affiliation(s)
- Jianmin Yang
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Erling Thyrhaug
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
18
|
Reppert M, Reppert D. Equivalence of quantum and classical third order response for weakly anharmonic coupled oscillators. J Chem Phys 2023; 158:114114. [PMID: 36948800 DOI: 10.1063/5.0135260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Two-dimensional (2D) infrared (IR) spectra are commonly interpreted using a quantum diagrammatic expansion that describes the changes to the density matrix of quantum systems in response to light-matter interactions. Although classical response functions (based on Newtonian dynamics) have shown promise in computational 2D IR modeling studies, a simple diagrammatic description has so far been lacking. Recently, we introduced a diagrammatic representation for the 2D IR response functions of a single, weakly anharmonic oscillator and showed that the classical and quantum 2D IR response functions for this system are identical. Here, we extend this result to systems with an arbitrary number of bilinearly coupled, weakly anharmonic oscillators. As in the single-oscillator case, quantum and classical response functions are found to be identical in the weakly anharmonic limit or, in experimental terms, when the anharmonicity is small relative to the optical linewidth. The final form of the weakly anharmonic response function is surprisingly simple and offers potential computational advantages for application to large, multi-oscillator systems.
Collapse
Affiliation(s)
- Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Deborah Reppert
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
19
|
Abstract
ConspectusWhen molecular vibrational modes strongly couple to virtual states of photonic modes, new molecular vibrational polariton states are formed, along with a large population of dark reservoir modes. The polaritons are much like the bonding and antibonding molecular orbitals when atomic orbitals form molecular bonds, while the dark modes are like nonbonding orbitals. Because the polariton states are half-matter and half-light, whose energy is shifted from the parental states, polaritons are predicted to modify chemistry under thermally activated conditions, leading to an exciting and emerging field known as polariton chemistry that could potentially shift paradigms in chemistry. Despite several published results supporting this concept, the chemical physics and mechanism of polariton chemistry remain elusive. One reason for this challenge is that previous works cannot differentiate polaritons from dark modes. This limitation makes delineating the contributions to chemistry from polaritons and dark states difficult. However, this level of insight is critical for developing a solid mechanism for polariton chemistry to design and predict the outcome of strong coupling with any given reaction. My group addressed the challenge of differentiating the dynamics of polaritons and dark modes by ultrafast two-dimensional infrared (2D IR) spectroscopy. Specifically, (1) we found that polaritons can facilitate intra- and intermolecular vibrational energy transfer, opening a pathway to control vibrational energy flow in liquid-phase molecular systems, and (2) by studying a single-step isomerization event, we verified that indeed polaritons can modify chemical dynamics under strong coupling conditions, but in contrast, the dark modes behave like uncoupled molecules and do not change the dynamics. This finding confirmed the central concept of polariton chemistry: polaritons modify the potential energy landscape of reactions. The result also clarified the role of dark modes, which lays a critical foundation for designing cavities for future polariton chemistry. Aside from using 2D IR spectroscopy to study polariton chemistry, we also used the same technique to develop molecular polaritons into a potential quantum simulation platform. We demonstrated that polaritons have Rabi oscillations, and using a checkerboard cavity design, we showed that polaritons could have large nonlinearity across space. We further used the checkerboard polaritons to simulate coherence transfer and visualize it. A unidirectional coherence transfer was observed, indicating non-Hermitian dynamics. The highlighted efforts in this Account provide a solid understanding of the capability of polaritons for chemistry and quantum information science. I conclude this Account by discussing a few challenges for moving polariton chemistry toward being predictable and making the polariton quantum platform a complement to existing systems.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
20
|
van Hengel CDN, van Adrichem KE, Jansen TLC. Simulation of two-dimensional infrared Raman spectroscopy with application to proteins. J Chem Phys 2023; 158:064106. [PMID: 36792507 DOI: 10.1063/5.0138958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two-dimensional infrared Raman spectroscopy is a powerful technique for studying the structure and interaction in molecular and biological systems. Here, we present a new implementation of the simulation of the two-dimensional infrared Raman signals. The implementation builds on the numerical integration of the Schrödinger equation approach. It combines the prediction of dynamics from molecular dynamics with a map-based approach for obtaining Hamiltonian trajectories and response function calculations. The new implementation is tested on the amide-I region for two proteins, where one is dominated by α-helices and the other by β-sheets. We find that the predicted spectra agree well with experimental observations. We further find that the two-dimensional infrared Raman spectra at least of the studied proteins are much less sensitive to the laser polarization used compared to conventional two-dimensional infrared experiments. The present implementation and findings pave the way for future applications for the interpretation of two-dimensional infrared Raman spectra.
