1
|
Sah BK, Kundu S. Behaviour of protein (BSA)-lipid (DMPA) mixed monolayer on the spreading order of the individual component. Chem Phys Lipids 2019; 225:104810. [PMID: 31415733 DOI: 10.1016/j.chemphyslip.2019.104810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 08/10/2019] [Indexed: 11/19/2022]
Abstract
Surface pressure (π) - mean molecular area (A) isotherms of protein (BSA) - lipid (DMPA) mixed films are examined by varying their ratio and altering the spreading order of BSA and DMPA on the water surface to study the protein-lipid interactions and the corresponding structures and patterns at different interfacial conditions. π-A isotherms and compression-decompression isotherm cycles of protein-lipid mixed monolayers below and above of the isoelectric point of BSA (pI ≈ 4.8) are also examined. Below the isoelectric point of BSA (pH ≈ 4.0), i.e., when BSA is weakly hydrophobic and has net positive charge shows low hysteresis irrespective of the spreading order of the molecules. However, at pH ≈ 7.0, i.e., when the overall charge of BSA is negative and is strongly hydrophobic the protein-lipid mixed films display higher hysteresis value. Besides the properties of the isotherms, the surface morphology and secondary conformations of protein inside the mixed films are obtained from X-ray reflectivity, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy respectively after depositing the mixed films on solid substrates. Nearly similar information is obtained after altering the spreading order of BSA and DMPA, which indicates that the spreading of molecules on the water surface is one of the better ways of forming the lipid-protein mixed film at the air-water interface.
Collapse
Affiliation(s)
- Bijay K Sah
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India.
| |
Collapse
|
2
|
Thermodynamic Characterization of Mixed Monolayers of a Novel Oxazolidine Derivative and Phospholipids. J Membr Biol 2018; 251:723-733. [PMID: 30283978 DOI: 10.1007/s00232-018-0049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Oxazolidine derivatives (OxD) are five ring-membered compounds that contain at least one oxygen and nitrogen in their molecular structure. OxD are known due to several therapeutic activities such as anticancer and antibiotic properties. In this paper, we performed a thermodynamic analysis of the mixed films composed by dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphoethanolamine (DPPE), dipalmitoyl phosphatidylcholine (DPPC) or L-α phosphatidylcholine (PC) with a novel oxazolidine derivate (OxD). Relevant thermodynamic parameters such as excess areas (ΔAE), excess free energies (ΔG), and Gibbs free energy of mixing (AGmix) were derived from the surface pressure data. The topographical analysis was performed using atomic force microscopy. Based on the calculated values of the thermodynamic parameters, we observed that the miscibility of the mixed films was directly dependent on their composition. DPPG/OxD and DPPE/OxD systems present the best-mixed character at low pressures at OxD molar fraction equivalent to 0.25.
Collapse
|
3
|
Xu GQ, Hao CC, Zhang L, Chen S, Sun RG. Dynamic Behaviors and Morphology Change of Anionic Phospholipid DPPG Monolayer Caused by Bovine Serum Albumin at Air-Water Interface. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1703029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Guo-qing Xu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Chang-chun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Lei Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Shi Chen
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| | - Run-guang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
4
|
Kłosińska-Szmurło E, Pluciński FA, Grudzień M, Betlejewska-Kielak K, Biernacka J, Mazurek AP. Experimental and theoretical studies on the molecular properties of ciprofloxacin, norfloxacin, pefloxacin, sparfloxacin, and gatifloxacin in determining bioavailability. J Biol Phys 2014; 40:335-45. [PMID: 25033818 PMCID: PMC4119185 DOI: 10.1007/s10867-014-9354-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/12/2014] [Indexed: 10/27/2022] Open
Abstract
The aim of this investigation is to identify, by in silico and in vitro methods, the molecular determinants, e.g., solubility in an aqueous medium and lipophilic properties, which have an effect on the bioavailability of five selected fluoroquinolones. These properties were estimated by analysis of the electrostatic potential pattern and values of free energy of solvation as well as the partition coefficients of the studied compounds. The study is based on theoretical quantum-chemical methods and a simple experimental shake-flask technique with two immiscible phases, n-octanol and phosphate buffer. The solvation free energy values of compounds in both environments appeared to be negative. The wide range of electrostatic potential from negative to positive demonstrates the presence of dipole-dipole intermolecular interactions, while the high electron density at various sites indicates the possibility of hydrogen bond formation with solvent molecules. High partition coefficient values, obtained by summing the atomic contributions, did not take various correction factors into account and therefore were not accurate. Theoretical partition coefficient values based on more accurate algorithms, which included these correction factors (fragmental methods), yielded more accurate values. Theoretical methods are useful tools for predicting the bioavailability of fluoroquinolones.
