Nagy A, Cacciafesta P, Grama L, Kengyel A, Málnási-Csizmadia A, Kellermayer MSZ. Differential actin binding along the PEVK domain of skeletal muscle titin.
J Cell Sci 2004;
117:5781-9. [PMID:
15507486 DOI:
10.1242/jcs.01501]
[Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parts of the PEVK (Pro-Glu-Val-Lys) domain of the skeletal muscle isoform of the giant intrasarcomeric protein titin have been shown to bind F-actin. However, the mechanisms and physiological function of this are poorly understood. To test for actin binding along PEVK, we expressed contiguous N-terminal (PEVKI), middle (PEVKII), and C-terminal (PEVKIII) PEVK segments of the human soleus muscle isoform. We found a differential actin binding along PEVK in solid-state binding, cross-linking and in vitro motility assays. The order of apparent affinity is PEVKII>PEVKI>PEVKIII. To explore which sequence motifs convey the actin-binding property, we cloned and expressed PEVK fragments with different motif structure: PPAK, polyE-rich and pure polyE fragments. The polyE-containing fragments had a stronger apparent actin binding, suggesting that a local preponderance of polyE motifs conveys an enhanced local actin-binding property to PEVK. The actin binding of PEVK may serve as a viscous bumper mechanism that limits the velocity of unloaded muscle shortening towards short sarcomere lengths. Variations in the motif structure of PEVK might be a method of regulating the magnitude of the viscous drag.
Collapse