Collapse
Affiliation(s)
- Carleen D N van Hengel
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Kim E van Adrichem
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L C Jansen
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
21
|
Leng X, Yan Y, Zhu R, Zou J, Zhang W, Shi Q. Revealing Intermolecular Electronic and Vibronic Coherence with Polarization-Dependent Two-Dimensional Beating Maps. J Phys Chem Lett 2023; 14:838-845. [PMID: 36656105 DOI: 10.1021/acs.jpclett.2c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional electronic spectroscopy (2DES) has been widely employed as an efficient tool to reveal the impact of intermolecular electronic and/or vibronic quantum coherence on excitation energy transfer in light-harvesting complexes. However, intramolecular vibrational coherence would also contribute to oscillating signals in 2D spectra, along with the intermolecular coherence signals that are directly related to energy transfer. In this work, the possibility of screening the vibrational coherence signals is explored through polarization-dependent 2DES. The all-parallel (AP) and double-crossed (DC) polarization-dependent two-dimensional rephasing spectra (2DRS) are simulated for a minimalist heterodimer model with vibrational coupling. By combining the DC-2DRS and the 2D beating maps, we demonstrate that the population and vibrational coherence signals can be largely suppressed, resulting in highlighted intermolecular electronic and vibronic coherence signals. Moreover, the AP- and DC-2DBMs show rather different patterns at the vibrational frequency, indicating a possible way to identify pure vibrational coherence.
Collapse
Affiliation(s)
- Xuan Leng
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
| | - Ruidan Zhu
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiading Zou
- Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
23
|
Brüggemann J, Wolter M, Jacob CR. Quantum-chemical calculation of two-dimensional infrared spectra using localized-mode VSCF/VCI. J Chem Phys 2022; 157:244107. [PMID: 36586972 DOI: 10.1063/5.0135273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Computational protocols for the simulation of two-dimensional infrared (2D IR) spectroscopy usually rely on vibrational exciton models which require an empirical parameterization. Here, we present an efficient quantum-chemical protocol for predicting static 2D IR spectra that does not require any empirical parameters. For the calculation of anharmonic vibrational energy levels and transition dipole moments, we employ the localized-mode vibrational self-consistent field (L-VSCF)/vibrational configuration interaction (L-VCI) approach previously established for (linear) anharmonic theoretical vibrational spectroscopy [P. T. Panek and C. R. Jacob, ChemPhysChem 15, 3365-3377 (2014)]. We demonstrate that with an efficient expansion of the potential energy surface using anharmonic one-mode potentials and harmonic two-mode potentials, 2D IR spectra of metal carbonyl complexes and dipeptides can be predicted reliably. We further show how the close connection between L-VCI and vibrational exciton models can be exploited to extract the parameters of such models from those calculations. This provides a novel route to the fully quantum-chemical parameterization of vibrational exciton models for predicting 2D IR spectra.
Collapse
Affiliation(s)
- Julia Brüggemann
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Mario Wolter
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | - Christoph R Jacob
- Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| |
Collapse
|
24
|
Kowzan G, Allison TK. Controlling Rotationally Resolved Two-Dimensional Infrared Spectra with Polarization. J Phys Chem Lett 2022; 13:11650-11654. [PMID: 36485074 PMCID: PMC9791651 DOI: 10.1021/acs.jpclett.2c03331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Recent advancements in infrared frequency combs will enable facile recording of coherent two-dimensional infrared spectra of gas-phase molecules with rotational resolution (RR2DIR). Using time-dependent density-matrix perturbation theory and angular momentum algebra techniques, we derive new polarization conditions unique to freely rotating molecules and absent in the condensed phase. These polarization conditions can be used to suppress parts of 2DIR rovibrational response, clarifying complicated RR2DIR spectra. With the polarization control methods described here, RR2DIR spectroscopy can be a powerful tool for studying complex gas mixtures of polyatomic molecules.
Collapse
Affiliation(s)
- Grzegorz Kowzan
- Department
of Chemistry, Stony Brook University, Stony Brook, New York11790-3400, United
States
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100Toruń, Poland
| | - Thomas K. Allison
- Department
of Chemistry, Stony Brook University, Stony Brook, New York11790-3400, United
States
- Department
of Physics and Astronomy, Stony Brook University, Stony Brook, New York11790-3400, United
States
| |
Collapse
|
25
|
Askelson PG, Meloni SL, Hoffnagle AM, Anna JM. Resolving the Impact of Hydrogen Bonding on the Phylloquinone Cofactor through Two-Dimensional Infrared Spectroscopy. J Phys Chem B 2022; 126:10120-10135. [PMID: 36444999 DOI: 10.1021/acs.jpcb.2c03556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional infrared spectroscopy (2DIR) was applied to phylloquinone (PhQ), an important biological cofactor, to elucidate the impact of hydrogen bonding on the ultrafast dynamics and energetics of the carbonyl stretching modes. 2DIR measurements were performed on PhQ dissolved in hexanol, which served as the hydrogen bonding solvent, and hexane, which served as a non-hydrogen bonding control. Molecular dynamics simulations and quantum chemical calculations were performed to aid in spectral assignment and interpretation. From the position of the peaks in the 2DIR spectra, we extracted the transition frequencies for the fundamental, overtone, and combination bands of hydrogen bonded and non-hydrogen bonded carbonyl groups of PhQ in the 1635-1680 cm-1 region. We find that hydrogen bonding to a single carbonyl group acts to decouple the two carbonyl units of PhQ. Through analysis of the time-resolved 2DIR data, we find that hydrogen bonding leads to faster vibrational relaxation as well as an increase in the inhomogeneous broadening of the carbonyl groups. Overall, this work demonstrates how hydrogen bonding to the carbonyl groups of PhQ presents in the 2DIR spectra, laying the groundwork to use PhQ as a 2DIR probe to characterize the ultrafast fluctuations in the local environment of natural photosynthetic complexes.
