1
|
Zabelin AA, Khristin AM, Shkuropatova VA, Khatypov RA, Shkuropatov AY. Primary electron transfer in Rhodobacter sphaeroides R-26 reaction centers under dehydration conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148238. [PMID: 32533935 DOI: 10.1016/j.bbabio.2020.148238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
The photoinduced charge separation in QB-depleted reaction centers (RCs) from Rhodobacter sphaeroides R-26 in solid air-dried and vacuum-dried (~10-2 Torr) films, obtained in the presence of detergent n-dodecyl-β-D-maltoside (DM), is characterized using ultrafast transient absorption spectroscopy. It is shown that drying of RC-DM complexes is accompanied by reversible blue shifts of the ground-state absorption bands of the pigment ensemble, which suggest that no dehydration-induced structural destruction of RCs occurs in both types of films. In air-dried films, electron transfer from the excited primary electron donor P⁎ to the photoactive bacteriopheophytin HA proceeds in 4.7 ps to form the P+HA- state with essentially 100% yield. P+HA- decays in 260 ps both by electron transfer to the primary quinone QA to give the state P+QA- (87% yield) and by charge recombination to the ground state (13% yield). In vacuum-dried films, P⁎ decay is characterized by two kinetic components with time constants of 4.1 and 46 ps in a proportion of ~55%/45%, and P+HA- decays about 2-fold slower (462 ps) than in air-dried films. Deactivation of both P⁎ and P+HA- to the ground state effectively competes with the corresponding forward electron-transfer reactions in vacuum-dried RCs, reducing the yield of P+QA- to 68%. The results are compared with the data obtained for fully hydrated RCs in solution and are discussed in terms of the presence in the RC complexes of different water molecules, the removal/displacement of which affects spectral properties of pigment cofactors and rates and yields of the electron-transfer reactions.
Collapse
Affiliation(s)
- Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anton M Khristin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Valentina A Shkuropatova
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Ravil A Khatypov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russian Federation.
| |
Collapse
|
2
|
Jalviste E, Timpmann K, Chenchiliyan M, Kangur L, Jones MR, Freiberg A. High-Pressure Modulation of Primary Photosynthetic Reactions. J Phys Chem B 2020; 124:718-726. [PMID: 31917566 DOI: 10.1021/acs.jpcb.9b09342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photochemical charge separation is key to biological solar energy conversion. Although many features of this highly quantum-efficient process have been described, others remain poorly understood. Herein, ultrafast fluorescence barospectroscopy is used for the first time to obtain insights into the mechanism of primary charge separation in a YM210W mutant bacterial reaction center under novel surrounding modulating conditions. Over a range of applied hydrostatic pressures reaching 10 kbar, the rate of primary charge separation monotonously increased and that of the electron transfer to secondary acceptor decreased. While the inferred free energy gap for charge separation generally narrowed with increasing pressure, a pressure-induced break of a protein-cofactor hydrogen bond observed at ∼2 kbar significantly (by 219 cm-1 or 27 meV) increased this gap, resulting in a drop in fluorescence. The findings strongly favor a model for primary charge separation that incorporates charge recombination and restoration of the excited primary pair state, over a purely sequential model. We show that the main reason for the almost threefold acceleration of the primary electron transfer rate is the pressure-induced increase of the electronic coupling energy, rather than a change of activation energy. We also conclude that across all applied pressures, the primary electron transfer in the mutant reaction center studied can be considered nonadiabatic, normal region, and thermally activated.
Collapse
Affiliation(s)
- Erko Jalviste
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , Tartu 50411 , Estonia
| | - Kõu Timpmann
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , Tartu 50411 , Estonia
| | - Manoop Chenchiliyan
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , Tartu 50411 , Estonia
| | - Liina Kangur
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , Tartu 50411 , Estonia
| | - Michael R Jones
- School of Biochemistry , University of Bristol , Biomedical Sciences Building, University Walk , Bristol BS8 1TD , U.K
| | - Arvi Freiberg
- Institute of Physics , University of Tartu , W. Ostwald Str. 1 , Tartu 50411 , Estonia.,Institute of Molecular and Cell Biology , University of Tartu , Riia 23 , Tartu 51010 , Estonia.,Estonian Academy of Sciences , Kohtu 6 , 10130 Tallinn , Estonia
| |
Collapse
|
3
|
Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR. An investigation of slow charge separation in a Tyrosine M210 to Tryptophan mutant of the Rhodobacter sphaeroides reaction center by femtosecond mid-infrared spectroscopy. Phys Chem Chem Phys 2010; 12:2693-705. [DOI: 10.1039/b905934b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Mechanism of Charge Separation in Purple Bacterial Reaction Centers. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Kinetics and yields of bacteriochlorophyll fluorescence: redox and conformation changes in reaction center of Rhodobacter sphaeroides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1175-84. [DOI: 10.1007/s00249-008-0300-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2007] [Revised: 01/18/2008] [Accepted: 03/02/2008] [Indexed: 10/22/2022]
|
6
|
Filus Z, Laczkó G, Wraight CA, Maróti P. Delayed fluorescence from the photosynthetic reaction center measured by electronic gating of the photomultiplier. Biopolymers 2004; 74:92-5. [PMID: 15137102 DOI: 10.1002/bip.20051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The decay of the delayed fluorescence (920 nm) of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides R26 in the P(+)Q(A)(-) charge-separated state (P and Q(A) are the primary donor and quinone, respectively) has been monitored in a wide (100 ns to 100 ms) time range. The photomultiplier (Hamamatsu R3310-03) was protected from the intense prompt fluorescence by application of gating potential pulses (-280 V) to the first, third, and fifth dynodes during the laser pulse. The gain of the photomultiplier dropped transiently by a factor of 1 x 10(6). The delayed fluorescence showed a smooth but nonexponential decay from 100 ns to 1 ms that was explained by the relaxation of the average free energy between P* and P(+)Q(A)(-) changing from -580 to -910 meV. This relaxation is due to the slow protein response to charge separation and can be described by a Kohlrausch relaxation function with time constant of 65 micros and a stretching exponent of alpha = 0.45.