Collapse
Affiliation(s)
- E Kłosińska-Szmurło
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097, Warsaw, Poland,
| | | | | | | | | | | |
Collapse
|
5
|
Crawford NF, Leblanc RM. Serum albumin in 2D: a Langmuir monolayer approach. Adv Colloid Interface Sci 2014; 207:131-8. [PMID: 24267981 DOI: 10.1016/j.cis.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 11/24/2022]
Abstract
Understanding of protein interaction at the molecular level raises certain difficulties which is the reason a model membrane system such as the Langmuir monolayer technique was developed. Ubiquitous proteins such as serum albumin comprise 50% of human blood plasma protein content and are involved in many biological functions. The important nature of this class of protein demands that it be studied in detail while modifying the experimental conditions in two dimensions to observe it in all types of environments. While different from bulk colloidal solution work, the two dimensional approach allows for the observation of the interaction between molecules and subphase at the air-water interface. Compiled in this review are studies which highlight the characterization of this protein using various surroundings and also observing the types of interactions it would have when at the biomembrane interface. Free-energy changes between molecules, packing status of the bulk analyte at the interface as well as phase transitions as the monolayer forms a more organized or aggregated state are just some of the characteristics which are observed through the Langmuir technique. This unique methodology demonstrates the chemical behavior and physical behavior of this protein at the phase boundary throughout the compression of the monolayer.
Collapse
|
6
|
Zhao X, Liu P. pH-Sensitive Fluorescent Hepatocyte-Targeting Multilayer Polyelectrolyte Hollow Microspheres as a Smart Drug Delivery System. Mol Pharm 2014; 11:1599-610. [DOI: 10.1021/mp400774v] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xubo Zhao
- State Key Laboratory
of Applied
Organic Chemistry and Institute of Polymer Science and Engineering,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory
of Applied
Organic Chemistry and Institute of Polymer Science and Engineering,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Lipid interaction triggering Septin2 to assembly into β-sheet structures investigated by Langmuir monolayers and PM-IRRAS. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1441-8. [PMID: 23416254 DOI: 10.1016/j.bbamem.2013.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/17/2013] [Accepted: 02/06/2013] [Indexed: 01/22/2023]
Abstract
The molecular mechanisms responsible for protein structural changes in the central nervous system leading to Alzheimer's disease are unknown, but there is evidence that a family of proteins known as septins may be involved. Septins are a conserved group of GTP-binding proteins which participate in various cellular processes, including polarity determination and membrane dynamics. SEPT1, SEPT4, and SEPT2 have been found in deposits known as neurofibrillary tangles and glial fibrils in Alzheimer's disease. In this study, we provide molecular-level information for the interaction of SEPT2 with Langmuir monolayers at the air/water interface, which are used as simplified membrane models. The high surface activity of SEPT2 causes it to adsorb onto distinct types of lipid Langmuir monolayers, namely dipalmitoylphosphatidylcholine and PtdIns(4,5)P2. However, the interaction with PtdIns(4,5)P2 is much stronger, not only leading to a higher adsorption, but also to SEPT2 remaining inserted within the membrane at high surface pressures. Most importantly, in situ polarization-modulated infrared reflection absorption spectroscopy results indicated that the native secondary structure of SEPT2 is preserved upon interacting with PtdIns(4,5)P2, but not when dipalmitoylphosphatidylcholine is at the air/water interface. Taken together, the results presented here suggest that the interaction between SEPT2 and the cell membrane may play an important role in the assembly of SEPT2 into amyloid-like fibers.