Collapse
Affiliation(s)
- Phoebe G Askelson
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Stephen L Meloni
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Alexander M Hoffnagle
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania, 231 South 34 Street, Philadelphia, Pennsylvania19104, United States
| |
Collapse
|
26
|
Chen TT, Du M, Yang Z, Yuen-Zhou J, Xiong W. Cavity-enabled enhancement of ultrafast intramolecular vibrational redistribution over pseudorotation. Science 2022; 378:790-794. [DOI: 10.1126/science.add0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrational strong coupling (VSC) between molecular vibrations and microcavity photons yields a few polaritons (light-matter modes) and many dark modes (with negligible photonic character). Although VSC is reported to alter thermally activated chemical reactions, its mechanisms remain opaque. To elucidate this problem, we followed ultrafast dynamics of a simple unimolecular vibrational energy exchange in iron pentacarbonyl [Fe(CO)
5
] under VSC, which showed two competing channels: pseudorotation and intramolecular vibrational-energy redistribution (IVR). We found that under polariton excitation, energy exchange was overall accelerated, with IVR becoming faster and pseudorotation being slowed down. However, dark-mode excitation revealed unchanged dynamics compared with those outside of the cavity, with pseudorotation dominating. Thus, despite controversies around thermally activated VSC modified chemistry, our work shows that VSC can indeed alter chemistry through a nonequilibrium preparation of polaritons.
Collapse
Affiliation(s)
- Teng-Teng Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Du
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zimo Yang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Gronborg KC, Giles SM, Garrett-Roe S. Rotationally-Resolved Two-Dimensional Infrared Spectroscopy of CO 2(g): Rotational Wavepackets and Angular Momentum Transfer. J Phys Chem Lett 2022; 13:8185-8191. [PMID: 36005741 DOI: 10.1021/acs.jpclett.2c02184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Angular momentum transfer and wavepacket dynamics of CO2(g) were measured on the picosecond time scale using polarization-resolved two-dimensional infrared (2D-IR) spectroscopy. The dynamics of rotational levels up to Jmax ≈ 50 are observed simultaneously at room temperature. Rotational wavepackets launched by the pump pulses cause oscillations in the intensity of individual peaks and beating patterns in the 2D-IR spectra. The structure of the rotationally resolved 2D-IR spectrum is explained using nonlinear response function theory. Spectral diffusion of the rotationally resolved 2D-IR peaks reveals information about angular momentum transfer. We demonstrate the ability to directly measure inelastic angular momentum dynamics simultaneously across the ∼50 thermally excited rotational levels over several hundred picoseconds.
Collapse
Affiliation(s)
- Kai C Gronborg
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania15260, United States
| | - Sydney M Giles
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania15260, United States
| | - Sean Garrett-Roe
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
28
|
Avagliano D, Bonfanti M, Nenov A, Garavelli M. Automatized protocol and interface to simulate QM/MM time-resolved transient absorption at TD-DFT level with COBRAMM. J Comput Chem 2022; 43:1641-1655. [PMID: 35815854 PMCID: PMC9544370 DOI: 10.1002/jcc.26966] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022]
Abstract
We present a series of new implementations that we recently introduced in COBRAMM, the open-source academic software developed in our group. The goal of these implementations is to offer an automatized workflow and interface to simulate time-resolved transient absorption (TA) spectra of medium-to-big chromophore embedded in a complex environment. Therefore, the excited states absorption and the stimulated emission are simulated along nonadiabatic dynamics performed with trajectory surface hopping. The possibility of treating systems from medium to big size is given by the use of time-dependent density functional theory (TD-DFT) and the presence of the environment is taken into account employing a hybrid quantum mechanics/molecular mechanics (QM/MM) scheme. The full implementation includes a series of auxiliary scripts to properly setup the QM/MM system, the calculation of the wavefunction overlap along the dynamics for the propagation, the evaluation of the transition dipole moment at linear response TD-DFT level, and scripts to setup, run and analyze the TA from an ensemble of trajectories. Altogether, we believe that our implementation will open the door to the easily simulate the time-resolved TA of systems so far computationally inaccessible.
