1
|
Roberson MG, Smith DK, White SM, Wallace IS, Tucker MJ. Interspecies Bombolitins Exhibit Structural Diversity upon Membrane Binding, Leading to Cell Specificity. Biophys J 2019; 116:1064-1074. [PMID: 30824115 DOI: 10.1016/j.bpj.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/05/2023] Open
Abstract
Bombolitins, a class of peptides produced by bees of the genus Bombus, target and disrupt cellular membranes, leading to lysis. Antimicrobial peptides exhibit various mechanisms of action resulting from the interplay between peptide structure, lipid composition, and cellular target membrane selectivity. Herein, two bombolitins displaying significant amino-acid-sequence similarity, BII and BL6, were assessed for antimicrobial activity as well as correlated dodecylphosphocholine (DPC) micelle binding and membrane-induced peptide conformational changes. Infrared and circular dichroism spectroscopies were used to assess the structure-function relationship of each bombolitin, and the results indicate that BII forms a rigid and helically ordered secondary structure upon binding to DPC micelles, whereas BL6 largely lacks secondary structural order. Moreover, the binding affinity of each peptide to DPC micelles was determined, revealing that BL6 displayed a difference in binding affinity by over two orders of magnitude. Further investigations into the growth-inhibitory activity of the two bombolitins were performed against Escherichia coli and Saccharomyces cerevisiae. Interestingly, BII specifically targeted S. cerevisiae, whereas BL6 more effectively inhibited E. coli growth. Overall, the antimicrobial selectivity and specificity of BII and BL6 are largely dependent on the primary as well as secondary structural content of the peptides and the membrane composition.
Collapse
Affiliation(s)
| | - Devin K Smith
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada
| | - Simon M White
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada
| | - Ian S Wallace
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada.
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada.
| |
Collapse
|
2
|
Gekko K. Synchrotron-radiation vacuum-ultraviolet circular dichroism spectroscopy in structural biology: an overview. Biophys Physicobiol 2019; 16:41-58. [PMID: 30923662 PMCID: PMC6435020 DOI: 10.2142/biophysico.16.0_41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/13/2019] [Indexed: 12/01/2022] Open
Abstract
Circular dichroism spectroscopy is widely used for analyzing the structures of chiral molecules, including biomolecules. Vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy using synchrotron radiation can extend the short-wavelength limit into the vacuum-ultraviolet region (down to ~160 nm) to provide detailed and new information about the structures of biomolecules in combination with theoretical analysis and bioinformatics. The VUVCD spectra of saccharides can detect the high-energy transitions of chromophores such as hydroxy and acetal groups, disclosing the contributions of inter- or intramolecular hydrogen bonds to the equilibrium configuration of monosaccharides in aqueous solution. The roles of hydration in the fluctuation of the dihedral angles of carboxyl and amino groups of amino acids can be clarified by comparing the observed VUVCD spectra with those calculated theoretically. The VUVCD spectra of proteins markedly improves the accuracy of predicting the contents and number of segments of the secondary structures, and their amino acid sequences when combined with bioinformatics, for not only native but also nonnative and membrane-bound proteins. The VUVCD spectra of nucleic acids confirm the contributions of the base composition and sequence to the conformation in comparative analyses of synthetic poly-nucleotides composed of selected bases. This review surveys these recent applications of synchrotron-radiation VUVCD spectroscopy in structural biology, covering saccharides, amino acids, proteins, and nucleic acids.
Collapse
Affiliation(s)
- Kunihiko Gekko
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
3
|
Pereverzev AY, Kopysov VN, Boyarkin OV. Peptide Bond Ultraviolet Absorption Enables Vibrational Cold-Ion Spectroscopy of Nonaromatic Peptides. J Phys Chem Lett 2018; 9:5262-5266. [PMID: 30157636 DOI: 10.1021/acs.jpclett.8b02148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Peptide-bond VUV absorption is inherent to all proteins and peptides. Although widely exploited in top-down proteomics for photodissociation, this absorption has never been spectroscopically characterized in the gas phase. We have measured VUV/UV photofragmentation spectrum of a single peptide bond in a cryogenically cold protonated dipeptide. Although the spectrum appears to be very broadband and structureless, vibrational pre-excitation of this and even larger cold peptides significantly increases the UV dissociation yield for some of their photofragments. We use this effect to extend the technique of IR-UV photofragmentation vibrational spectroscopy, developed for aromatic peptides, to nonaromatic ones and demonstrate measurements of conformation-specific and nonspecific IR spectra for di- to hexa-peptides.
