1
|
Avena-Zampieri CL, Hutter J, Uus A, Deprez M, Payette K, Hall M, Bafadhel M, Russell REK, Milan A, Rutherford M, Shennan A, Greenough A, Story L. Functional MRI assessment of the lungs in fetuses that deliver very Preterm: An MRI pilot study. Eur J Obstet Gynecol Reprod Biol 2024; 293:106-114. [PMID: 38141484 PMCID: PMC10929943 DOI: 10.1016/j.ejogrb.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVES To compare mean pulmonary T2* values and pulmonary volumes in fetuses that subsequently spontaneously delivered before 32 weeks with a control cohort with comparable gestational ages and to assess the value of mean pulmonary T2* as a predictor of preterm birth < 32 weeks' gestation. METHODS MRI datasets scanned at similar gestational ages were selected from fetuses who spontaneously delivered < 32 weeks of gestation and a control group who subsequently delivered at term with no complications. All women underwent a fetal MRI on a 3 T MRI imaging system. Sequences included T2-weighted single shot fast spin echo and T2* sequences, using gradient echo single shot echo planar sequencing of the fetal thorax. Motion correction was performed using slice-to-volume reconstruction and T2* maps generated using in-house pipelines. Lungs were manually segmented and volumes and mean T2* values calculated for both lungs combined and left and right lung separately. Linear regression was used to compare values between the preterm and control cohorts accounting for the effects of gestation. Receiver operating curves were generated for mean T2* values and pulmonary volume as predictors of preterm birth < 32 weeks' gestation. RESULTS Datasets from twenty-eight preterm and 74 control fetuses were suitable for analysis. MRI images were taken at similar fetal gestational ages (preterm cohort (mean ± SD) 24.9 ± 3.3 and control cohort (mean ± SD) 26.5 ± 3.0). Mean gestational age at delivery was 26.4 ± 3.3 for the preterm group and 39.9 ± 1.3 for the control group. Mean pulmonary T2* values remained constant with increasing gestational age while pulmonary volumes increased. Both T2* and pulmonary volumes were lower in the preterm group than in the control group for all parameters (both combined, left, and right lung (p < 0.001 in all cases). Adjusted for gestational age, pulmonary volumes and mean T2* values were good predictors of premature delivery in fetuses < 32 weeks (area under the curve of 0.828 and 0.754 respectively). CONCLUSION These findings indicate that mean pulmonary T2* values and volumes were lower in fetuses that subsequently delivered very preterm. This may suggest potentially altered oxygenation and indicate that pulmonary morbidity associated with prematurity has an antenatal antecedent. Future work should explore these results correlating antenatal findings with long term pulmonary outcomes.
Collapse
Affiliation(s)
- Carla L Avena-Zampieri
- Department of Women and Children's Health King's College London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom.
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Kelly Payette
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Megan Hall
- Department of Women and Children's Health King's College London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Mona Bafadhel
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Richard E K Russell
- King's Centre for Lung Health, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Anna Milan
- Neonatal Unit, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Andrew Shennan
- Department of Women and Children's Health King's College London, United Kingdom
| | - Anne Greenough
- Department of Women and Children's Health King's College London, United Kingdom
| | - Lisa Story
- Department of Women and Children's Health King's College London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom; Fetal Medicine Unit, Guy's and St Thomas' NHS Foundation Trust, United Kingdom
| |
Collapse
|
2
|
Thakur S, Singh A, Kaur M, Reza N, Kumar N, Kour R, Kaur S, Singh Bedi PM, Jain SK. Vitamins and minerals fortified emulsion of omega-3 fatty acids for the management of preterm birth: In-vitro, in-silico, and in-vivo studies. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Kozai K, Iqbal K, Moreno-Irusta A, Scott RL, Simon ME, Dhakal P, Fields PE, Soares MJ. Protective role of IL33 signaling in negative pregnancy outcomes associated with lipopolysaccharide exposure. FASEB J 2021; 35:e21272. [PMID: 33423320 DOI: 10.1096/fj.202001782rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/15/2020] [Accepted: 11/30/2020] [Indexed: 01/21/2023]
Abstract
Interleukin 33 (IL33) signaling has been implicated in the establishment and maintenance of pregnancy and in pregnancy disorders. The goal of this project was to evaluate the role of IL33 signaling in rat pregnancy. The rat possesses hemochorial placentation with deep intrauterine trophoblast invasion; features also characteristic of human placentation. We generated and characterized a germline mutant rat model for IL33 using CRISPR/Cas9 genome editing. IL33 deficient rats exhibited deficits in lung responses to an inflammatory stimulus (Sephadex G-200) and to estrogen-induced uterine eosinophilia. Female rats deficient in IL33 were fertile and exhibited pregnancy outcomes (gestation length and litter size) similar to wild-type rats. Placental weight was adversely affected by the disruption of IL33 signaling. A difference in pregnancy-dependent adaptations to lipopolysaccharide (LPS) exposure was observed between wild-type and IL33 deficient pregnancies. Pregnancy in wild-type rats treated with LPS did not differ significantly from pregnancy in vehicle-treated wild-type rats. In contrast, LPS treatment decreased fetal survival rate, fetal and placental weights, and increased fetal growth restriction in IL33 deficient rats. In summary, a new rat model for investigating IL33 signaling has been established. IL33 signaling participates in the regulation of placental development and protection against LPS-induced fetal and placental growth restriction.