Collapse
Affiliation(s)
- Davide Avagliano
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Matteo Bonfanti
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy.,Fondazione Human Technopole - Viale Rita Levi-Montalcini, 1 - Area MIND - Cargo 6 - 20157, Milano, Italy
| | - Artur Nenov
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari", Università degli Studi di Bologna, Bologna, Italy
| |
Collapse
|
29
|
Farrell KM, Zanni MT. Phase stable, shot-to-shot measurement of third- and fifth-order two-quantum correlation spectra using a pulse shaper in the pump-probe geometry. J Chem Phys 2022; 157:014203. [PMID: 35803806 PMCID: PMC9262413 DOI: 10.1063/5.0097019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate the first phase stable measurement of a third-order 2Q spectrum using a pulse shaper in the pump-probe geometry. This measurement was achieved by permuting the time-ordering of the pump pulses, thus rearranging the signal pathways that are emitted in the probe direction. The third-order 2Q spectrum is self-heterodyned by the probe pulse. Using this method, one can interconvert between a 1Q experiment and a 2Q experiment by simply reprogramming a pulse shaper or delay stage. We also measure a fifth-order absorptive 2Q spectrum in the pump-probe geometry, which contains similar information as a third-order experiment but does not suffer from dispersive line shapes. To do so, we introduce methods to minimize saturation-induced artifacts of the pulse shaper, improving fifth-order signals. These techniques add new capabilities for 2D spectrometers that use pulse shapers in the pump-probe beam geometry.
Collapse
Affiliation(s)
- Kieran M Farrell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
30
|
Price DA, Wedamulla P, Hill TD, Loth TM, Moran SD. The polarization dependence of 2D IR cross-peaks distinguishes parallel-stranded and antiparallel-stranded DNA G-quadruplexes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120596. [PMID: 34801392 DOI: 10.1016/j.saa.2021.120596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Guanine-rich nucleic acid sequences have a tendency to form four-stranded non-canonical motifs known as G-quadruplexes. These motifs may adopt a wide range of structures characterized by size, strand orientation, guanine base conformation, and fold topology. Using three K+-bound model systems, we show that vibrational coupling between guanine C6 = O and ring modes varies between parallel-stranded and antiparallel-stranded G-quadruplexes, and that such structures can be distinguished by comparison of the polarization dependences of cross-peaks in their two-dimensional infrared (2D IR) spectra. Combined with previously defined vibrational frequency trends, this analysis reveals key features of a 30-nucleotide unimolecular variant of the Bcl-2 proximal promoter that are consistent with its reported structure. This study shows that 2D IR spectroscopy is a convenient method for analyzing G-quadruplex structures that can be applied to complex sequences where traditional high-resolution methods are limited by solubility and disorder.
Collapse
Affiliation(s)
- David A Price
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Poornima Wedamulla
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Tayler D Hill
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Taylor M Loth
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States
| | - Sean D Moran
- School of Chemical and Biomolecular Sciences, Southern Illinois University Carbondale, 1245 Lincoln Drive MC 4409, Carbondale, IL 62901, United States.
| |
Collapse
|
31
|
Dostál J. Nonresonant coherent two-dimensional spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120441. [PMID: 34678717 DOI: 10.1016/j.saa.2021.120441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/03/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Coherent electronic two-dimensional spectroscopy is nowadays a matured experimental technique that monitors the time evolution of the studied sample after its resonant optical excitation. However, the experimental experience shows that even nonresonant interactions can provide detectable spectral contributions. These are often present as a weak parasitic signals originating in the solvent and/or cuvette walls underlying the resonant spectrum of the actual sample and as such they are usually discarded from the analysis. In this work, we adapt the formalism of double-sided Feynman diagrams for the needs of coherent two-dimensional spectroscopy in the nonresonant regime. We analytically calculate the third-order polarization of a two-level and several variants of three-level systems. As a result, we demonstrate the typical appearance of the optical Kerr-effect, cross-phase modulation, excited-state coherence, two-photon absorption and stimulated Raman scattering in the 2D spectrum. This provides a framework for studying these effects by means of coherent two-dimensional spectroscopy.
Collapse
Affiliation(s)
- Jakub Dostál
- Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 121 16, Czech Republic; ELI Beamlines, Institute of Physics, Czech Academy of Sciences, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic.