Collapse
Affiliation(s)
- Z Filus
- Department of Biophysics, University of Szeged, P.O.Box 655, Szeged, Hungary
| | | | | | | |
Collapse
|
7
|
Parson WW, Warshel A. Dependence of Photosynthetic Electron-Transfer Kinetics on Temperature and Energy in a Density-Matrix Model. J Phys Chem B 2004. [DOI: 10.1021/jp0495904] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- William W. Parson
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350
| | - Arieh Warshel
- Department of Biochemistry, University of Washington, Box 357350, Seattle, Washington 98195-7350
| |
Collapse
|
8
|
Katilius E, Babendure JL, Katiliene Z, Lin S, Taguchi AKW, Woodbury NW. Manipulations of the B-Side Charge-Separated States' Energetics in the Rhodobacter sphaeroides Reaction Center. J Phys Chem B 2003. [DOI: 10.1021/jp035013o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evaldas Katilius
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Jennie L. Babendure
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Zivile Katiliene
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Su Lin
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Aileen K. W. Taguchi
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
9
|
Paschenko VZ, Gorokhov VV, Knox PP, Krasilnikov PM, Redlin H, Renger G, Rubin AB. Energetics and mechanisms of high efficiency of charge separation and electron transfer processes in Rhodobacter sphaeroides reaction centers. Bioelectrochemistry 2003; 61:73-84. [PMID: 14642912 DOI: 10.1016/s1567-5394(03)00077-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effects of environmental changes due to D(2)O/H(2)O substitution and cryosolvent addition on the energetics of the special pair and the rate constants of forward and back electron transfer reactions in the picosecond-nanosecond time domain have been studied in isolated reaction centers (RC) of the anaxogenic purple bacterium Rhodobacter sphaeroides. The following results were obtained: (i). replacement of H(2)O by D(2)O or addition of either 70% (v/v) glycerol or 35% (v/v) DMSO do not influence the absorption spectra; (ii). in marked contrast to this invariance of absorption, the maxima of fluorescence spectra are red shifted relative to control by 3.5, 6.8 and 14.5 nm for RCs suspended in glycerol, D(2)O or DMSO, respectively; (iii). D(2)O/H(2)O substitution or DMSO addition give rise to an increase of the time constants of charge separation (tau(e)), and Q(A)(-) formation (tau(Q)) by a factors of 2.5-3.1 and 1.7-2.5, respectively; (iv). addition of 70% glycerol is virtually without effect on the values of tau(e) and tau(Q); (v). the midpoint potential E(m) of P/P(+) is shifted by about 30 and 45 mV towards higher values by addition of 70% glycerol and 35% DMSO, respectively, but remains invariant to D(2)O/H(2)O exchange; and (vi). an additional fast component with tau(1)=0.5-0.8 ns in the kinetics of charge recombination P(+)H(A)(-)-->P*(P)H(A) emerges in RC suspensions modified either by D(2)O/H(2)O substitution or by DMSO treatment. The results have been analysed with special emphasis on the role of deformations of hydrogen bonds for the solvation mechanism of nonequilibrium states of cofactors. Reorientation of hydrogen bonds provides the major contribution of the very fast environmental response to excitation of the special pair P. The Gibbs standard free energy gap between 1P* and P(+)B(A)(-) due to solvation is estimated to be approximately 70, 59 and 48 meV for control, D(2)O- and DMSO-treated RC samples, respectively.
