1
|
Rivera-Rivera LA. Hydrogen and halogen bonding in H2O-HF and H2O-F2 complexes. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
|
3
|
Affiliation(s)
- Luis A. Rivera-Rivera
- Department of Physical Sciences, Ferris State University, Big Rapids, MI 49307-2225, USA
| | - Zackary R. Hren
- Department of Physical Sciences, Ferris State University, Big Rapids, MI 49307-2225, USA
| |
Collapse
|
4
|
Abstract
Even though (H2O)2 and (HF)2 are arguably the most thoroughly characterized prototypes for hydrogen bonding, their heterogeneous analogue H2O···HF has received relatively little attention. Here we report that the experimental dissociation energy ( D0) of this important paradigm for heterogeneous hydrogen bonding is too large by 2 kcal mol-1 or 30% relative to our computed value of 6.3 kcal mol-1. For reference, computational procedures similar to those employed here to compute D0 (large basis set CCSD(T) computations with anharmonic corrections from second-order vibrational perturbation theory) provide results within 0.1 kcal mol-1 of the experimental values for (H2O)2 and (HF)2. Near the CCSD(T) complete basis set limit, the electronic dissociation energy for H2O···HF is ∼4 kcal mol-1 larger than those for (H2O)2 and (HF)2 (∼9 kcal mol-1 for the heterogeneous dimer vs ∼5 kcal mol-1 for the homogeneous dimers). Results reported here from symmetry-adapted perturbation theory computations suggest that this large difference is primarily due to the induction contribution to the interaction energy.
Collapse
Affiliation(s)
- Thomas More Sexton
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677-1848 , United States
| | - J Coleman Howard
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry , University of Mississippi , University , Mississippi 38677-1848 , United States
| |
Collapse
|
5
|
Frey JA, Holzer C, Klopper W, Leutwyler S. Experimental and Theoretical Determination of Dissociation Energies of Dispersion-Dominated Aromatic Molecular Complexes. Chem Rev 2016; 116:5614-41. [DOI: 10.1021/acs.chemrev.5b00652] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jann A. Frey
- Departement
für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, D-76131 Karlsruhe, Germany
| | - Samuel Leutwyler
- Departement
für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
6
|
Goswami M, Neill JL, Muckle M, Pate BH, Arunan E. Microwave, infrared-microwave double resonance, and theoretical studies of C2H4⋯H2S complex. J Chem Phys 2013; 139:104303. [DOI: 10.1063/1.4819787] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Orr BJ. Spectroscopy and energetics of the acetylene molecule: dynamical complexity alongside structural simplicity. INT REV PHYS CHEM 2010. [DOI: 10.1080/01442350600892577] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Brian J. Orr
- a Department of Physics and Centre for Lasers and Applications , Macquarie University , Sydney , NSW 2109 , Australia
| |
Collapse
|
8
|
Casterline BE, Mollner AK, Ch’ng LC, Reisler H. Imaging the State-Specific Vibrational Predissociation of the Hydrogen Chloride−Water Hydrogen-Bonded Dimer. J Phys Chem A 2010; 114:9774-81. [DOI: 10.1021/jp102532m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Blithe E. Casterline
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482
| | - Andrew K. Mollner
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482
| | - Lee C. Ch’ng
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482
| | - Hanna Reisler
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482
| |
Collapse
|
9
|
Li Q, An X, Cheng J, Gong B, Sun J. Ab initiostudy of the structure, cooperativity, and vibrational properties of HNC ternary complexes with two HF molecules. Mol Phys 2009. [DOI: 10.1080/00268970903025642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Douberly GE, Miller RE. Vibrational dynamics of the linear and bent isomers of HF–N2O trapped in 0.4K helium nanodroplets. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Douberly GE, Merritt JM, Miller RE. Infrared−Infrared Double Resonance Spectroscopy of the Isomers of Acetylene−HCN and Cyanoacetylene−HCN in Helium Nanodroplets. J Phys Chem A 2007; 111:7282-91. [PMID: 17465533 DOI: 10.1021/jp070015k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Infrared-infrared double resonance spectroscopy is used to probe the vibrational dynamics of molecular complexes solvated in helium nanodroplets. We report results for the acetylene-HCN and cyanoacetylene-HCN binary complexes, each having two stable isomers. We find that vibrational excitation of an acetylene-HCN complex results in a population transfer to the other isomer. Photoinduced isomerization is found to be dependent on both the initially excited vibrational mode and the identity of the acetylene-HCN isomer. However, population transfer is not observed for the cyanoacetylene-HCN complexes. The results are rationalized in terms of the ab initio intermolecular potential energy surfaces for the two systems with particular emphasis on the long-range barriers to rearrangement.
Collapse
Affiliation(s)
- Gary E Douberly
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, USA.