| |
Collapse
|
32
|
Edun DN, Cracchiolo OM, Serrano AL. A theoretical analysis of coherent cross-peaks in polarization selective 2DIR for detection of cross-α fibrils. J Chem Phys 2022; 156:035102. [DOI: 10.1063/5.0070553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dean N. Edun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Olivia M. Cracchiolo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Arnaldo L. Serrano
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
33
|
Hu D, Peng J, Chen L, Gelin MF, Lan Z. Spectral Fingerprint of Excited-State Energy Transfer in Dendrimers through Polarization-Sensitive Transient-Absorption Pump-Probe Signals: On-the-Fly Nonadiabatic Dynamics Simulations. J Phys Chem Lett 2021; 12:9710-9719. [PMID: 34590858 DOI: 10.1021/acs.jpclett.1c02640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The time-resolved polarization-sensitive transient-absorption (TA) pump-probe (PP) spectra are simulated using on-the-fly surface-hopping nonadiabatic dynamics and the doorway-window representation of nonlinear spectroscopy. A dendrimer model system composed of two linear phenylene ethynylene units (2-ring and 3-ring) is taken as an example. The ground-state bleach (GSB), stimulated emission (SE), and excited-state absorption (ESA) contributions as well as the total TA PP signals are obtained and carefully analyzed. It is shown that intramolecular excited-state energy transfer from the 2-ring unit to the 3-ring unit can be conveniently identified by employing pump and probe pulses with different polarizations. Our results demonstrate that time-resolved polarization-sensitive TA PP signals provide a powerful tool for the elucidation of excited-state energy-transfer pathways, notably in molecular systems possessing several optically bright nonadiabatically coupled electronic states with different orientations of transition dipole moments.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
34
|
Gelin MF, Borrelli R. Simulation of Nonlinear Femtosecond Signals at Finite Temperature via a Thermo Field Dynamics-Tensor Train Method: General Theory and Application to Time- and Frequency-Resolved Fluorescence of the Fenna-Matthews-Olson Complex. J Chem Theory Comput 2021; 17:4316-4331. [PMID: 34076412 DOI: 10.1021/acs.jctc.1c00158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we have developed a fully quantum, numerically accurate wave function-based approach for the calculation of third-order spectroscopic signals of polyatomic molecules and molecular aggregates at finite temperature. The systems are described by multimode nonadiabatic vibronic-coupling Hamiltonians, in which diagonal terms are treated in harmonic approximation, while off-diagonal interstate couplings are assumed to be coordinate independent. The approach is based on the Thermo Field Dynamics (TFD) representation of quantum mechanics and tensor-train (TT) machinery for efficient numerical simulation of quantum evolution of systems with many degrees of freedom. The developed TFD-TT approach is applied to the calculation of time- and frequency-resolved fluorescence spectra of the Fenna-Matthews-Olson (FMO) antenna complex at room temperature taking into account finite time-frequency resolution in fluorescence detection, orientational averaging, and static disorder.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
35
|
Bressan G, van Thor JJ. Theory of two-dimensional spectroscopy with intense laser fields. J Chem Phys 2021; 154:244111. [PMID: 34241350 DOI: 10.1063/5.0051435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Two-dimensional vibrational and electronic spectroscopic observables of isotropically oriented molecular samples in solution are sensitive to laser field intensities and polarization. The third-order response function formalism predicts a signal that grows linearly with the field strength of each laser pulse, thus lacking a way of accounting for non-trivial intensity-dependent effects, such as saturation and finite bleaching. An analytical expression to describe the orientational part of the molecular response, which, in the weak-field limit, becomes equivalent to a four-point correlation function, is presented. Such an expression is evaluated for Liouville-space pathways accounting for diagonal and cross peaks for all-parallel and cross-polarized pulse sequences, in both the weak- and strong-field conditions, via truncation of a Taylor series expansion at different orders. The results obtained in the strong-field conditions suggest how a careful analysis of two-dimensional spectroscopic experimental data should include laser pulse intensity considerations when determining molecular internal coordinates.
Collapse
Affiliation(s)
- Giovanni Bressan
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Jasper J van Thor
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| |
Collapse
|
36
|
Weakly RB, Gaynor JD, Khalil M. Multimode two-dimensional vibronic spectroscopy. II. Simulating and extracting vibronic coupling parameters from polarization-selective spectra. J Chem Phys 2021; 154:184202. [PMID: 34241007 DOI: 10.1063/5.0047727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Experimental demonstrations of polarization-selection two-dimensional Vibrational-Electronic (2D VE) and 2D Electronic-Vibrational (2D EV) spectroscopies aim to map the magnitudes and spatial orientations of coupled electronic and vibrational coordinates in complex systems. The realization of that goal depends on our ability to connect spectroscopic observables with molecular structural parameters. In this paper, we use a model Hamiltonian consisting of two anharmonically coupled vibrational modes in electronic ground and excited states with linear and bilinear vibronic coupling terms to simulate polarization-selective 2D EV and 2D VE spectra. We discuss the relationships between the linear vibronic coupling and two-dimensional Huang-Rhys parameters and between the bilinear vibronic coupling term and Duschinsky mixing. We develop a description of the vibronic transition dipoles and explore how the Hamiltonian parameters and non-Condon effects impact their amplitudes and orientations. Using simulated polarization-selective 2D EV and 2D VE spectra, we show how 2D peak positions, amplitudes, and anisotropy can be used to measure parameters of the vibronic Hamiltonian and non-Condon effects. This paper, along with the first in the series, provides the reader with a detailed description of reading, simulating, and analyzing multimode, polarization-selective 2D EV and 2D VE spectra with an emphasis on extracting vibronic coupling parameters from complex spectra.
Collapse
Affiliation(s)
- Robert B Weakly
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
37
|
Gaynor JD, Weakly RB, Khalil M. Multimode two-dimensional vibronic spectroscopy. I. Orientational response and polarization-selectivity. J Chem Phys 2021; 154:184201. [PMID: 34241026 DOI: 10.1063/5.0047724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Two-dimensional Electronic-Vibrational (2D EV) spectroscopy and two-dimensional Vibrational-Electronic (2D VE) spectroscopy are among the newest additions to the coherent multidimensional spectroscopy toolbox, and they are directly sensitive to vibronic couplings. In this first of two papers, the complete orientational response functions are developed for a model system consisting of two coupled anharmonic oscillators and two electronic states in order to simulate polarization-selective 2D EV and 2D VE spectra with arbitrary combinations of linearly polarized electric fields. Here, we propose analytical methods to isolate desired signals within complicated spectra and to extract the relative orientation between vibrational and vibronic dipole moments of the model system using combinations of polarization-selective 2D EV and 2D VE spectral features. Time-dependent peak amplitudes of coherence peaks are also discussed as means for isolating desired signals within the time-domain. This paper serves as a field guide for using polarization-selective 2D EV and 2D VE spectroscopies to map coupled vibronic coordinates on the molecular frame.