Collapse
Affiliation(s)
- Keisuke Kozai
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, USA
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, USA
| | - Ayelen Moreno-Irusta
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, USA
| | - Regan L Scott
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, USA
| | - Mikaela E Simon
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, USA
| | - Pramod Dhakal
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, USA
| | - Patrick E Fields
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, USA
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas, KS, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas, KS, USA.,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas, KS, USA.,Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas, MO, USA
| |
Collapse
|
4
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
5
|
Cockle JV, Gopichandran N, Walker JJ, Levene MI, Orsi NM. Matrix Metalloproteinases and Their Tissue Inhibitors in Preterm Perinatal Complications. Reprod Sci 2016; 14:629-45. [DOI: 10.1177/1933719107304563] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Arenas-Hernandez M, Romero R, St Louis D, Hassan SS, Kaye EB, Gomez-Lopez N. An imbalance between innate and adaptive immune cells at the maternal-fetal interface occurs prior to endotoxin-induced preterm birth. Cell Mol Immunol 2016; 13:462-73. [PMID: 25849119 PMCID: PMC4947814 DOI: 10.1038/cmi.2015.22] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 12/25/2022] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality worldwide. A transition from an anti-inflammatory state to a pro-inflammatory state in the mother and at the maternal-fetal interface has been implicated in the pathophysiology of microbial-induced preterm labor. However, it is unclear which immune cells mediate this transition. We hypothesized that an imbalance between innate and adaptive immune cells at the maternal-fetal interface will occur prior to microbial-induced preterm labor. Using an established murine model of endotoxin-induced PTB, our results demonstrate that prior to delivery there is a reduction of CD4+ regulatory T cells (Tregs) in the uterine tissues. This reduction is neither linked to a diminished number of Tregs in the spleen, nor to an impaired production of IL10, CCL17, or CCL22 by the uterine tissues. Endotoxin administration to pregnant mice does not alter effector CD4+ T cells at the maternal-fetal interface. However, it causes an imbalance between Tregs (CD4+ and CD8+), effector CD8+ T cells, and Th17 cells in the spleen. In addition, endotoxin administration to pregnant mice leads to an excessive production of CCL2, CCL3, CCL17, and CCL22 by the uterine tissues as well as abundant neutrophils. This imbalance in the uterine microenvironment is accompanied by scarce APC-like cells such as macrophages and MHC II+ neutrophils. Collectively, these results demonstrate that endotoxin administration to pregnant mice causes an imbalance between innate and adaptive immune cells at the maternal-fetal interface.
