1
|
Uwineza C, Parchami M, Bouzarjomehr M, Taherzadeh MJ, Mahboubi A. Recent Developments in the Application of Filamentous Fungus Aspergillus oryzae in Ruminant Feed. Animals (Basel) 2024; 14:2427. [PMID: 39199960 PMCID: PMC11350777 DOI: 10.3390/ani14162427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
The resource-intensive nature of the ruminant farming sector, which has been exacerbated by population growth and increasing pressure to reduce feed antibiotics and growth promoters, has sparked interest in looking for sustainable alternative feed sources to enhance ruminant production efficiency. Edible filamentous fungi, rich in macronutrients like proteins, offer promise in reducing the reliance on conventional protein sources and antimicrobials to improve feed quality and animal performance. The inclusion of single-cell proteins, particularly filamentous fungi, in ruminant feed has long been of scientific and industrial interest. This review focuses on the potential application of the extensively studied Aspergillus oryzae and its fermentation extracts in ruminant nutrition. It provides an overview of conventional ruminant feed ingredients, supplements, and efficiency. Additionally, this review analyzes the re-utilization of organic residues for A. oryzae cultivation and examines the effects of adding fungal extracts to ruminant feed on ruminal digestibility and animal performance, all within a circular bioeconomy framework.
Collapse
Affiliation(s)
| | | | | | | | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden; (C.U.)
| |
Collapse
|
2
|
Król B, Słupczyńska M, Wilk M, Asghar M, Cwynar P. Anaerobic rumen fungi and fungal direct-fed microbials
in ruminant feeding. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/153961/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Rumen Bacteria Abundance and Fermentation Profile during Subacute Ruminal Acidosis and Its Modulation by Aspergillus oryzae Culture in RUSITEC System. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study aimed at characterizing changes in rumen bacteria abundance and fermentation profiles by artificial saliva (AS) pH, and at evaluating the potential modulatory role of Aspergillus oryzae culture (AOC) in a rumen simulation technique (RUSITEC) system. The treatment included high AS pH (pH 6.8) or low AS pH (pH 5.5) according to the McDougall’s method, and low AS pH was sustained by changing the composition of the AS (NaHCO3 from 9.8 to 1.96 g/L, Na2HPO4 from 9.3 to 1.86 g/L). In low AS pH condition, the diets contained either 0% AOC, 1.25% AOC, or 2.5% AOC. Therefore, there are four treatments: (1) high AS pH, 0% AOC (HASP); (2) low AS pH, 0% AOC (AOC0); (3) low AS pH, 1.25% AOC (AOC1); (4) low AS pH, 2.5% AOC (AOC2), respectively. The experimental diets were supplemented with 16 g basic diets with the forage to concentrate ratio of 40:60. The experiments were conducted two independent 13 days, with 9 days adaption periods and 4 days sample collection. The results showed that low AS pH decreased the degradabilites of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) (p < 0.05), which occurred due to a decreased abundance of fibrolytic Ruminococcus albus (p < 0.001). The total concentration of volatile fatty acid (VFA) and proportion of propionate were decreased in the low AS pH (p = 0.026) and tended to increase the molar proportion of butyrate (p = 0.086) and the ratio of acetate to propionate (p = 0.088). The abundances of phylum Firmicutes (p = 0.065) and Proteobacteria (p = 0.063) tended to be greater in low AS pH group than high AS pH group. Low AS pH increased the abundance of phylum Actinobacteria (p = 0.002) compared to the high AS pH and decreased the abundances of phylum Spirochaetes (p = 0.032). Compared with the high AS pH, low AS pH increased the abundances of Prevotella (p = 0.003), Pseudoscardovia (p = 0.001), Mitsuokella (p = 0.005), and Dialister (p = 0.047), and decreased the abundances of Olivibacter (p = 0.026), Ruminobacter (p = 0.025), Treponema (p = 0.037), and Sphaerochaeta (p = 0.027) at genus level. Under a severe SARA in RUSITEC, supplementation of 2.5% AOC increased OM degradability, the copy numbers of Selenomonas ruminantium and Fibrobacter succinogenes. These findings indicate that the reduction AS pH at 5.5 caused a strong shift in bacterial composition in rumen. In addition, the addition of AOC in diets increased the growth rate of certain rumen bacteria that digest fiber or utilize lactate under SARA condition in RUSITEC system.