Collapse
|
8
|
Salay LC, Ferreira M, Oliveira ON, Nakaie CR, Schreier S. Headgroup specificity for the interaction of the antimicrobial peptide tritrpticin with phospholipid Langmuir monolayers. Colloids Surf B Biointerfaces 2012; 100:95-102. [DOI: 10.1016/j.colsurfb.2012.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/23/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
|
9
|
Cramariuc O, Rog T, Javanainen M, Monticelli L, Polishchuk AV, Vattulainen I. Mechanism for translocation of fluoroquinolones across lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2563-71. [DOI: 10.1016/j.bbamem.2012.05.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/24/2022]
|
10
|
Montanha E, Pavinatto F, Caseli L, Kaczmarek O, Liebscher J, Huster D, Oliveira O. Properties of lipophilic nucleoside monolayers at the air–water interface. Colloids Surf B Biointerfaces 2010; 77:161-5. [DOI: 10.1016/j.colsurfb.2010.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 11/25/2022]
|
11
|
Pascholati CP, Lopera EP, Pavinatto FJ, Caseli L, Nobre TM, Zaniquelli ME, Viitala T, D'Silva C, Oliveira ON. The interaction of an antiparasitic peptide active against African Sleeping Sickness with cell membrane models. Colloids Surf B Biointerfaces 2009; 74:504-10. [DOI: 10.1016/j.colsurfb.2009.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 01/08/2023]
|
12
|
Borba A, Lairion F, Disalvo A, Fausto R. Interaction of nicotinamide and picolinamide with phosphatidylcholine and phosphatidylethanolamine membranes: A combined approach using dipole potential measurements and quantum chemical calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2553-62. [DOI: 10.1016/j.bbamem.2009.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/17/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
13
|
Alakoskela JM, Vitovic P, Kinnunen PKJ. Screening for the drug-phospholipid interaction: correlation to phospholipidosis. ChemMedChem 2009; 4:1224-51. [PMID: 19551800 DOI: 10.1002/cmdc.200900052] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phospholipid bilayers represent a complex, anisotropic environment fundamentally different from bulk oil or octanol, for instance. Even "simple" drug association to phospholipid bilayers can only be fully understood if the slab-of-hydrocarbon approach is abandoned and the complex, anisotropic properties of lipid bilayers reflecting the chemical structures and organization of the constituent phospholipids are considered. The interactions of drugs with phospholipids are important in various processes, such as drug absorption, tissue distribution, and subcellular distribution. In addition, drug-lipid interactions may lead to changes in lipid-dependent protein activities, and further, to functional and morphological changes in cells, a prominent example being the phospholipidosis (PLD) induced by cationic amphiphilic drugs. Herein we briefly review drug-lipid interactions in general and the significance of these interactions in PLD in particular. We also focus on a potential causal connection between drug-induced PLD and steatohepatitis, which is induced by some cationic amphiphilic drugs.
Collapse
Affiliation(s)
- Juha-Matti Alakoskela
- Division of Biochemistry, Institute of Biomedicine, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland.
| | | | | |
Collapse
|
14
|
Pavinatto FJ, Pacholatti CP, Montanha EA, Caseli L, Silva HS, Miranda PB, Viitala T, Oliveira ON. Cholesterol mediates chitosan activity on phospholipid monolayers and Langmuir-Blodgett films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10051-10061. [PMID: 19705898 DOI: 10.1021/la901019p] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The polysaccharide chitosan has been largely used in many biological applications as a fat and cholesterol reducer, bactericide agent, and wound healing material. While the efficacy for some of such uses is proven, little is known about the molecular-level interactions involved in these applications. In this study, we employ mixed Langmuir and Langmuir-Blodgett (LB) films of negatively charged dimyristoyl phosphatidic acid (DMPA) and cholesterol as cell membrane models to investigate the role of cholesterol in the molecular-level action of chitosan. Chitosan does not remove cholesterol from the monolayer. The interaction with chitosan tends to expand the DMPA monolayer due to its interpenetration within the film. On the other hand, cholesterol induces condensation of the DMPA monolayer. The competing effects cause the surface pressure isotherms of mixed DMPA-cholesterol films on a chitosan subphase to be unaffected by the cholesterol mole fraction, due to distinct degrees of chitosan penetration into the film in the presence of cholesterol. By combining polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and sum-frequency generation spectroscopy (SFG), we showed that chitosan induces order into negatively charged phospholipid layers, whereas the opposite occurs for cholesterol. In conclusion, chitosan has its penetration in the film modulated by cholesterol, and electrostatic interactions with negatively charged phospholipids, such as DMPA, are crucial for the action of chitosan.
Collapse
Affiliation(s)
- Felippe J Pavinatto
- Instituto de Fisica de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Talhari DT, Moraes ML, Castilho PV, Oliveira ON, Beltramini LM, Araújo APU. Interaction of a C-terminal peptide of Bos taurus diacylglycerol acyltransferase 1 with model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2320-5. [PMID: 19664998 DOI: 10.1016/j.bbamem.2009.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 07/09/2009] [Accepted: 07/30/2009] [Indexed: 11/24/2022]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and dedicated step in the synthesis of triacylglycerol, which is believed to involve the lipids oleoyl coenzyme A (OCoA) and dioleoyl-sn-glycerol (DOG) as substrates. In this work we investigated the interaction of a specific peptide, referred to as SIT2, on the C-terminal of DGAT1 (HKWCIRHFYKP) with model membranes made with OCoA and DOG in Langmuir monolayers and liposomes. According to the circular dichroism and fluorescence data, conformational changes on SIT2 were seen only on liposomes containing OCoA and DOG. In Langmuir monolayers, SIT2 causes the isotherms of neat OCoA and DOG monolayers to be expanded, but has negligible effect on mixed monolayers of OCoA and DOG. This synergistic interaction between SIT2 and DOG+OCoA may be rationalized in terms of a molecular model in which SIT2 may serve as a linkage between the two lipids. Our results therefore provide molecular-level evidence for the interaction between this domain and the substrates OCoA and DOG for the synthesis of triacylglycerol.