Collapse
Affiliation(s)
- James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Robert B Weakly
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
38
|
Lüttig J, Brixner T, Malý P. Anisotropy in fifth-order exciton-exciton-interaction two-dimensional spectroscopy. J Chem Phys 2021; 154:154202. [PMID: 33887932 DOI: 10.1063/5.0046894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exciton-exciton-interaction two-dimensional (EEI2D) spectroscopy is a fifth-order variant of 2D electronic spectroscopy. It can be used to probe biexciton dynamics in molecular systems and to observe exciton diffusion in extended systems such as polymers or light-harvesting complexes. The exciton transport strongly depends on the geometrical and energetic landscape and its perturbations. These can be of both local character, such as molecular orientation and energetic disorder, and long-range character, such as polymer kinks and structural domains. In the present theoretical work, we investigate the anisotropy in EEI2D spectroscopy. We introduce a general approach for how to calculate the anisotropy by using the response-function formalism in an efficient way. In numerical simulations, using a Frenkel exciton model with Redfield-theory dynamics, we demonstrate how the measurement of anisotropy in EEI2D spectroscopy can be used to identify various geometrical effects on exciton transport in dimers and polymers. Investigating a molecular heterodimer as an example, we demonstrate the utility of anisotropy in EEI2D spectroscopy for disentangling dynamic localization and annihilation. We further calculate the annihilation in extended systems such as conjugated polymers. In a polymer, a change in the anisotropy provides a unique signature for exciton transport between differently oriented sections. We analyze three types of geometry variations in polymers: a kink, varying geometric and energetic disorder, and different geometric domains. Our findings underline that employing anisotropy in EEI2D spectroscopy provides a way to distinguish between different geometries and can be used to obtain a better understanding of long-range exciton transport.
Collapse
Affiliation(s)
- Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Am Hubland, 97074 Würzburg, Germany
| | - Pavel Malý
- Institut für Physikalische und Theoretische Chemie, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
39
|
Sardjan AS, Westerman FP, Ogilvie JP, Jansen TLC. Observation of Ultrafast Coherence Transfer and Degenerate States with Polarization-Controlled Two-Dimensional Electronic Spectroscopy. J Phys Chem B 2020; 124:9420-9427. [PMID: 32990439 PMCID: PMC7586392 DOI: 10.1021/acs.jpcb.0c08126] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Optical
spectroscopy is a powerful tool to interrogate quantum
states of matter. We present simulation results for the cross-polarized
two-dimensional electronic spectra of the light-harvesting system
LH2 of purple bacteria. We identify a spectral feature on the diagonal,
which we assign to ultrafast coherence transfer between degenerate
states. The implication for the interpretation of previous experiments
on different systems and the potential use of this feature are discussed.
In particular, we foresee that this kind of feature will be useful
for identifying mixed degenerate states and for identifying the origin
of symmetry breaking disorder in systems like LH2. Furthermore, this
may help identify both vibrational and electronic states in biological
systems such as proteins and solid-state materials such as hybrid
perovskites.
Collapse
Affiliation(s)
- Andy S Sardjan
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Floris P Westerman
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
40
|
Ishizaki A. Probing excited-state dynamics with quantum entangled photons: Correspondence to coherent multidimensional spectroscopy. J Chem Phys 2020; 153:051102. [DOI: 10.1063/5.0015432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan and School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
41
|
Kramer T, Rodríguez M. Effect of disorder and polarization sequences on two-dimensional spectra of light-harvesting complexes. PHOTOSYNTHESIS RESEARCH 2020; 144:147-154. [PMID: 31872335 DOI: 10.1007/s11120-019-00699-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Two-dimensional electronic spectra (2DES) provide unique ways to track the energy transfer dynamics in light-harvesting complexes. The interpretation of the peaks and structures found in experimentally recorded 2DES is often not straightforward, since several processes are imaged simultaneously. The choice of specific pulse polarization sequences helps to disentangle the sometimes convoluted spectra, but brings along other disturbances. We show by detailed theoretical calculations how 2DES of the Fenna-Matthews-Olson complex are affected by rotational and conformational disorder of the chromophores.
Collapse
|
42
|
Petti MK, Ostrander JS, Birdsall ER, Kunz MB, Armstrong ZT, Alperstein AM, Zanni MT. A Proposed Method to Obtain Surface Specificity with Pump-Probe and 2D Spectroscopies. J Phys Chem A 2020; 124:3471-3483. [PMID: 32255629 PMCID: PMC7993518 DOI: 10.1021/acs.jpca.9b11791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Surfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies. The advantage of SFG spectroscopy, a second-order spectroscopy, is that it can distinguish between signals produced from molecules in the bulk versus on the surface. We propose a polarization scheme for third-order spectroscopy experiments, such as pump-probe and 2D spectroscopy, to select for surface signals and not bulk signals. This proposed polarization condition uses one pulse perpendicular compared to the other three to isolate cross-peaks arising from molecules with polar and uniaxial (i.e., biaxial) order at a surface, while removing the signal from bulk isotropic molecules. In this work, we focus on two of these cases: XXXY and YYYX, which differ by the sign of the cross-peak they create. We compare this technique to SFG spectroscopy and vibrational circular dichroism to provide insight to the behavior of the cross-peak signal. We propose that these singularly cross-polarized schemes provide odd-ordered spectroscopies the surface-specificity typically associated with even-ordered techniques.