Collapse
Affiliation(s)
- Aleksandr Y Pereverzev
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , Station-6 , 1015 Lausanne , Switzerland
| | - Vladimir N Kopysov
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , Station-6 , 1015 Lausanne , Switzerland
| | - Oleg V Boyarkin
- Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne , Station-6 , 1015 Lausanne , Switzerland
| |
Collapse
|
4
|
Wang L, Coric P, Zhu K, Liu WQ, Vidal M, Bouaziz S, Broussy S. Synthesis and characterization of water-soluble macrocyclic peptides stabilizing protein α-turn. Org Biomol Chem 2018; 16:459-471. [DOI: 10.1039/c7ob02852k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrocyclic peptides mimic tight “non-classical” α-turn type II-αLS found in proteins, as shown by spectroscopic and computational analysis of their equilibrating conformations.
Collapse
Affiliation(s)
- Lei Wang
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Pascale Coric
- UMR 8015 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Kexin Zhu
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Wang-Qing Liu
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Michel Vidal
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Serge Bouaziz
- UMR 8015 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| | - Sylvain Broussy
- UMR COMETE 8638 CNRS
- Université Paris Descartes
- Faculté de Pharmacie de Paris
- Sorbonne Paris Cité
- Paris 75006
| |
Collapse
|
5
|
An in-tether sulfoxide chiral center influences the biophysical properties of the N-capped peptides. Bioorg Med Chem 2017; 25:1756-1761. [DOI: 10.1016/j.bmc.2016.11.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 11/23/2022]
|
6
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
7
|
Bannwarth C, Grimme S. Electronic Circular Dichroism of Highly Conjugated π-Systems: Breakdown of the Tamm–Dancoff/Configuration Interaction Singles Approximation. J Phys Chem A 2015; 119:3653-62. [DOI: 10.1021/acs.jpca.5b01680] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph Bannwarth
- Mulliken
Center for Theoretical
Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical
Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| |
Collapse
|
8
|
Webber N, He Y, Reilly JP. 157 nm photodissociation of dipeptide ions containing N-terminal arginine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:196-203. [PMID: 24310819 DOI: 10.1007/s13361-013-0762-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar products such as a-, d-, and immonium ions, m2 and m2+13 ions were also observed. Certain side chains tended to cleave between their β and γ carbons without necessarily forming d- or w-type ions, and a few other ions were produced by the high-energy fragmentation of multiple bonds.
Collapse
Affiliation(s)
- Nathaniel Webber
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | | | | |
Collapse
|
9
|
Lai CK, Ng DCM, Pang HF, Le Blanc JCY, Hager JW, Fang DC, Cheung ASC, Chu IK. Laser-induced dissociation of singly protonated peptides at 193 and 266 nm within a hybrid linear ion trap mass spectrometer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1119-27. [PMID: 23592116 DOI: 10.1002/rcm.6545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 05/16/2023]
Abstract
RATIONALE We implemented, for the first time, laser-induced dissociation (LID) within a modified hybrid linear ion trap mass spectrometer, QTrap, while preserving the original scanning capabilities and routine performance of the instrument. METHODS Precursor ions of interest were mass-selected in the first quadrupole (Q1), trapped in the radiofrequency-only quadrupole (q2), photodissociated under irradiation with a 193- or 266-nm laser beam in the third quadrupole (q3), and mass-analyzed using the linear ion trap. RESULTS LID of singly charged protonated peptides revealed, in addition to conventional amide-bond cleavages, preferential fragmentation at Cα -C/N-Cα bonds of the backbone as well as at the Cα -Cβ /Cβ -Cγ bonds of the side-chains. The LID spectra of [M+H](+) featured product ions that were very similar to the observed radical-induced fragmentations in the CID spectra of analogous odd-electron radical cations generated through dissociative electron-transfer in metal-ligand-peptide complexes or through laser photolysis of iodopeptides. CONCLUSIONS LID of [M+H](+) ions results in fragmentation channels that are comparable with those observed upon the CID of M(•+) ions, with a range of fascinating radical-induced fragmentations.