Collapse
Affiliation(s)
- Vladimir Z Paschenko
- Department of Biophysics, Biology Faculty, Lomonosov State University, Moscow 119899, Russia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Katilius E, Katiliene Z, Lin S, Taguchi AKW, Woodbury NW. B-Side Electron Transfer in the HE(M182) Reaction Center Mutant fromRhodobacter sphaeroides. J Phys Chem B 2002. [DOI: 10.1021/jp026388x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Katilius E, Katiliene Z, Lin S, Taguchi AKW, Woodbury NW. B Side Electron Transfer in a Rhodobacter sphaeroides Reaction Center Mutant in Which the B Side Monomer Bacteriochlorophyll Is Replaced with Bacteriopheophytin: Low-Temperature Study and Energetics of Charge-Separated States. J Phys Chem B 2002. [DOI: 10.1021/jp013265o] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evaldas Katilius
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Zivile Katiliene
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Su Lin
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Aileen K. W. Taguchi
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| | - Neal W. Woodbury
- Department of Chemistry and Biochemistry and the Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe, Arizona 85287-1604
| |
Collapse
|
12
|
van Mourik F, Reus M, Holzwarth AR. Long-lived charge-separated states in bacterial reaction centers isolated from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:311-8. [PMID: 11245794 DOI: 10.1016/s0005-2728(00)00259-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied the accumulation of long-lived charge-separated states in reaction centers isolated from Rhodobacter sphaeroides, using continuous illumination, or trains of single-turnover flashes. We found that under both conditions a long-lived state was produced with a quantum yield of about 1%. This long-lived species resembles the normal P(+)Q(-) state in all respects, but has a lifetime of several minutes. Under continuous illumination the long-lived state can be accumulated, leading to close to full conversion of the reaction centers into this state. The lifetime of this accumulated state varies from a few minutes up to more than 20 min, and depends on the illumination history. Surprisingly, the lifetime and quantum yield do not depend on the presence of the secondary quinone, Q(B). Under oxygen-free conditions the accumulation was reversible, no changes in the normal recombination times were observed due to the intense illumination. The long-lived state is responsible for most of the dark adaptation and hysteresis effects observed in room temperature experiments. A simple method for quinone extraction and reconstitution was developed.
Collapse
Affiliation(s)
- F van Mourik
- Max-Planck Institut für Strahlenchemie, D-45470, Mülheim a.d. Ruhr, Germany
| | | | | |
Collapse
|
13
|
Berlin YA, Burin AL, Siebbeles LDA, Ratner MA. Conformationally Gated Rate Processes in Biological Macromolecules. J Phys Chem A 2001. [DOI: 10.1021/jp004436c] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuri A. Berlin
- Department of Chemistry, Center for Nanofabrication and Molecular Self-Assembly and Materials Research Center, Northwestern University, 2145 N Sheridan Road, Evanston, Illinois 60208-3113, and IRI, Radiation Chemistry Department, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Alexander L. Burin
- Department of Chemistry, Center for Nanofabrication and Molecular Self-Assembly and Materials Research Center, Northwestern University, 2145 N Sheridan Road, Evanston, Illinois 60208-3113, and IRI, Radiation Chemistry Department, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Laurens D. A. Siebbeles
- Department of Chemistry, Center for Nanofabrication and Molecular Self-Assembly and Materials Research Center, Northwestern University, 2145 N Sheridan Road, Evanston, Illinois 60208-3113, and IRI, Radiation Chemistry Department, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Mark A. Ratner
- Department of Chemistry, Center for Nanofabrication and Molecular Self-Assembly and Materials Research Center, Northwestern University, 2145 N Sheridan Road, Evanston, Illinois 60208-3113, and IRI, Radiation Chemistry Department, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| |
Collapse
|
14
|
Turzó K, Laczkó G, Filus Z, Maróti P. Quinone-dependent delayed fluorescence from the reaction center of photosynthetic bacteria. Biophys J 2000; 79:14-25. [PMID: 10866934 PMCID: PMC1300912 DOI: 10.1016/s0006-3495(00)76270-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Millisecond delayed fluorescence from the isolated reaction center of photosynthetic bacteria Rhodobacter sphaeroides was measured after single saturating flash excitation and was explained by thermal repopulation of the excited bacteriochlorophyll dimer from lower lying charge separated states. Three exponential components (fastest, fast, and slow) were found with lifetimes of 1.5, 102, and 865 ms and quantum yields of 6.4 x 10(-9), 2.2 x 10(-9), and 2.6 x 10(-9) (pH 8.0), respectively. While the two latter phases could be related to transient absorption changes, the fastest one could not. The fastest component, dominating when the primary quinone was prereduced, might be due to a small fraction of long-lived triplet states of the radical pair and/or the dimer. The fast phase observed in the absence of the secondary quinone, was sensitive to pH, temperature, and the chemical nature of the primary quinone. The standard free energy of the primary stable charge pair relative to that of the excited dimer was -910 +/- 20 meV at pH 8 and with native ubiquinone, and it showed characteristic changes upon pH and quinone replacement. The interaction energy ( approximately 50 meV) between the cluster of the protonatable groups around GluL212 and the primary semiquinone provides evidence for functional linkage between the two quinone binding pockets. An empirical relationship was found between the in situ free energy of the primary quinone and the rate of charge recombination, with practical importance in the estimation of the free energy levels from the easily available lifetime of the charge recombination. The ratio of the slow and fast components could be used to determine the pH dependence of the free energy level of the secondary stable charge pair relative to that of the excited dimer.
Collapse
Affiliation(s)
- K Turzó
- Department of Biophysics, University of Szeged, Szeged H-6722, Hungary
| | | | | | | |
Collapse
|