Collapse
Affiliation(s)
- Daniella T Talhari
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Glomm WR, Volden S, Halskau Ø, Ese MHG. Same system-different results: the importance of protein-introduction protocols in Langmuir-monolayer studies of lipid-protein interactions. Anal Chem 2009; 81:3042-50. [PMID: 19317454 DOI: 10.1021/ac8027257] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For studies of protein-lipid interactions, thin films at the air-water surface are often employed as model systems for cell membranes. A convenient manner in which to study these interactions is the Langmuir technique, which allows for formation of monolayer phospholipid films together with a choice of where and how to introduce proteins, according to the desired response variable. Here, a distinction has been made between different interaction protocols and it is also commented upon to what extent introduction of protein to a solution prior to spreading of a lipid film affects the results. This paper describes commonly used methods when working with Langmuir monolayers as membrane mimics and compares the results of four different experimental protocols: formation of a lipid film on top of a protein-containing subphase, injection of protein under an existing, semicompressed phospholipid film (surface pressure 5 mN/m), and deposition of a protein solution on top of a lipid film contained at either surface pressure 0 mN/m or at surface pressure 5 mN/m. Results obtained from Langmuir isotherms and Brewster angle microscope clearly differentiate between these methods and give insight into under which conditions and at which interfaces the protein interactions are predominant (protein-air or protein-lipid).
Collapse
Affiliation(s)
- Wilhelm R Glomm
- Ugelstad Laboratory, Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
| | | | | | | |
Collapse
|
17
|
Kundu S, Chakraborty H, Sarkar M, Datta A. Interaction of Oxicam NSAIDs with lipid monolayer: anomalous dependence on drug concentration. Colloids Surf B Biointerfaces 2008; 70:157-61. [PMID: 19157803 DOI: 10.1016/j.colsurfb.2008.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 12/08/2008] [Indexed: 11/28/2022]
Abstract
Surface pressure (pi) versus specific molecular area (A) isotherms of Langmuir monolayers of dimyristoylphosphatidylcholine (DMPC) lipid on pure water were studied in pristine form and in presence of three non-steroidal anti-inflammatory drugs, meloxicam (MX), piroxicam (PX) and tenoxicam (TX) in the subphase. Data were taken at three drug/lipid (D/L) ratios of 0.026, 0.05, and 0.1. Integration of drug to the lipid monolayer was measured by the increase in A (Delta A) of DMPC monolayer due to the presence of drugs. All three drugs could be integrated in the monolayer resulting in a positive value of Delta A for D/L ratio of 0.026. Above this D/L value, there is an anomalous, monotonic decrease in Delta A for MX and TX resulting, finally, in negative Delta A values. For PX, however, decrease in Delta A values at D/L of 0.05 is partially compensated at D/L of 0.1. We have tentatively explained these observations by invoking two competing forces in the overall drug-lipid interaction. One of these is an 'in-plane' force that tends to integrate the drug molecule to the plane formed by the lipid monolayer and the other is an 'out-of-plane' force that perturbs the drug and the lipid molecules such that the monolayer plane is no longer well defined.
Collapse
Affiliation(s)
- Sarathi Kundu
- Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | | | | |
Collapse
|
18
|
Enhanced activity of horseradish peroxidase in Langmuir–Blodgett films of phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2291-7. [DOI: 10.1016/j.bbamem.2008.05.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 05/25/2008] [Accepted: 05/28/2008] [Indexed: 11/23/2022]
|
19
|
Valencia-Rivera DE, Básaca-Loya A, Burboa MG, Gutiérrez-Millán LE, Cadena-Nava RD, Ruiz-García J, Valdez MA. Interaction of N-nitrosodiethylamine/bovine serum albumin complexes with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine monolayers at the air-water interface. J Colloid Interface Sci 2007; 316:238-49. [PMID: 17897666 DOI: 10.1016/j.jcis.2007.07.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/10/2007] [Accepted: 07/30/2007] [Indexed: 11/25/2022]
Abstract
We report the effect of N-nitrosodiethylamine (NDA) on the interaction between bovine serum albumin (BSA) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine monolayers (DPPC) at the air-water interface. We prepared aqueous solutions of NDA/BSA complexes maintaining a constant concentration of BSA of 1.49 x 10(-9) M and using NDA concentrations to obtain 2000, 4000, 6000, 12,500, and 25,000 NDA/BSA molar ratios. The hysteresis area and the compressional modulus of the compression-expansion cycles performed at different times were dependent on the NDA concentration. The cycles performed demonstrate the stability of the new phase of DPPC/BSA and DPPC/NDA/BSA monolayers. This was achieved probably because the BSA concentration used was lower than the one needed for BSA to inhibit the return of DPPC molecules to the interface. Results of the compressional modulus at the onset of the new phase, obtained around 17 mN/m, 15 min and 1, 3, 5, and 12 h after DPPC deposition, indicated that the 3.0 x 10(-6) M NDA concentration produced a more rigid film, probably due to the higher alpha-helix content of BSA. AFM images were obtained for DPPC/BSA and two DPPC/NDA/BSA complexes. Our images show that 12,500 NDA/BSA molecules were mostly adsorbed in the liquid condensed phase. However, BSA molecules were distributed more homogeneously.