Collapse
Affiliation(s)
- Cheuk-Kuen Lai
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
He Y, Webber N, Reilly JP. 157 nm photodissociation of a complete set of dipeptide ions containing C-terminal arginine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:675-683. [PMID: 23378257 DOI: 10.1007/s13361-012-0514-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 06/01/2023]
Abstract
Twenty singly-charged dipeptide ions with C-terminal arginine were photodissociated with 157 nm light and their tandem mass spectra recorded. Many of the small product ions that were observed are standard peptide fragments that have been commonly seen in VUV photodissociation studies. However, the study of a library of dipeptides containing all 20 N-terminal amino acids enabled the recognition of trends associated with the occurrence of w-, v-, and immonium ions, the observation of competition between forming N- and C-terminal fragments in dipeptide RR, and the identification of some unusual fragment ions appearing at masses of 183, 187, 196, and 197 Da. A highly accurate internal calibration of the photodissociation TOF-TOF data enabled molecular formulae for these four product ions to be derived. Their proposed structures reflect the rather high-energy nature of this fragmentation phenomenon.
Collapse
Affiliation(s)
- Yi He
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | |
Collapse
|
11
|
Influence of Scaffold Stability and Electrostatics on Top7-Based Engineered Helical HIV-1 Epitopes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-319-02624-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
12
|
Jo H, Meinhardt N, Wu Y, Kulkarni S, Hu X, Low KE, Davies PL, DeGrado WF, Greenbaum DC. Development of α-helical calpain probes by mimicking a natural protein-protein interaction. J Am Chem Soc 2012; 134:17704-13. [PMID: 22998171 PMCID: PMC3523126 DOI: 10.1021/ja307599z] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have designed a highly specific inhibitor of calpain by mimicking a natural protein-protein interaction between calpain and its endogenous inhibitor calpastatin. To enable this goal we established a new method of stabilizing an α-helix in a small peptide by screening 24 commercially available cross-linkers for successful cysteine alkylation in a model peptide sequence. The effects of cross-linking on the α-helicity of selected peptides were examined by CD and NMR spectroscopy, and revealed structurally rigid cross-linkers to be the best at stabilizing α-helices. We applied this strategy to the design of inhibitors of calpain that are based on calpastatin, an intrinsically unstable polypeptide that becomes structured upon binding to the enzyme. A two-turn α-helix that binds proximal to the active site cleft was stabilized, resulting in a potent and selective inhibitor for calpain. We further expanded the utility of this inhibitor by developing irreversible calpain family activity-based probes (ABPs), which retained the specificity of the stabilized helical inhibitor. We believe the inhibitor and ABPs will be useful for future investigation of calpains, while the cross-linking technique will enable exploration of other protein-protein interactions.
Collapse
Affiliation(s)
- Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143
| | - Nataline Meinhardt
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143
| | - Swapnil Kulkarni
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
| | - Xiaozhen Hu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143
| | - Kristin E. Low
- Department of Biochemistry and Protein Function Discovery, Kingston, Ontario, K7L 3N6 (Canada)
| | - Peter L. Davies
- Department of Biochemistry and Protein Function Discovery, Kingston, Ontario, K7L 3N6 (Canada)
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA 94143
| | - Doron C. Greenbaum
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
13
|
Haupert LM, DeWalt EL, Simpson GJ. Modeling the SHG activities of diverse protein crystals. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1513-21. [PMID: 23090400 DOI: 10.1107/s0907444912037638] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022]
Abstract
A symmetry-additive ab initio model for second-harmonic generation (SHG) activity of protein crystals was applied to assess the likely protein-crystal coverage of SHG microscopy. Calculations were performed for 250 proteins in nine point-group symmetries: a total of 2250 crystals. The model suggests that the crystal symmetry and the limit of detection of the instrument are expected to be the strongest predictors of coverage of the factors considered, which also included secondary-structural content and protein size. Much of the diversity in SHG activity is expected to arise primarily from the variability in the intrinsic protein response as well as the orientation within the crystal lattice. Two or more orders-of-magnitude variation in intensity are expected even within protein crystals of the same symmetry. SHG measurements of tetragonal lysozyme crystals confirmed detection, from which a protein coverage of ~84% was estimated based on the proportion of proteins calculated to produce SHG responses greater than that of tetragonal lysozyme. Good agreement was observed between the measured and calculated ratios of the SHG intensity from lysozyme in tetragonal and monoclinic lattices.