Collapse
|
4
|
Guo L, Zhang D, Du R, Li F, Li F, Ran T. Supplementation of Aspergillus oryzae Culture Improved the Feed Dry Matter Digestibility and the Energy Supply of Total Volatile Fatty Acid Concentrations in the Rumen of Hu Sheep. Front Nutr 2022; 9:847156. [PMID: 35548561 PMCID: PMC9084320 DOI: 10.3389/fnut.2022.847156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of the present study was to investigate the effects of feeding different amounts of Aspergillus oryzae culture (AOC) on the degradation rate of various feeds for 24 h, rumen fermentation parameters, microbial community, and blood cell composition of Hu sheep. Sixteen castrated and fattening adult Hu sheep with permanent rumen fistula were randomly divided into four groups (four sheep per group) based on body weight (64.62 ± 5.83 kg). The experiment was repeated for two periods to ensure eight replicates for each treatment, and each period consisted of 28 days, including a 7-d of transition, a 14-d of pre-feeding, and a 7-d of sample collection. The control group (CON) received a basal diet without AOC, and the other groups were fed basal diet supplemented with 10 g/d, 20 g/d, and 40 g/d AOC, respectively, every day before the morning feeding. Supplementation with 20 g/d and 40 g/d AOC significantly increased (P < 0.05) the total volatile fatty acids (TVFAs) content, the molar ratio of butyric acid, and the 24 h dry matter (DM) degradation rate of alfalfa hay and corn straw. When fed 40 g/d AOC, the DM degradation rate of corn germ meal and the relative abundance of Kiritimatiellaeota were significantly increased (P < 0.05), but the ratio of acetic acid to propionic acid (A/P) was significantly reduced (P = 0.04). In conclusion, supplementation with AOC for Hu sheep could improve feed DM digestibility and increase the energy supply of TVFAs concentration in the rumen. Based on the feed conditions of the present study, supplementation 40 g/d of AOC could increase the production efficiency of sheep while higher level have to further investigate.
Collapse
Affiliation(s)
- Long Guo
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Duihong Zhang
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ruifang Du
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fei Li
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Ran
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Kong F, Lu N, Liu Y, Zhang S, Jiang H, Wang H, Wang W, Li S. Aspergillus oryzae and Aspergillus niger Co-Cultivation Extract Affects In Vitro Degradation, Fermentation Characteristics, and Bacterial Composition in a Diet-Specific Manner. Animals (Basel) 2021; 11:1248. [PMID: 33926015 PMCID: PMC8145302 DOI: 10.3390/ani11051248] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
AOAN may provide enzymes to improve the digestibility of feeds and enhance rumen fermentation. This study determined the effects of AOAN on digestibility, fermentation characteristics, and bacterial composition using in vitro gas recording fermentation system. A total of 30 mg of AOAN was supplemented into 500 mg of TMR, corn silage, oat hay, and alfalfa hay. Fermentation parameters and bacterial communities were determined after 48 h fermentation, and digestibility was determined after 7, 24, 30, and 48 h fermentation. Gas production and dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) digestibility were significantly increased by AOAN supplementation at 48 h (p < 0.05), except for digestibility of CP of the TMR (p > 0.05). AOAN increased starch digestibility in corn silage (p < 0.05) and tended to increase that in TMR (0.05 < p < 0.10). AOAN supplementation increased total volatile fatty acid production (p < 0.05). The molar proportions of acetate and acetate to propionate ratio of oat hay and alfalfa hay were increased (p < 0.05). The 16S rRNA analysis revealed that the microbial richness of TMR and oat hay, and microbial evenness of TMR were increased (p < 0.05). AOAN did not affect the α diversity, β diversity, and bacterial composition of the corn silage. The relative abundance of Prevotella was increased and Ruminococcus was decreased in TMR, oat hay, and alfalfa hay. In conclusion, results suggest that AOAN has the potential to improve the utilization of diets differently, including providing enzymes with changing microbiota (TMR, oat hay, and alfalfa hay) or providing enzymes alone (corn silage).
Collapse
Affiliation(s)
- Fanlin Kong
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (N.L.); (Y.L.); (S.Z.)
| | - Na Lu
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (N.L.); (Y.L.); (S.Z.)
| | - Yanfang Liu
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (N.L.); (Y.L.); (S.Z.)
| | - Shu Zhang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (N.L.); (Y.L.); (S.Z.)
| | - Hongqin Jiang
- China Representative Office, Ascor Chimici S.R.L., 201199 Bologna, Italy; (H.J.); (H.W.)
| | - Haomin Wang
- China Representative Office, Ascor Chimici S.R.L., 201199 Bologna, Italy; (H.J.); (H.W.)
| | - Wei Wang
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (N.L.); (Y.L.); (S.Z.)
| | - Shengli Li
- Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, The State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (F.K.); (N.L.); (Y.L.); (S.Z.)
| |
Collapse
|
6
|
Sucu E, Moore C, VanBaale MJ, Jensen H, Sanz-Fernandez MV, Baumgard LH. Effects of feeding Aspergillus oryzae fermentation product to transition Holstein cows on performance and health. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two experiments examined the effects of Aspergillus oryzae fermentation product (AO; Amaferm®; BioZyme Inc., St. Joseph, MO, USA) on productive variables in transition dairy cows. In experiment 1, 33 Holstein cows (22 multiparous and 11 primiparous) were enrolled from −21 to 60 days in milk (DIM). Cows were individually fed either a control total mixed ration (TMR) diet consisting of primarily alfalfa hay and steam-flaked corn [62:38 and 59:41, forage:concentrate (F:C) for prepartum and postpartum phases, respectively] or the control diet along with 15 g d−1 of AO. In experiment 2, 455 multiparous Holstein cows were enrolled from −21 to 121 DIM. Cows were group-fed either a control TMR diet (n = 228) consisting primarily of corn silage and rolled corn (44:56, F:C) or the control diet (n = 227) with 15 g d−1 of AO. In experiment 1, cows fed AO had increased (P < 0.05) milk production compared with controls (37.7 vs. 34.6 kg d−1). Milk composition, dry matter intake, body weight (BW), and BW loss both prepartum and postpartum did not differ (P > 0.10) between treatments. Cows fed AO tended to have decreased plasma nonesterified fatty acids levels (14%, P < 0.10), but plasma glucose concentration did not differ (P = 0.89). In experiment 2, cows fed AO had decreased milk yield (43.0 vs. 43.8; P < 0.05), and increased milk fat content (3.50% vs. 3.38%; P < 0.01) but similar quantities of 3.5% fat-corrected milk (42.5 vs. 42.7 kg d−1; P > 0.10). Results suggest that AO has the potential to improve aspects of milk production efficiency, but the percentage and types of forage utilized may influence the response.