Collapse
Affiliation(s)
- D E Valencia-Rivera
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Transversal, 83000 Hermosillo, Sonora, México
| | | | | | | | | | | | | |
Collapse
|
20
|
Hidalgo AA, Pimentel AS, Tabak M, Oliveira ON. Thermodynamic and Infrared Analyses of the Interaction of Chlorpromazine with Phospholipid Monolayers. J Phys Chem B 2006; 110:19637-46. [PMID: 17004832 DOI: 10.1021/jp0633143] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An investigation has been made of the interaction between chlorpromazine (CPZ) and monolayers of 1,2-dipalmitoyl-sn-3-glycerophosphatidylcholine (DPPC) and 1,2-dipalmitoyl-sn-3-glycero[phospho-rac-(1-glycerol)] (DPPG), both at the air/water interface and in transferred Langmuir-Blodgett films. The Gibbs free energy, DeltaG, and the compressibility modulus (C(S)(-1)), obtained from the surface pressure isotherms, indicated changes in the in-plane interactions of CPZ/DPPG mixed monolayers, with positive values of DeltaG. The arrangement of CPZ in the zwitterionic DPPC monolayers causes a weaker interaction in CPZ/DPPC mixed monolayers, with the DeltaG fluctuating around zero. IR measurements in transferred monolayers showed that CPZ did not affect the conformational order of the acyl chains, its effects being limited to the bands corresponding to the headgroups. Furthermore, since no shift was observed for the acyl chain bands, the phase transition induced by CPZ is not a liquid expanded (LE) to liquid condensed (LC) transition, as the latter is associated with chain ordering. Taken together, the IR and compressibility results demonstrate that the effect from CPZ cannot be correlated with temperature changes in the subphase for pure monolayers, in contrast to models proposed by other authors.
Collapse
Affiliation(s)
- A A Hidalgo
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP 13560-970 Brazil.
| | | | | | | |
Collapse
|
21
|
López Cascales JJ, Otero TF, Fernandez Romero AJ, Camacho L. Phase transition of a DPPC bilayer induced by an external surface pressure: from bilayer to monolayer behavior. a molecular dynamics simulation study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:5818-24. [PMID: 16768513 DOI: 10.1021/la0602315] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.
Collapse
Affiliation(s)
- J J López Cascales
- Centro de Electroquíca y Materiales Inteligentes (CEMI), Universidad Politécnica de Cartagena, Aulario II, Campus de Alfonso XIII, 30203 Cartagena, Murcia, Spain. javier.lopez@ upct.es
| | | | | | | |
Collapse
|
22
|
Thirumoorthy K, Nandi N, Vollhardt D, Oliveira ON. Semiempirical quantum mechanical calculations of dipolar interaction between dipyridamole and dipalmitoyl phosphatidyl choline in Langmuir monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:5398-402. [PMID: 16732669 DOI: 10.1021/la0602416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recent studies have shown that dipalmitoyl phosphatidyl choline (DPPC) monolayers respond cooperatively to the presence of dipyridamole (DIP) guest molecules even at small concentrations, which is a signature of molecular recognition. Using semiempirical quantum mechanical calculations for the DIP-DPPC system, we show that the incorporation of DIP causes large changes in the vertical dipole moment of the DIP-DPPC system, which can explain why measurable changes in surface potential are observed experimentally even at very low DIP concentrations. The calculations are also consistent with the anomalous concentration dependence of the surface pressure and surface potential isotherms for DIP-DPPC monolayers. Rather than saturation or a continuous increase in the effects caused by the incorporation of increasing amounts of DIP, the experimentally observed inversion in the behavior of the surface potential as the DIP concentration reaches 0.5 mol % would be caused by a change in DIP conformation, from a vertical arrangement for the DIP rings to a horizontal or intermediate arrangement. The strong dipolar interactions indicated in the calculations may also be the origin of the drastic changes in monolayer morphology seen in fluorescence microscopy images, with triskellion-shaped domains being formed for condensed DIP-DPPC monolayers.