Collapse
Affiliation(s)
- Levi M Haupert
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
14
|
He Y, Parthasarathi R, Raghavachari K, Reilly JP. Photodissociation of charge tagged peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:1182-1190. [PMID: 22532332 DOI: 10.1007/s13361-012-0379-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/29/2012] [Accepted: 03/16/2012] [Indexed: 05/31/2023]
Abstract
Tris(2,4,6-trimethoxyphenyl) phosphonium acetyl (TMPP-Ac) was previously introduced to improve the mass spectrometric sequence analysis of peptides by fixing a permanent charge at the N-termini. However, peptides containing arginine residues did not fragment efficiently after TMPP-Ac modification. In this work, we combine charge derivatization with photodissociation. The fragmentation of TMPP-derivatized peptides is greatly improved and a series of N-terminal fragments is generated with complete sequence information. Arginine has a special effect on the fragmentation of the TMPP tagged peptides when it is the N-terminal peptide residue. Theoretical and experimental results suggest that this is due to hydrogen transfer from the charged N-terminus to the hydrogen-deficient peptide sequence.
Collapse
Affiliation(s)
- Yi He
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
15
|
Hong Z, Ahmed Z, Asher SA. Circular dichroism and ultraviolet resonance Raman indicate little Arg-Glu side chain α-helix peptide stabilization. J Phys Chem B 2011; 115:4234-43. [PMID: 21425805 PMCID: PMC3074482 DOI: 10.1021/jp112238q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrostatic interactions between side chains can control the conformation and folding of peptides and proteins. We used circular dichroism (CD) and ultraviolet (UV) resonance Raman spectroscopy (UVRR) to examine the impact of side chain charge on the conformations of two 21 residue mainly polyala peptides with a few Arg and Glu residues. We expected that attractions between Arg-10 and Glu-14 side chains would stabilize the α-helix conformation compared to a peptide with an Arg-14. Surprisingly, CD suggests that the peptide with the Glu-14 is less helical. In contrast, the UVRR show that these two peptides have similar α-helix content. We conclude that the peptide with Glu-14 has the same net α-helix content as the peptide with the Arg but has two α-helices of shorter length. Thus, side chain interactions between Arg-10 and Glu-14 have a minor impact on α-helix stability. The thermal melting of these two peptides is similar. However the Glu-14 peptide pH induced melting forms type III turn structures that form α-helix-turn-α-helix conformations.
Collapse
Affiliation(s)
- Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
16
|
Woody RW. A significant role for high-energy transitions in the ultraviolet circular dichroism spectra of polypeptides and proteins. Chirality 2010; 22 Suppl 1:E22-9. [DOI: 10.1002/chir.20857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Meloni G, Polanski T, Braun O, Vasák M. Effects of Zn(2+), Ca(2+), and Mg(2+) on the structure of Zn(7)metallothionein-3: evidence for an additional zinc binding site. Biochemistry 2009; 48:5700-7. [PMID: 19425569 DOI: 10.1021/bi900366p] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain, where it plays an important role in the homeostasis of the essential metal ions Cu(+) and Zn(2+). Like other mammalian metallothioneins (MT-1 and -2), the protein contains a M(II)(3)(CysS)(9) and a M(II)(4)(CysS)(11) cluster localized in two independent protein domains linked by a flexible hinge region. However, there is a substantially increased number of acidic residues in MT-3 (11 residues) compared with MT-2 (four residues) which may act as binding ligands for additional metal ions. In this study, the binding of Zn(2+), Ca(2+), and Mg(2+) to human Zn(7)MT-3 and its mutant lacking an acidic hexapeptide insert, Zn(7)MT-3(Delta55-60), was investigated and compared with the binding of Zn(7)MT-2. By using spectroscopic and spectrometric techniques, we demonstrate that one additional Zn(2+) binds with an apparent binding constant (K(app)) of approximately 100 microM to Zn(7)MT-3 and Zn(7)MT-3(Delta55-60), but not to Zn(7)MT-2. The changes in spectroscopic features of metal-thiolate clusters and gel filtration behavior reveal that the formation of Zn(8)MT-3 is immediate and is accompanied by a decrease in the Stokes radius (R(s)). The changes in the R(s) suggest a mutual approach of both protein domains. The fast binding of Zn(2+) is followed by a slow time-dependent protein dimerization. The binding of Zn(2+) to Zn(7)MT-3 is specific as in the presence of Ca(2+) and Mg(2+) only an alteration of the R(s) of Zn(7)MT-3 at substantially higher concentrations was observed. The significance of these findings for the biological role of MT-3 is discussed.