| | | | | |
Collapse
|
12
|
Medley P, Yu Z, Connors B, Klemperer W, Tsang SN, Chuang CC. Rovibrational spectra of the N2–HF complex at the vHF=3 level. J Chem Phys 2006; 124:214314. [PMID: 16774414 DOI: 10.1063/1.2203627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the analyses of the three intermolecular combination bands of the hydrogen-bonded N2-HF complex at vHF=3, observed by molecular beam intracavity laser induced fluorescence. The origin of the HF intermolecular bending combination band, (3001(1)0)<--(00000), is 11 548.45(3) cm(-1), 328.2 cm(-1) higher than that of the (30000)<--(00000) transition with an origin at 11 220.250(1) cm(-1). The average rotational constant of the (3001(1)0) level is 0.103 63(1) cm(-1), a 4.8% reduction from B(30000)=0.109 21(1) cm(-1). Perturbations are observed as line splittings, increased line widths, and reduced peak intensities of a number of lines of the e and f components of (3001(1)0). In addition, the centrifugal distortion coefficients of both components are large, negative, and different. The N2 intermolecular bend transition (30001(1))<--(00000) has an origin at 11 288.706(1) cm(-1), 68.456(2) cm(-1) above that of the (30000)<--(00000) transition. This is the lowest combination state at v(HF)=3 level. It is unperturbed, yielding B(30001(1))=0.110.10(1) cm(-1). The transition to the intermolecular stretching state, (30100)<--(00000), has an origin at 11 318.858(1) cm(-1) with B(30100)=0.105 84(1) cm(-1). Both the (30100) and (30000) levels show an isolated perturbation at J=4. The Lorentzian component of the line widths, which show considerable variation with soft mode, are GammaL(30000)=490(30) MHz, GammaL(30100)=630(30) MHz, GammaL(3001(1)0)=250(30) MHz, and GammaL(30001(1))=500(50) MHz.
Collapse
Affiliation(s)
- Patrick Medley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
13
|
Roger E. Miller: Publications. INT REV PHYS CHEM 2006. [DOI: 10.1080/01442350600709243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Choi MY, Douberly GE, Falconer TM, Lewis WK, Lindsay CM, Merritt JM, Stiles PL, Miller RE. Infrared spectroscopy of helium nanodroplets: novel methods for physics and chemistry. INT REV PHYS CHEM 2006. [DOI: 10.1080/01442350600625092] [Citation(s) in RCA: 327] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Yu Z, Klemperer W. Asymmetry in angular rigidity of hydrogen-bonded complexes. Proc Natl Acad Sci U S A 2005; 102:12667-9. [PMID: 16116074 PMCID: PMC1200308 DOI: 10.1073/pnas.0506325102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The asymmetry in angular rigidity of the proton donor and proton acceptor of hydrogen-bonded hydrogen fluoride binary complexes is investigated. The intermolecular bending frequency of HF, as the proton donor, is linearly proportional to the square root of the dissociation energy, whereas that of the proton acceptor is always much lower. The asymmetry, measured by the ratio of bending elastic constants of HF to that of the proton acceptor, is generally >2, and varies pronouncedly with the acceptors reaching values >20. Molecules with nitrogen as the bridged acceptor atom show an angular rigidity nearly one order of magnitude greater than the group with oxygen as the proton acceptor.
Collapse
Affiliation(s)
- Zhenhong Yu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
16
|
Douberly GE, Miller RE. The isomers of HF–HCN formed in helium nanodroplets: Infrared spectroscopy and ab initio calculations. J Chem Phys 2005; 122:024306. [PMID: 15638585 DOI: 10.1063/1.1828047] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Binary complexes containing hydrogen cyanide and hydrogen fluoride are formed in helium nanodroplets, and studied using high-resolution infrared laser spectroscopy. Rotationally resolved spectra are reported for the H-F and C-H stretches of the linear HCN-HF complex, a system that has been thoroughly studied in the gas phase. We report the high-resolution spectra of the higher energy, bent HF-HCN isomer, which is also formed in helium. Stark spectra are reported for both isomers, providing dipole moments of these complexes. The experimental results are compared with ab initio calculations, also reported here. Spectra are reported for several ternary complexes, including (HCN)2-HF, HCN-(HF)2, HF-(HCN)2, and HF-HCN-HF.
Collapse
Affiliation(s)
- G E Douberly
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
17
|
Douberly GE, Merritt JM, Miller RE. IR–IR double resonance spectroscopy in helium nanodroplets: Photo-induced isomerization. Phys Chem Chem Phys 2005. [DOI: 10.1039/b417553k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Nauta K, Miller RE. The rotational dynamics of N2–HF and OC–HF in helium nanodroplets. J Chem Phys 2002. [DOI: 10.1063/1.1489900] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Oudejans L, Miller R. Photofragment translational spectroscopy of weakly bound complexes: probing the interfragment correlated final state distributions. Annu Rev Phys Chem 2001; 52:607-37. [PMID: 11326076 DOI: 10.1146/annurev.physchem.52.1.607] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vibrational predissociation dynamics of weakly bound complexes is well known to be highly nonstatistical. In particular, the associated photofragment final state distributions are often far from statistical, consequently reflecting the nature of the dissociation process. For binary complexes consisting of two molecules, a complete description of the final state of the system must include the associated interfragment correlations, specifically between their internal states. Information of this type is imprinted in the translational energies of the fragments, which can be measured using a number of recently developed translational spectroscopy methods. These data can provide detailed insights into the nature of the bond rupture process, as well as accurate values for the dissociation energy of the complexes. The focus of the present review is on experiments that provide correlated final state distributions for weakly bound binary complexes. Where possible, comparisons with theoretical calculations are made.
Collapse
Affiliation(s)
- L Oudejans
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
20
|
Oudejans L, Miller RE. The state-to-state predissociation dynamics of OC–HF upon HF stretch excitation. J Chem Phys 2000. [DOI: 10.1063/1.1288605] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Oudejans L, Miller RE. Photodissociation of cyclic HF complexes: Pentamer through heptamer. J Chem Phys 2000. [DOI: 10.1063/1.481877] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Oudejans L, Miller RE. State-to-State Vibrational Predissociation Dynamics of the Acetylene−HCl Complex. J Phys Chem A 1999. [DOI: 10.1021/jp990763c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L. Oudejans
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| | - R. E. Miller
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|