Collapse
Affiliation(s)
- Ekin Sucu
- Faculty of Agriculture, Department of Animal Science, Bursa Uludag University, Bursa 16059, Turkey
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chel Moore
- Department of Animal Science, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | - Lance H. Baumgard
- Department of Animal Science, University of Arizona, Tucson, AZ 85721, USA
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Sun H, Wu Y, Wang Y, Wang C, Liu J. Effects of addition of Aspergillus oryzae culture and 2-hydroxyl-4-(methylthio) butanoic acid on milk performance and rumen fermentation of dairy cows. Anim Sci J 2016; 88:602-609. [PMID: 27506446 DOI: 10.1111/asj.12646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 11/28/2022]
Abstract
To investigate effects of Aspergillus oryzae culture (AOC) and 2-hydroxy-4-(methylthio) butanoic acid (HMB) on milk performance and rumen fermentation of dairy cows. Sixty-four multiparous Chinese Holstein cows were randomly allocated into four experimental diets: (i) Control diet; (ii) AOC diet: 5 g AOC/day per head; (iii) HMB diet: 25 g HMB/day; and (iv) AH diet: 5 g AOC plus 25 g HMB/day. Added HMB tended to increase the yield of milk protein (P = 0.06) and 3.5% fat-corrected milk (P = 0.08) and milk fat content (P = 0.09). Milk fat yield (P = 0.03) and the contents of milk protein (P = 0.05) were increased by adding HMB. The cows fed on AOC diet had a tendency for higher body weight (BW) gain (P = 0.08). Addition of AOC, HMB and AH increased content of microbial protein (MCP) and total volatile fatty acids (VFA) (P < 0.01) in rumen fluid. Populations of rumen fungi, Fibrobacter succinogenes and Ruminococcus flavefaciens relative to total bacterial 16S rDNA (P ≤ 0.03) and activity of carboxymethylcellulase (CMCase) (P < 0.01) were increased with added AOC or HMB. It is inferred that added AOC or HMB can increase the contents of MCP and total VFA potentially by stimulating rumen microbe populations and CMCase activity.
Collapse
Affiliation(s)
- Hua Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Qilu University of Technology, Ji'nan, China
| | - Yueming Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanming Wang
- Novus International Research Center, Beijing, China
| | - Chong Wang
- Zhejiang A and F University, Hangzhou, China
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
The influence of diet supplementation with Saccharomyces cerevisiae or Saccharomyces cerevisiae plus Aspergillus oryzae on milk yield of Cilentana grazing dairy goats. Small Rumin Res 2016. [DOI: 10.1016/j.smallrumres.2015.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Hernández-Díaz R, Pimentel-González DJ, Figueira AC, Viniegra-González G, Campos-Montiel RG. Influence of an aerobic fungus grown on solid culture on ruminal degradability and on a mixture culture of anaerobic cellulolytic bacteria. J Anim Physiol Anim Nutr (Berl) 2009; 94:330-7. [PMID: 19663984 DOI: 10.1111/j.1439-0396.2008.00912.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, the effect of a solid fungal culture of Aspergillus niger (An) grown on coffee pulp on the in situ ruminal degradability (RD) of corn stover was evaluated. In addition, the effect of its extracts on the in vitro dry matter disappearance (IVDMD) and on a mixed culture of anaerobic cellulolytic bacteria (MCACB) was also investigated. The solid ferment was a crude culture of An, grown on coffee pulp. Regarding in situ RD, a significant difference (p < 0.05) was found between treatment with 200 g/day of the solid culture and control (no solid culture added) on dry matter, crude protein and neutral detergent fibre on RD. All the water extracts (pH 4, 7 and 10) enhanced IVDMD and stimulated the cellulolytic activity on a MCACB. Ultrafiltration results showed that active compounds with a molecular weight lower than 30 kDa were responsible for the effect on MCACB. Such results suggest that the effects of the solid An culture in RD are related to the presence of water soluble compounds having a molecular weight lower than 30 kDa.
Collapse
Affiliation(s)
- R Hernández-Díaz
- ICAP, Universidad Autónoma del Estado de Hidalgo, Av. Universidad Km. 1, Rancho Universitario, Tulancingo, Hgo., México
| | | | | | | | | |
Collapse
|