Collapse
Affiliation(s)
- K Thirumoorthy
- Chemistry Department, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India
| | | | | | | |
Collapse
|
23
|
de Souza NC, Caetano W, Itri R, Rodrigues CA, Oliveira ON, Giacometti JA, Ferreira M. Interaction of small amounts of bovine serum albumin with phospholipid monolayers investigated by surface pressure and atomic force microscopy. J Colloid Interface Sci 2006; 297:546-53. [PMID: 16343524 DOI: 10.1016/j.jcis.2005.10.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/27/2005] [Accepted: 10/28/2005] [Indexed: 11/29/2022]
Abstract
The influence of small amounts of bovine serum albumin (BSA) (nM concentration) on the lateral organization of phospholipid monolayers at the air-water interface and transferred onto solid substrates as one-layer Langmuir-Blodgett (LB) films was investigated. The kinetics of adsorption of BSA onto the phospholipid monolayers was monitored with surface pressure isotherms in a Langmuir trough, for the zwitterionic dipalmitoylphosphatidyl ethanolamine (N,N-dimethyl-PE) and the anionic dimyristoylphosphatidic acid (DMPA). A monolayer of N,N-dimethyl-PE or DMPA incorporating BSA was transferred onto a solid substrate using the Langmuir-Blodgett technique. Atomic force microscopy (AFM) images of one-layer LB films displayed protein-phospholipid domains, whose morphology was characterized using dynamic scaling theories to calculate roughness exponents. For DMPA-BSA films the surface is characteristic of self-affine fractals, which may be described with the Kardar-Parisi-Zhang (KPZ) equation. On the other hand, for N,N-dimethyl-PE-BSA films, the results indicate a relatively flat surface within the globule. The height profile and the number and size of globules varied with the type of phospholipid. The overall results, from kinetics of adsorption on Langmuir monolayers and surface morphology in LB films, could be interpreted in terms of the higher affinity of BSA to the anionic DMPA than to the zwitterionic N,N-dimethyl-PE. Furthermore, the effects from such small amounts of BSA in the monolayer point to a cooperative response of DMPA and N,N-dimethyl-PE monolayers to the protein.
Collapse
Affiliation(s)
- Nara C de Souza
- Departamento de Física, Química e Biologia, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, CP 467, 19060-900, Presidente Prudente, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Cruz A, Vázquez L, Vélez M, Pérez-Gil J. Influence of a fluorescent probe on the nanostructure of phospholipid membranes: dipalmitoylphosphatidylcholine interfacial monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5349-55. [PMID: 15924460 DOI: 10.1021/la046759w] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Monolayers of dipalmitoylphosphatidylcholine (DPPC), both in the absence and in the presence of 1% (mol/mol) of a fluorescent phospholipid probe, have been spread at the air-liquid interface of a surface balance, compressed up to pressures in the liquid-expanded/liquid-condensed plateau of the isotherm, transferred onto mica supports, and analyzed by scanning force microscopy (SFM). Supported DPPC films showed micrometer-sized condensed domains with morphology and size that were entirely analogous to those observed in situ at the air-liquid interface by epifluorescence microscopy. The analysis by SFM, however, allowed the study and comparison of monolayers in the absence and in the presence of the fluorescent marker. This analysis revealed that the presence of dye reduced by 10-20% the total amount of the liquid-condensed phase in the DPPC films. The presence of the dye also decreased the mechanical stability of the film and increased the time required for the monolayer to equilibrate. The resolution of SFM permitted the determination that the structures of both the liquid-expanded and the liquid-condensed regions of DPPC films were heterogeneous at the nanometer scale. Liquid-condensed DPPC microdomains contained nanoholes covering 4-8% of their area whereas 60-80% of the surface detected as liquid-expanded by fluorescence microscopy consisted of a condensed-like framework of nanodomains. The total area, the shape of the nanodomains, and their interconnectivity were affected by the presence of the probe, suggesting that care must be taken when studying the structure, especially at the nanometer scale, and properties of model lipid films in the presence of extrinsic probes.