Collapse
Affiliation(s)
- Gabriele Meloni
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | |
Collapse
|
18
|
Abstract
Mass spectrometric identification of all types of molecules relies on the observation and interpretation of ion fragmentation patterns. Peptides, proteins, carbohydrates, and nucleic acids that are often found as components of complex biological samples represent particularly important challenges. The most common strategies for fragmenting biomolecular ions include low- and high-energy collisional activation, post-source decay, and electron capture or transfer dissociation. Each of these methods has its own idiosyncrasies and advantages but encounters problems with some types of samples. Novel fragmentation methods that can offer improvements are always desirable. One approach that has been under study for years but is not yet incorporated into a commercial instrument is ultraviolet photofragmentation. This review discusses experimental results on various biological molecules that have been generated by several research groups using different light wavelengths and mass analyzers. Work involving short-wavelength vacuum ultraviolet light is particularly emphasized. The characteristics of photofragmentation are examined and its advantages summarized.
Collapse
Affiliation(s)
- James P Reilly
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
19
|
Wanapun D, Wampler RD, Begue NJ, Simpson GJ. Polarization-dependent two-photon absorption for the determination of protein secondary structure: A theoretical study. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.02.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Skomorowski W, Pecul M, Sałek P, Helgaker T. Electronic circular dichroism of disulphide bridge: ab initio quantum-chemical calculations. J Chem Phys 2007; 127:085102. [PMID: 17764301 DOI: 10.1063/1.2759203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Electronic circular dichroism (ECD) parameters of the disulphide chromophore have been calculated for dihydrogen disulphide, dimethyl disulphide, and cystine using density-functional theory, coupled-cluster theory, and multiconfigurational self-consistent field theory. The objective is twofold: first, to examine the performance of the Coulomb-attenuated CAM-B3LYP functional for the calculation of ECD spectra; second, to investigate the dependence of the ECD parameters on the conformation around the disulphide bridge. The CAM-B3LYP functional improves considerably on the B3LYP functional, giving results comparable to CCSD theory and to MCSCF theory in an extended active space. The conformational dependence of the ECD parameters does not change much upon substitution, which is promising for the application of ECD in structural investigations of proteins containing disulphide bridges.
Collapse
Affiliation(s)
- Wojciech Skomorowski
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
21
|
Oakley MT, Hirst JD. Charge-transfer transitions in protein circular dichroism calculations. J Am Chem Soc 2007; 128:12414-5. [PMID: 16984181 DOI: 10.1021/ja0644125] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Charge-transfer transitions in proteins play a key role in many biophysical processes, from the behavior of redox proteins to photochemical reactions. We present ab initio calculations on a model dipeptide and more approximate calculations of the electronic excited states of proteins which, taken together, provide the most definitive assignment and characterization of charge-transfer transitions in proteins to date. We have calculated from first principles the electronic circular dichroism (CD) spectra of 31 proteins on the basis of their structures. Compared to previous studies, we achieve more accurate calculated CD spectra between 170 and 190 nm, owing mainly to the importance in alpha-helices of a charge-transfer transition from the lone pair on one peptide group to the pi* orbital on the next peptide group.
Collapse
Affiliation(s)
- Mark T Oakley
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | |
Collapse
|
22
|
Thompson MS, Cui W, Reilly JP. Factors that impact the vacuum ultraviolet photofragmentation of peptide ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1439-52. [PMID: 17543535 DOI: 10.1016/j.jasms.2007.04.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/20/2007] [Accepted: 04/24/2007] [Indexed: 05/15/2023]
Abstract
Several groups have investigated the photodissociation of peptide ions with ultraviolet light. Significant differences have been reported with 157 and 193 nm excitation. Recent studies have shown that the mass analyzer can also influence the observed photofragment distribution. Comparison of experiments using different peptides, wavelengths, and mass analyzers is undesirably complicated. In the present work, several peptides are analyzed with both 157 and 193 nm photodissociation in tandem-TOF and linear ion trap mass spectrometers. The results indicate that the fragment ion distribution can be influenced by both the photodissociation wavelength and the mass analyzer. The two wavelengths generate similar spectra in an ion trap but quite different results in a tandem-TOF instrument.