Collapse
Affiliation(s)
- Megan K Petti
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua S Ostrander
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Erin R Birdsall
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ariel M Alperstein
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
43
|
Akiva A, Chuntonov L. Intramolecular hydrogen bonding protects the hydroxyl group from attack by fluctuating solvent forces. J Chem Phys 2020; 152:074502. [PMID: 32087624 DOI: 10.1063/1.5143572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ultrafast spectroscopy of molecular systems involving hydrogen- (H-) bonding has been at the forefront of fundamental chemical and physical research for several decades. Among the spectroscopic observables of the ultrafast dynamics is the pure dephasing of vibrationally excited molecules. Using third-order nonlinear vibrational spectroscopy, including polarization-selective transient grating measurements of vibrational lifetime and orientational diffusion as well as two-dimensional infrared spectroscopy, we determined different individual line shape components of hydroxyl stretching (νOH) excitations in a homologous series of chlorophenols and obtained the corresponding pure dephasing rates. The pure dephasing rates are correlated with vibrational anharmonicity of the νOH mode, which is tuned remotely from the hydroxyl site by changing the position of the chlorine substituents on the phenol ring. We found that in molecules where the hydroxyl group is in its free form, the pure dephasing rates scale linearly with the mode's anharmonicity such that assuming it is dominated by the third-order diagonal term, the ultrafast dynamics follow the prediction of the Kubo-Oxtoby theory. However, in the intramolecularly H-bonded ortho-chlorophenols, this trend is reversed, and the pure dephasing slows down by ∼50% for an increase in anharmonicity of only a few wavenumbers. Because the νOH mode's anharmonicity is known to reflect the H-bonding strength, our results suggest that intramolecular H-bonding can serve as a mechanism of protection from fluctuating forces exerted by the solvent. Such an effect can be relevant for ultrafast dynamics in biomolecules, where H-bonding plays a central role.
Collapse
Affiliation(s)
- Amit Akiva
- Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
44
|
Fox ZW, Blair TJ, Khalil M. Determining the Orientation and Vibronic Couplings between Electronic and Vibrational Coordinates with Polarization-Selective Two-Dimensional Vibrational-Electronic Spectroscopy. J Phys Chem Lett 2020; 11:1558-1563. [PMID: 32004009 DOI: 10.1021/acs.jpclett.9b03752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We experimentally demonstrate polarization-selective two-dimensional (2D) vibrational-electronic (VE) spectroscopy on a transition-metal mixed-valence complex where the cyanide stretching vibrations are coupled to the metal-to-metal charge-transfer transition. A simultaneous fitting of the parallel and crossed polarized 2D VE spectra quantifies the relative vibronic coupling strengths and angles between the charge-transfer transition and three coupled cyanide stretching vibrations in a mode-specific manner. In particular, we find that the bridging vibration, which modulates the distance between the transition-metal centers, is oriented nearly parallel to the charge-transfer axis and is 9 times more strongly coupled to the electronic transition than the radial vibration, which is oriented almost perpendicular to the charge-transfer axis. The results from this experiment allow us to map the spectroscopically observed vibronic coordinates onto the molecular frame providing a general method to spatially resolve vibronic energy transfer on a femtosecond time scale.
Collapse
Affiliation(s)
- Zachary W Fox
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Tyler J Blair
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Munira Khalil
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
45
|
Chen X, Fulfer KD, Woodard KT, Kuroda DG. Structure and Dynamics of the Lithium-Ion Solvation Shell in Ureas. J Phys Chem B 2019; 123:9889-9898. [DOI: 10.1021/acs.jpcb.9b07623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kristen D. Fulfer
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Chemistry Program, Centre College, Danville, Kentucky 40422, United States
| | - Kaylee T. Woodard
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel G. Kuroda
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
46
|
Song Y, Schubert A, Maret E, Burdick RK, Dunietz BD, Geva E, Ogilvie JP. Vibronic structure of photosynthetic pigments probed by polarized two-dimensional electronic spectroscopy and ab initio calculations. Chem Sci 2019; 10:8143-8153. [PMID: 31857881 PMCID: PMC6836992 DOI: 10.1039/c9sc02329a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Bacteriochlorophyll a (Bchl a) and chlorophyll a (Chl a) play important roles as light absorbers in photosynthetic antennae and participate in the initial charge-separation steps in photosynthetic reaction centers. Despite decades of study, questions remain about the interplay of electronic and vibrational states within the Q-band and its effect on the photoexcited dynamics. Here we report results of polarized two-dimensional electronic spectroscopic measurements, performed on penta-coordinated Bchl a and Chl a and their interpretation based on state-of-the-art time-dependent density functional theory calculations and vibrational mode analysis for spectral shapes. We find that the Q-band of Bchl a is comprised of two independent bands, that are assigned following the Gouterman model to Q x and Q y states with orthogonal transition dipole moments. However, we measure the angle to be ∼75°, a finding that is confirmed by ab initio calculations. The internal conversion rate constant from Q x to Q y is found to be 11 ps-1. Unlike Bchl a, the Q-band of Chl a contains three distinct peaks with different polarizations. Ab initio calculations trace these features back to a spectral overlap between two electronic transitions and their vibrational replicas. The smaller energy gap and the mixing of vibronic states result in faster internal conversion rate constants of 38-50 ps-1. We analyze the spectra of penta-coordinated Bchl a and Chl a to highlight the interplay between low-lying vibronic states and their relationship to photoinduced relaxation. Our findings shed new light on the photoexcited dynamics in photosynthetic systems where these chromophores are primary pigments.