Collapse
Affiliation(s)
- Marcia Arenas-Hernandez
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Obstetrics and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Derek St Louis
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Sonia S Hassan
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
| | - Emily B Kaye
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD/NIH/DHHS, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Immunology & Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
7
|
Wakimoto T, Uchida K, Mimura K, Kanagawa T, Mehandjiev TR, Aoshima H, Kokubo K, Mitsuda N, Yoshioka Y, Tsutsumi Y, Kimura T, Yanagihara I. Hydroxylated fullerene: a potential antiinflammatory and antioxidant agent for preventing mouse preterm birth. Am J Obstet Gynecol 2015. [PMID: 26196453 DOI: 10.1016/j.ajog.2015.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Intrauterine infection such as by Escherichia coli and Ureaplasma spp induce placental inflammation and are one of the leading causes of preterm birth. Here we evaluated hydroxylated fullerene (C60[OH]44) for its in vitro antiinflammatory and antioxidant effects against host cellular responses to the ureaplasma toll-like receptor 2 (TLR2) ligand, UPM-1. In addition, we investigated the preventative effects of C60(OH)44 in vivo in a mouse preterm birth model that used UPM-1. STUDY DESIGN TLR2-overexpressing cell lines and the primary cultures of mouse peritoneal macrophages were pretreated with C60(OH)44. After UPM-1 addition to the cell lines, the activation of the nuclear factor kappa-light chain-enhancer of activated B cells (NF-kappaB) signaling cascade and the production of reactive oxygen species were monitored. The levels of expression of inflammatory cytokines of interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and the production of reactive oxygen species were quantified after stimulation with UPM-1. The in vivo preventative effects of C60(OH)44 on mice preterm birth were evaluated by analyzing the preterm birth rates and fetal survival rates in the preterm birth mouse model with placental histological analyses. RESULTS Pretreatment with C60(OH)44 significantly suppressed UPM-1-induced NF-kappaB activation and reactive oxygen species production in TLR2-overexpressing cell lines. In the primary culture of mouse peritoneal macrophages, UPM-1-induced production of reactive oxygen species and the expression of inflammatory cytokines such as IL-6, IL-1β, and TNF-α were significantly reduced by pretreatment with C60(OH)44. In the UPM-1-induced preterm birth mouse model, the preterm birth rate decreased from 72.7% to 18.2% after an injection of C60(OH)44. Placental examinations of the group injected with C60(OH)44 reduced the damage of the spongiotrophoblast layer and reduced infiltration of neutrophils. CONCLUSION C60(OH)44 was effective as a preventative agent of preterm birth in mice.
Collapse
|
8
|
Singh P, Singh L, Mondal SC, Kumar S, Singh IN. Erythromycin-induced genotoxicity and hepatotoxicity in mice pups treated during prenatal and postnatal period. Fundam Clin Pharmacol 2013; 28:519-29. [DOI: 10.1111/fcp.12055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Preeti Singh
- Department of Pharmaceutical Technology; Meerut Institute of Engineering and Technology; Baghpat Bypass, nh-58 Meerut 250005 Uttar Pradesh India
| | - Lubhan Singh
- Department of Pharmaceutical Technology; Meerut Institute of Engineering and Technology; Baghpat Bypass, nh-58 Meerut 250005 Uttar Pradesh India
| | - Sambhu Charan Mondal
- Department of Pharmaceutical Technology; Meerut Institute of Engineering and Technology; Baghpat Bypass, nh-58 Meerut 250005 Uttar Pradesh India
| | - Sokindra Kumar
- Department of Pharmacology; R. V. Northland Institute (Pharmacy); Dadri Greater Noida Gautam Buddh Nagar 201206 Uttar Pradesh India
| | - Ishwari Narayan Singh
- Department of Natural Products; National Institute of Pharmaceutical Education and Research (NIPER); Sector-67 SAS Nagar (Mohali)- 160062 Punjab India
| |
Collapse
|
9
|
Tam Tam HB, Dowling O, Xue X, Lewis D, Rochelson B, Metz CN. Magnesium sulfate ameliorates maternal and fetal inflammation in a rat model of maternal infection. Am J Obstet Gynecol 2011; 204:364.e1-8. [PMID: 21272846 DOI: 10.1016/j.ajog.2010.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/02/2010] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Magnesium sulfate is proposed to have neuroprotective effects in the offspring. We examined the effects of maternal magnesium sulfate administration on maternal and fetal inflammatory responses in a rat model of maternal infection. STUDY DESIGN Pregnant rats were injected with saline, Gram-negative bacterial endotoxin lipopolysaccharide or lipopolysaccharide with magnesium sulfate (pre- and/or after lipopolysaccharide) to mimic infection. Maternal blood, amniotic fluid, fetal blood, and fetal brains were collected 4 hours after lipopolysaccharide and assayed for tumor necrosis factor, interleukin-6, monocyte chemoattractant protein-1, and growth-related oncogene-KC. In addition, the effect of magnesium sulfate on cytokine production by an astrocytoma cell line was assessed. RESULTS Lipopolysaccharide administration induced tumor necrosis factor, interleukin-6, monocyte chemoattractant protein-1, and growth-related oncogene-KC expression in maternal and fetal compartments. Maternal magnesium sulfate treatment significantly attenuated lipopolysaccharide-induced multiple proinflammatory mediator levels in maternal and fetal compartments. CONCLUSION Antenatal magnesium sulfate administration significantly ameliorated maternal, fetal, and gestational tissue-associated inflammatory responses in an experimental model of maternal infection.