Collapse
Affiliation(s)
- Matthew S Thompson
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-4001, USA
| | | | | |
Collapse
|
23
|
Voronine D, Abramavicius D, Mukamel S. Coherent control of pump-probe signals of helical structures by adaptive pulse polarizations. J Chem Phys 2007; 124:034104. [PMID: 16438564 DOI: 10.1063/1.2107667] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The simplification of the pump-probe spectrum of excitons by pure-phase-polarization pulse shaping is investigated by a simulation study. The state of light is manipulated by varying the phases of two perpendicular polarization components of the pump, holding its total spectral and temporal intensity profiles fixed. Genetic and iterative Fourier transform algorithms are used to search for pulse phase functions that optimize the ratio of the signal at two frequencies. New features are extracted from the congested pump-probe spectrum of a helical pentamer by selecting a combination of Liouville space pathways. Tensor components which dominate the optimized spectra are identified.
Collapse
Affiliation(s)
- Dmitri Voronine
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| | | | | |
Collapse
|
24
|
Buttani V, Losi A, Eggert T, Krauss U, Jaeger KE, Cao Z, Gärtner W. Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV-LOV dimerization and interdomain interactions. Photochem Photobiol Sci 2006; 6:41-9. [PMID: 17200735 DOI: 10.1039/b610375h] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Bacillus subtilis protein YtvA is related to plant phototropins in that it senses UVA-blue-light by means of the flavin binding LOV domain, linked to a nucleotide-binding STAS domain. The structural basis for interdomain interactions and functional regulation are not known. Here we report the conformational analysis of three YtvA constructs, by means of size exclusion chromatography, circular dichroism (CD) and molecular docking simulations. The isolated YtvA-LOV domain (YLOV, aa 25-126) has a strong tendency to dimerize, prevented in full-length YtvA, but still observed in YLOV carrying the N-terminal extension (N-YLOV, aa 1-126). The analysis of CD data shows that both the N-terminal cap and the linker region (aa 127-147) between the LOV and the STAS domain are helical and that the central beta-scaffold is distorted in the LOV domains dimers. The involvement of the central beta-scaffold in dimerization is supported by docking simulation of the YLOV dimer and the importance of this region is highlighted by light-induced conformational changes, emerging from the CD data analysis. In YtvA, the beta-strand fraction is notably less distorted and distinct light-driven changes in the loops/turn fraction are detected. The data uncover a common surface for LOV-LOV and intraprotein interaction, involving the central beta-scaffold, and offer hints to investigate the molecular basis of light-activation and regulation in LOV proteins.
Collapse
Affiliation(s)
- Valentina Buttani
- Dept. of Physics, University of Parma, via G.P. Usberti 7/A, 43100-Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Jang S, Sreerama N, Liao VHC, Lu SHF, Li FY, Shin S, Woody RW, Lin SH. Theoretical investigation of the photoinitiated folding of HP-36. Protein Sci 2006; 15:2290-9. [PMID: 16963648 PMCID: PMC2242384 DOI: 10.1110/ps.062145106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/22/2006] [Accepted: 06/24/2006] [Indexed: 10/24/2022]
Abstract
A computational model was developed to examine the phototriggered folding of a caged protein, a protein modified with an organic photolabile cross-linker. Molecular dynamics simulations of the modified 36-residue fragment of subdomain B of chicken villin head piece with a photolabile linker were performed, starting from both the caged and the uncaged structures. Construction of a free-energy landscape, based on principal components as well as on radius of gyration versus root-mean-square deviation, and circular dichroism calculations were employed to characterize folding behavior and structures. The folded structures observed in the molecular dynamics trajectories were found to be similar to that of the wild-type protein, in agreement with the published experimental results. The free-energy landscapes of the modified and wild-type proteins have similar topology, suggesting common thermodynamic/kinetic behavior. The existence of small differences in the free-energy surface of the modified protein from that of the native protein, however, indicates subtle differences in the folding behavior.