Collapse
Affiliation(s)
- Yin Song
- Department of Physics , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA .
| | - Alexander Schubert
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
- Department of Chemistry and Biochemistry , Kent State University , 1175 Risman Drive , Kent , OH 44242 , USA
| | - Elizabeth Maret
- Applied Physics Program , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA
| | - Ryan K Burdick
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
| | - Barry D Dunietz
- Department of Chemistry and Biochemistry , Kent State University , 1175 Risman Drive , Kent , OH 44242 , USA
| | - Eitan Geva
- Department of Chemistry , University of Michigan , 930 N University Ave , Ann Arbor , MI 48109 , USA
| | - Jennifer P Ogilvie
- Department of Physics , University of Michigan , 450 Church St , Ann Arbor , MI 48109 , USA .
| |
Collapse
|
47
|
van Thor JJ. Advances and opportunities in ultrafast X-ray crystallography and ultrafast structural optical crystallography of nuclear and electronic protein dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:050901. [PMID: 31559317 PMCID: PMC6759419 DOI: 10.1063/1.5110685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/29/2019] [Indexed: 05/02/2023]
Abstract
Both nuclear and electronic dynamics contribute to protein function and need multiple and complementary techniques to reveal their ultrafast structural dynamics response. Real-space information obtained from the measurement of electron density dynamics by X-ray crystallography provides aspects of both, while the molecular physics of coherence parameters and frequency-frequency correlation needs spectroscopy methods. Ultrafast pump-probe applications of protein dynamics in crystals provide real-space information through direct X-ray crystallographic structure analysis or through structural optical crystallographic analysis. A discussion of methods of analysis using ultrafast macromolecular X-ray crystallography and ultrafast nonlinear structural optical crystallography is presented. The current and future high repetition rate capabilities provided by X-ray free electron lasers for ultrafast diffraction studies provide opportunities for optical control and optical selection of nuclear coherence which may develop to access higher frequency dynamics through improvements of sensitivity and time resolution to reveal coherence directly. Specific selection of electronic coherence requires optical probes, which can provide real-space structural information through photoselection of oriented samples and specifically in birefringent crystals. Ultrafast structural optical crystallography of photosynthetic energy transfer has been demonstrated, and the theory of two-dimensional structural optical crystallography has shown a method for accessing the structural selection of electronic coherence.
Collapse
Affiliation(s)
- Jasper J. van Thor
- Molecular Biophysics, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
48
|
Insights into the mechanisms and dynamics of energy transfer in plant light-harvesting complexes from two-dimensional electronic spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148050. [PMID: 31326408 DOI: 10.1016/j.bbabio.2019.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
During the past two decades, two-dimensional electronic spectroscopy (2DES) and related techniques have emerged as a potent experimental toolset to study the ultrafast elementary steps of photosynthesis. Apart from the highly engaging albeit controversial analysis of the role of quantum coherences in the photosynthetic processes, 2DES has been applied to resolve the dynamics and pathways of energy and electron transport in various light-harvesting antenna systems and reaction centres, providing unsurpassed level of detail. In this paper we discuss the main technical approaches and their applicability for solving specific problems in photosynthesis. We then recount applications of 2DES to study the exciton dynamics in plant and photosynthetic light-harvesting complexes, especially light-harvesting complex II (LHCII) and the fucoxanthin-chlorophyll proteins of diatoms, with emphasis on the types of unique information about such systems that 2DES is capable to deliver. This article is part of a Special Issue entitled Light harvesting, edited by Dr. Roberta Croce.
Collapse
|
49
|
Paleček D, Edlund P, Gustavsson E, Westenhoff S, Zigmantas D. Potential pitfalls of the early-time dynamics in two-dimensional electronic spectroscopy. J Chem Phys 2019; 151:024201. [DOI: 10.1063/1.5079817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- David Paleček
- Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
- Department of Chemical Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Praha 2, Czech Republic
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Donatas Zigmantas
- Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
50
|
Wang L, Allodi MA, Engel GS. Quantum coherences reveal excited-state dynamics in biophysical systems. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0109-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|