Collapse
Affiliation(s)
- Antonio Cruz
- Departamento de Bioquímica, Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Pavinatto FJ, Santos Jr. DSD, Oliveira Jr. ON. Interaction between cholesterol and chitosan in Langmuir monolayers. POLIMEROS 2005. [DOI: 10.1590/s0104-14282005000200006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Hidalgo AA, Tabak M, Oliveira ON. The interaction of meso-tetraphenylporphyrin with phospholipid monolayers. Chem Phys Lipids 2005; 134:97-108. [PMID: 15784228 DOI: 10.1016/j.chemphyslip.2004.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 11/11/2004] [Accepted: 12/20/2004] [Indexed: 11/25/2022]
Abstract
In this article, we investigate the interaction of meso-tetraphenylporphyrin (TPP) with phospholipid monolayers. Pure TPP molecules form films at the air-water interface with large extension of aggregation, which is confirmed by UV-vis spectra of transferred monolayers. For mixed films of TPP with dipalmitoyl phosphatidyl choline (DPPC) or dipalmitoyl phosphatidyl glycerol (DPPG), on the other hand, aggregation is only significant at high surface pressures or high concentrations of TPP (above 0.1 molar ratio). This was observed via Brewster angle microscopy (BAM) for the Langmuir films and UV-vis spectroscopy for transferred layers onto solid substrates. TPP indeed causes the DPPC and DPPG monolayers to expand, especially at the liquid-expanded to liquid-condensed phase transition for DPPC. The effects from TPP cannot be explained using purely geometrical considerations, as the area per TPP molecule obtained from the isotherms is at least twice the expected value from the literature. Therefore, interaction between TPP and DPPC or DPPG should be cooperative, so that more phospholipid molecules are affected than just the first neighbors to a TPP molecule.
Collapse
Affiliation(s)
- A A Hidalgo
- Instituto de Química de São Carlos, USP, Cx. Postal 780, 13560-970 São Carlos, SP, Brazil
| | | | | |
Collapse
|
27
|
Moraes ML, Bonardi C, Mendonça CR, Campana PT, Lottersberger J, Tonarelli G, Oliveira ON, Beltramini LM. Cooperative effects in phospholipid monolayers induced by a peptide from HIV-1 capsid protein. Colloids Surf B Biointerfaces 2005; 41:15-20. [PMID: 15698751 DOI: 10.1016/j.colsurfb.2004.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Accepted: 10/28/2004] [Indexed: 11/19/2022]
Abstract
The study of interactions between biological molecules and model membranes is essential for the understanding of a number of physiological mechanisms involved in viral infections and dissemination. In this paper, the analysis of the interaction between a peptide from the p24 protein of Human Immunodeficiency Virus type 1 (HIV-1) and a phospholipid monolayer has pointed to a cooperative response in which very small amounts of peptide p24-1 (e.g. 0.05 mol%) can lead to measurable effects. Monolayer surface pressure and surface potential isotherms were affected for peptide concentrations as low as 0.05 mol%, with saturation at 0.5 mol%. The expansion effect from p24-1 is confirmed by changes in morphology of the monolayers using Brewster angle microscopy. Even though p24-1 is disordered in aqueous solutions, the interaction with dipalmitoyl phosphatidylcholine (DPPC) causes it to adopt an alpha-helix structure, as shown by circular dichroism (CD) data for multilamellar vesicles (MLV). The expansion of the phospholipid monolayer in a cooperative way may imply that p24-1 has potential antiviral activity, by participating in the cell rupture, with no need of specific receptors in the membrane.
Collapse
Affiliation(s)
- Marli L Moraes
- Instituto de Física de São Carlos, USP, CP 369, 13560-970 São Carlos, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hidalgo AA, Caetano W, Tabak M, Oliveira ON. Interaction of two phenothiazine derivatives with phospholipid monolayers. Biophys Chem 2004; 109:85-104. [PMID: 15059662 DOI: 10.1016/j.bpc.2003.10.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 10/07/2003] [Indexed: 11/16/2022]
Abstract
This paper addresses the cooperative interaction of two phenothiazine drugs, viz. trifluoperazine (TFP) and chlorpromazine (CPZ), with phospholipid monolayers as the model membrane system. Surface pressure and surface potential isotherms were obtained for mixed Langmuir monolayers of either dipalmitoyl-phosphatidyl-choline (DPPC) or dipalmitoyl-phosphatidyl-glycerol (DPPG) co-spread with TFP or CPZ. The changes in monolayer behavior caused by incorporation of a few molar ratio of drug molecules were practically within the experimental dispersion for the zwitterionic DPPC, and therefore a more refined analysis will be required to probe the interactions in an unequivocal way. For the charged DPPG, on the other hand, the surface pressure and the dipole moment were significantly affected even for TFP or CPZ concentrations as low as 0.002 molar ratio. Overall, the effects from CPZ and TFP are similar, but small differences exist which are probably due to the different protonation properties of the two drugs. For both drugs, changes are more prominent at the liftoff of the surface pressure, i.e. at the gas-condensed phase transition, with the surface pressure and surface potential isotherms becoming more expanded with the drug incorporation. With DPPG/CPZ monolayers, in particular, an additional phase transition appears at higher CPZ concentrations, which resembles the effects from increasing the subphase temperature for a pure DPPG monolayer. The dipole moment for DPPG/CPZ and DPPG/TFP monolayers decreases with the drug concentration, which means that the effects from the charged drugs are not associated with changes in the double-layer potential. Otherwise, the effective dipole moment should increase with the drug concentration. The changes caused in surface pressure and dipole moment by small concentrations of TFP or CPZ can only be explained by some cooperative effect through which the contribution from DPPG molecules changes considerably, i.e. even DPPG molecules that are not neighbor to a CPZ or TFP molecule are also affected. Such changes may occur either through a significant reorientation of the DPPG molecules or to a change in their hydration state. We discuss the cooperativity semi-quantitatively by estimating the number of lipid molecules affected by the drug interaction. CPZ and TFP also affect the morphology of DPPG monolayers, which was confirmed with Brewster angle microscopy. The biological implications from the cooperative, non-specific interaction of CPZ and TFP with membranes are also commented upon.