Collapse
Affiliation(s)
- Soonmin Jang
- Department of Applied Chemistry, Sejong University, Seoul 143-747, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abbate S, Barlati S, Colombi M, Fornili SL, Francescato P, Gangemi F, Lebon F, Longhi G, Manitto P, Recca T, Speranza G, Zoppi N. Study of conformational properties of a biologically active peptide of fibronectin by circular dichroism, NMR and molecular dynamics simulation. Phys Chem Chem Phys 2006; 8:4668-77. [PMID: 17047765 DOI: 10.1039/b604807b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroism (CD), and NMR spectra have been recorded and molecular dynamics (MD) simulations have been performed in water and water-trifluoroethanol (TFE) mixed solvent for a synthetic biologically active 13-amino-acid fragment of human fibronectin and two related peptides. The CD results are interpreted on the basis of statistical analyses of MD trajectories and of ensuing calculations of CD spectra based on Schellman's matrix method. It is observed that the peptide conformation is quite variable in water and loses its mobility with the addition of TFE. (1)H-NOE data were found to be consistent with the most abundant calculated conformation.
Collapse
Affiliation(s)
- Sergio Abbate
- Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Perry JM, Moad AJ, Begue NJ, Wampler RD, Simpson GJ. Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs. J Phys Chem B 2005; 109:20009-26. [PMID: 16853586 DOI: 10.1021/jp0506888] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.
Collapse
Affiliation(s)
- John M Perry
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
28
|
Cui W, Thompson MS, Reilly JP. Pathways of peptide ion fragmentation induced by vacuum ultraviolet light. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1384-98. [PMID: 15979330 DOI: 10.1016/j.jasms.2005.03.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 03/30/2005] [Accepted: 03/30/2005] [Indexed: 05/03/2023]
Abstract
One Hundred Fifty-Seven nm photodissociation of singly protonated peptides generates unusual distributions of fragment ions. When the charge is localized at the C-terminus of the peptide, spectra are dominated by x-, v-, and w-type fragments. When it is sequestered at the N-terminus, a- and d-type ions are overwhelmingly abundant. Evidence is presented suggesting that the fragmentation occurs via photolytic radical cleavage of the peptide backbone at the bond between the alpha- and carbonyl-carbons followed by radical elimination to form the observed daughter ions.
Collapse
Affiliation(s)
- Weidong Cui
- Department of Chemistry, Indiana University, Bloomington, Indiana 47505-4001, USA
| | | | | |
Collapse
|
29
|
Castilho PV, Campana PT, Garcia AF, Beltramini LM, Araújo APU. Heterologous expression, characterization and structural studies of a hydrophobic peptide from the HIV-1 p24 protein. Peptides 2005; 26:243-9. [PMID: 15629535 DOI: 10.1016/j.peptides.2004.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 09/20/2004] [Accepted: 09/21/2004] [Indexed: 11/22/2022]
Abstract
Proteins from the inner core of HIV-1, such as the capsid protein (p24), are involved in crucial processes during the virus life cycle. The p24 protein plays an active structural role in the Gag protein and in its mature form. This work describes the production of a peptide derived from the p24 C-terminal, TLRAEQASQEVKNWMTETLLVQNA, using recombinant technology. This region (p24-3) is involved in interfaces during the p24 dimerization, which occurs during capsid assembly. The p24-3 sequence was obtained by a synthetic gene strategy and inserted into the pET 32a expression vector to produce soluble fusion protein in Escherichia coli BL21(DE3). This strategy leads to an incorporation of three amino acid residues (AMA) in the N-terminal of the native sequence to form the recombinant p24-3 (rp24-3). The rp24-3 was purified by reverse phase chromatography to homogeneity, as inferred by mass spectrometry and protein sequence analysis. Structural studies using circular dichroism and steady-state fluorescence showed that the rp24-3 is structured by helical and beta elements. As a function of its hydrophobic character it can self-associate forming oligomers. We present in this paper the first development of a suitable expression system for rp24-3, which provides high amounts of the peptide. This strategy will allow the development of new antiviral (HIV) agents.
Collapse
Affiliation(s)
- Priscila V Castilho
- Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, ZIP 13560-970 São Carlos, Brazil
| | | | | | | | | |
Collapse
|
30
|
Pecul M, Marchesan D, Ruud K, Coriani S. Polarizable continuum model study of solvent effects on electronic circular dichroism parameters. J Chem Phys 2005; 122:024106. [PMID: 15638571 DOI: 10.1063/1.1829046] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an implementation of the polarizable continuum model for the calculation of solvent effects on electronic circular dichroism spectra. The computational model used is density functional theory in the length-gauge formulation, and gauge-origin independence is ensured through the use of London atomic orbitals. Results of calculations carried out for methyloxirane and bicyclic ketones, camphor, norcamphor, norbornenone, and fenchone are presented, and the theoretically obtained solvent effects are compared with experimental observations.