Collapse
Affiliation(s)
- Hima B Tam Tam
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA
| | | | | | | | | | | |
Collapse
|
10
|
Srinivasan U, Misra D, Marazita ML, Foxman B. Vaginal and oral microbes, host genotype and preterm birth. Med Hypotheses 2009; 73:963-75. [PMID: 19942083 PMCID: PMC4026093 DOI: 10.1016/j.mehy.2009.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/03/2009] [Accepted: 06/06/2009] [Indexed: 01/08/2023]
Abstract
Preterm birth (PTB) is a leading cause of infant mortality and morbidity in the US and across the globe. Infection and associated inflammation are important initiators for PTB pathways; an estimated 40% of PTBs are attributed to amniochorionic-decidual or systemic inflammation. Historically, intrauterine infections have been implicated in PTB; recent evidence suggests that infections remote from the fetal site may also be causative. There is strong epidemiological evidence that bacterial vaginosis and periodontitis--two syndromes characterized by perturbations in the normal vaginal and oral bacterial microflora, respectively--are linked to infection-associated PTB. Oral and vaginal environments are similar in their bacterial microbiology; identical bacterial species have been independently isolated in periodontitis and bacterial vaginosis. Periodontitis and bacterial vaginosis also share many behavioral and sociodemographic risk factors suggesting a possible common pathophysiology. Genetic polymorphisms in host inflammatory responses to infection are shared between bacterial vaginosis, periodontitis and PTB, suggesting common mechanisms through which host genotype modify the effect of abnormal bacterial colonization on preterm birth. We review the state of knowledge regarding the risk of PTB attributable to perturbations in bacterial flora in oral and vaginal sites and the role of host genetics in modifying the risk of infection-related PTB. We posit that bacterial species that are common in perturbed vaginal and oral sites are associated with PTB through their interaction with the host immune system.
Collapse
Affiliation(s)
- Usha Srinivasan
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
11
|
Hirsch E, Filipovich Y, Romero R. Failure of E. coli bacteria to induce preterm delivery in the rat. J Negat Results Biomed 2009; 8:1. [PMID: 19121225 PMCID: PMC2631604 DOI: 10.1186/1477-5751-8-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/04/2009] [Indexed: 12/29/2022] Open
Abstract
Background We sought to develop a model of bacterially induced preterm delivery in rats to parallel similar models in mice. Methods Female Sprague-Dawley rats on day 17 of gestation (normal term = 21–22 days) were inoculated into the uterus with either 2 × 109 – 7 × 1010 killed E. coli organisms, 1 – 4 × 108 live E. coli or sterile solution. These inoculations were made either via trans-cervical catheter or by direct intrauterine injection at laparotomy. Animals were then observed for delivery for variable periods up to term. Necropsies were performed and fetal viability was assessed. Results No rats delivered prematurely after bacterial exposure (27 animals observed for at least 48 hours), and all animals followed to term (n = 3) delivered live pups. No dams exhibited signs of systemic illness. There was a statistically significant but small negative effect of killed E. coli on fetal viability (100% of 80 fetuses from 6 control pregnancies and 93% of 182 fetuses from 14 bacterially-treated pregnancies were alive at necropsy, p = 0.014). Live bacteria had a larger effect on fetal viability, with only 64% of 14 fetuses, 47% of 28 fetuses and 32% of 31 fetuses surviving after trans-cervical administration of 7 × 107, 2 × 108 and 4 × 108 E. coli, respectively. Conclusion Unlike mice, it has proven difficult to induce preterm labor in the rat using E. coli as a stimulating agent. The relevant literature is reviewed and hypotheses are offered to explain this phenomenon.
Collapse
Affiliation(s)
- Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA.
| | | | | |
Collapse
|
12
|
Toso L, Poggi S, Park J, Einat H, Roberson R, Dunlap V, Woodard J, Abebe D, Spong CY. Inflammatory-mediated model of cerebral palsy with developmental sequelae. Am J Obstet Gynecol 2005; 193:933-41. [PMID: 16157090 DOI: 10.1016/j.ajog.2005.05.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 04/25/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Cerebral palsy (CP) is characterized by motor deficits. There is increasing evidence that CP may result from inflammatory and infection-mediated white matter damage. Our objective was to develop an inflammatory model for CP based on chronic lipopolysaccharide (LPS) exposure with a recognizable phenotype in offspring. STUDY DESIGN On gestational days 15, 17, and 19 (approximately 28-36 wks human gestation; rat length of gestation is 21 days), pregnant rats were intracervically injected with 0.15 mg/kg LPS (in 0.1 mL saline) or 0.1 mL saline for controls. Neonatal tests for sensory-motor milestones were performed on postnatal days 1 to 21 (LPS n = 25; control n = 26). Adult males were tested at 8 weeks on open field and rotarod for motor activity. Immunohistochemistry studies were performed to assess olygodendrocyte (OL) damage. Statistical analysis included Mann-Whitney U and analysis of variance (ANOVA) with P < .05 considered significant. RESULTS Immunohistochemistry revealed a decrease in the immature OL marker PLP on day 21 (P = .03) in LPS-exposed offspring, and an increase of the mature OL marker CNP on day 21 and at 8 weeks (P < .01, P < .001). LPS-exposed offspring were delayed achieving 3 motor milestones: negative geotaxis (P < .05), cliff aversion (P < .01), and surface righting (P = .05). They were also delayed in eye opening (P < .01). There was no difference between the 2 groups for the other tests. There was a trend towards decreased mean speed in LPS-exposed adults in open field testing (P = .08), but no differences observed in rotarod testing. CONCLUSION Using an animal model for CP that mimics a chronic intrauterine inflammation that results in decreased levels of PLP, a marker for early oligodendrocytes consistent with white matter damage, we have demonstrated a phenotype relevant to the human CP manifestations in the neonatal period. Nevertheless, adult animals were able to compensate to the damage. Further refinement is needed to improve the understanding of pathogenesis, as well as allow for testing preventative therapies.