Collapse
Affiliation(s)
- A A Hidalgo
- Instituto de Química de São Carlos, USP, Caixa Postal 780, São Carlos, SP 13560-970, Brazil
| | | | | | | |
Collapse
|
29
|
Caetano W, Ferreira M, Oliveira ON, Itri R. Enhanced stabilization of aerosol-OT surfactant monolayer upon interaction with small amounts of bovine serum albumin at the air–water interface. Colloids Surf B Biointerfaces 2004; 38:21-7. [PMID: 15465300 DOI: 10.1016/j.colsurfb.2004.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Accepted: 08/17/2004] [Indexed: 11/16/2022]
Abstract
An investigation is made of the influence from small amounts of the protein bovine serum albumin (BSA) on the lateral organization of low molecular weight surfactant sodium bis-2-ethylhexyl sulfosuccinate (AOT) at the air-water interface. Surface pressure (pi - A), surface potential (deltaV - A) and Brewster angle microscopy (BAM) experiments were carried out, with particular emphasis on the monolayer stability under successive compression-expansion cycles. AOT monolayer is not stable at the air-water interface, which means that the majority of AOT molecules go into the aqueous subphase as monomers and/or normal micelles. When a waiting time elapses between spreading and compression, the surfactant monolayer tends to reorganize partially at the air-water interface, with a monolayer expansion being observed for waiting times as large as 12 h. The incorporation of very small amount of BSA (10(-9)M) at the interface, also inferred from BAM, increases the monolayer stability as revealed by pi - A and deltaV - A results. For a waiting time of circa 3 h, the mixed monolayer reaches its maximum stability. This must be related to protein (and/or protein-surfactant complexes) adsorbed onto the AOT monolayer, thus altering the BSA conformation to accommodate its hydrophobic/hydrophilic residues. Furthermore, the effects from such small amounts of BSA in the monolayer formation and stabilization mean that the AOT monolayer responds cooperatively to BSA.
Collapse
Affiliation(s)
- Wilker Caetano
- Depto. de Física Aplicada, Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo/SP, Brazil
| | | | | | | |
Collapse
|
30
|
Souza SMB, Oliveira ON, Scarpa MV, Oliveira AG. Study of the diclofenac/phospholipid interactions with liposomes and monolayers. Colloids Surf B Biointerfaces 2004; 36:13-7. [PMID: 15261018 DOI: 10.1016/j.colsurfb.2004.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/19/2004] [Accepted: 05/03/2004] [Indexed: 11/25/2022]
Abstract
The interaction of diclofenac sodium (SD) with soya phosphatidylcholine (SPC) has been studied with floating Langmuir monolayers and liposomes. SD was either introduced into the subphase of SPC monolayers or co-spread with SPC on an aqueous subphase. In both cases, SD caused the surface pressure isotherm to become more expanded, thus demonstrating the affinity between SD and SPC. The incorporation of SD caused SPC liposomes to have a decreased diameter according to light scattering experiments. When SPC liposomes were injected into an aqueous subphase, their destruction yielding surface-active monomers could be monitored by changes in surface pressure. SD-loaded liposomes displayed a much faster kinetics when the surface density of surface-active monomers was plotted against time, with rate constants increasing significantly with the SD concentration. The kinetic profile can be quantitatively analyzed by plotting ln[1 - (gamma/gamma infinity)] versus t1/2.
Collapse
Affiliation(s)
- S M B Souza
- Faculdade de Ciências Farmacêuticas, Pesquisador recém-doutor do CNPq, Programa de Pós-graduação em Ciências Farmacêuticas, Unesp, Araraquara, SP, Brazil
| | | | | | | |
Collapse
|