Collapse
Affiliation(s)
- Magdalena Pecul
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
31
|
Moon JH, Yoon SH, Kim MS. Photodissociation of singly protonated peptides at 193 nm investigated with tandem time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:3248-52. [PMID: 16220466 DOI: 10.1002/rcm.2184] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photodissociation at 193 nm of some singly protonated peptides generated by matrix-assisted laser desorption/ionization was investigated using tandem time-of-flight mass spectrometry. For peptides with arginine at the C-terminus, x, upsilon, and w fragment ions were generated preferentially while a and d fragment ions dominated for peptides with arginine at the N-terminus. These are the same characteristics as photodissociation at 157 nm reported previously. Overall, the photodissociation spectra obtained at 157 and 193 nm were strikingly similar.
Collapse
Affiliation(s)
- Jeong Hee Moon
- National Creative Research Initiative Center for Control of Reaction Dynamics and School of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
32
|
Pecul M, Ruud K, Rizzo A, Helgaker T. Conformational Effects on the Optical Rotation of Alanine and Proline. J Phys Chem A 2004. [DOI: 10.1021/jp037663y] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magdalena Pecul
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, Istituto per i Processi Chimico-Fisici del C.N.R., Area della Ricerca di Pisa, Via Moruzzi 1, I-56124, Pisa, Italy, and Department of Chemistry, University of Oslo, Box 1033 Blindern, N-0315 Oslo, Norway
| | - Kenneth Ruud
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, Istituto per i Processi Chimico-Fisici del C.N.R., Area della Ricerca di Pisa, Via Moruzzi 1, I-56124, Pisa, Italy, and Department of Chemistry, University of Oslo, Box 1033 Blindern, N-0315 Oslo, Norway
| | - Antonio Rizzo
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, Istituto per i Processi Chimico-Fisici del C.N.R., Area della Ricerca di Pisa, Via Moruzzi 1, I-56124, Pisa, Italy, and Department of Chemistry, University of Oslo, Box 1033 Blindern, N-0315 Oslo, Norway
| | - Trygve Helgaker
- Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, Istituto per i Processi Chimico-Fisici del C.N.R., Area della Ricerca di Pisa, Via Moruzzi 1, I-56124, Pisa, Italy, and Department of Chemistry, University of Oslo, Box 1033 Blindern, N-0315 Oslo, Norway
| |
Collapse
|
33
|
|
34
|
|
35
|
Affiliation(s)
- Norma J Greenfield
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, University of medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
36
|
Chin DH, Woody RW, Rohl CA, Baldwin RL. Circular dichroism spectra of short, fixed-nucleus alanine helices. Proc Natl Acad Sci U S A 2002; 99:15416-21. [PMID: 12427967 PMCID: PMC137731 DOI: 10.1073/pnas.232591399] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Very short alanine peptide helices can be studied in a fixed-nucleus, helix-forming system [Siedlicka, M., Goch, G., Ejchart, A., Sticht, H. & Bierzynski, A. (1999) Proc. Natl. Acad. Sci. USA 96, 903-908]. In a 12-residue sequence taken from an EF-hand protein, the four C-terminal peptide units become helical when the peptide binds La(3+), and somewhat longer helices may be made by adding alanine residues at the C terminus. The helices studied here contain 4, 8, or 11 peptide units. Surprisingly, these short fixed-nucleus helices remain almost fully helical from 4 to 65 degrees C, according to circular dichroism results reported here, and in agreement with titration calorimetry results reported recently. These peptides are used here to define the circular dichroism properties of short helices, which are needed for accurate measurement of helix propensities. Two striking properties are: (i) the temperature coefficient of mean peptide ellipticity depends strongly on helix length; and (ii) the intensity of the signal decreases much less rapidly with helix length, for very short helices, than supposed in the past. The circular dichroism spectra of the short helices are compared with new theoretical calculations, based on the experimentally determined direction of the NV(1) transition moment.
Collapse
Affiliation(s)
- Der-Hang Chin
- Department of Biochemistry, Beckman Center, Stanford University Medical Center, CA 94305, USA
| | | | | | | |
Collapse
|