Collapse
Affiliation(s)
- Laura Toso
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child and Human Development; National Institute of Health, Bethesda, MD 20892-0925, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Poggi SH, Park J, Toso L, Abebe D, Roberson R, Woodard JE, Spong CY. No phenotype associated with established lipopolysaccharide model for cerebral palsy. Am J Obstet Gynecol 2005; 192:727-33. [PMID: 15746664 DOI: 10.1016/j.ajog.2004.12.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Cerebral palsy (CP) is associated with childhood spasticity, seizures, and paralysis. Oligodendrocyte damage resulting in periventicular leukomalacia (PVL) in the developing brain has been implicated. Animal models of CP have used prenatal hypoxia and infection with histopathology of PVL as the end point. To evaluate whether this histologic end point is associated with a CP phenotype, we reproduced a lipopolysaccharide (LPS) model for PVL, 1 and evaluated developmental, behavioral, and motor outcomes. STUDY DESIGN On gestational day 15, Fischer 344 rats were intracervically injected with .1 mg/kg LPS (n = 5) or saline (n = 4). After delivery, evaluation for developmental milestones was performed on days 1 to 21 (LPS = 45; control = 30 pups). Males were also tested at 2.5 months using open-field, rotarod, and anxiety tests. On day 21, 2 pups/litter were perfused for immunohistochemistry, and stained with 2 oligodendrocyte antibodies: 2', d'-cyclic nucleotide phosphodiesterase (CNP), and myelin proteolipid protein (PLP) with relative densities of staining assessed using NIH Image software. Statistical analysis included Mann-Whitney U and analysis of variance (ANOVA). RESULTS LPS pups demonstrated decreased CNP (P = .04) and PLP (P = .06) staining, replicating the model. There was no difference seen in neonatal weight, righting, negative geotaxis, cliff aversion, rooting, forelimb grasp, audio startle, air righting, eye opening, and activity. Surprisingly, LPS-exposed neonatal rats mastered forelimb placement (P < .01) and surface righting (P = .02) earlier than control rats. There were no differences between adult groups in open field distance traveled (P = .8), open-field locomotion time (P = .6), rotarod (P = .6), or anxiety (P = .7). CONCLUSION Histologic evidence of white matter damage can be replicated using an LPS model for intrauterine inflammation. Significant phenotypic differences consistent with the motor and cognitive damage sequelae of such lesions (ie, CP) were not demonstrated. When evaluating animal models, it is important to assess not only biochemical markers for human disease, but also clinically relevant phenotypes.
Collapse
Affiliation(s)
- Sarah H Poggi
- Unit on Perinatal and Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Preterm birth continues to pose a significant clinical dilemma and contributes to both acute and long-term neonatal morbidity. Despite efforts, the incidence of preterm birth has not decreased, partly because of our lack of understanding of the mechanisms that trigger parturition. Animal models are essential research tools for investigating the pathways that promote preterm parturition and for testing therapeutic interventions. Growing evidence correlates infection or inflammation with preterm birth. Consequently, many investigators have created animal models that reflect these findings. Current models of preterm parturition include diverse species, varying means of inducing an inflammatory or infectious state, and different routes of administration. Although each of these models can advance our knowledge, it is important to understand their advantages, disadvantages and unique characteristics. An understanding of such models will hopefully promote continued research that will ultimately lead to a decrease in preterm birth and an improvement in neonatal outcome.
Collapse
Affiliation(s)
- Michal A Elovitz
- Center for Research on Reproduction and Women's Health, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104-6142, USA.
| | | |
Collapse
|