1
|
Ishara Silva K, Jagannathan B, Golbeck JH, Lakshmi KV. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:548-556. [PMID: 26334844 DOI: 10.1016/j.bbabio.2015.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.
Collapse
Affiliation(s)
- K Ishara Silva
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Bharat Jagannathan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802.
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180; The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180.
| |
Collapse
|
2
|
Hassanpour A, Azani MR, Bordbar AK. Solution properties of sodium n-dodecyl sulfate in the presence of meso-tetrakis (N-methylpyridinium-4-yl) porphyrin. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2011. [DOI: 10.5012/jkcs.2011.55.3.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Krasilnikov PM, Knox PP, Rubin AB. On the influence of local molecular environment on the redox potential of electron transfer cofactors in bacterial photosynthetic reaction centers. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911020163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
4
|
Pletnev S, Gurskaya NG, Pletneva NV, Lukyanov KA, Chudakov DM, Martynov VI, Popov VO, Kovalchuk MV, Wlodawer A, Dauter Z, Pletnev V. Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. J Biol Chem 2009; 284:32028-39. [PMID: 19737938 PMCID: PMC2797274 DOI: 10.1074/jbc.m109.054973] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 08/26/2009] [Indexed: 11/06/2022] Open
Abstract
KillerRed is the only known fluorescent protein that demonstrates notable phototoxicity, exceeding that of the other green and red fluorescent proteins by at least 1,000-fold. KillerRed could serve as an instrument to inactivate target proteins or to kill cell populations in photodynamic therapy. However, the nature of KillerRed phototoxicity has remained unclear, impeding the development of more phototoxic variants. Here we present the results of a high resolution crystallographic study of KillerRed in the active fluorescent and in the photobleached non-fluorescent states. A unique and striking feature of the structure is a water-filled channel reaching the chromophore area from the end cap of the beta-barrel that is probably one of the key structural features responsible for phototoxicity. A study of the structure-function relationship of KillerRed, supported by structure-based, site-directed mutagenesis, has also revealed the key residues most likely responsible for the phototoxic effect. In particular, Glu(68) and Ser(119), located adjacent to the chromophore, have been assigned as the primary trigger of the reaction chain.
Collapse
Affiliation(s)
- Sergei Pletnev
- From the Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute/SAIC-Frederick Inc., Argonne, Illinois 60439
| | - Nadya G. Gurskaya
- the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Miklukho-Maklaya 16/10, Russia
| | - Nadya V. Pletneva
- the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Miklukho-Maklaya 16/10, Russia
| | - Konstantin A. Lukyanov
- the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Miklukho-Maklaya 16/10, Russia
| | - Dmitri M. Chudakov
- the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Miklukho-Maklaya 16/10, Russia
| | - Vladimir I. Martynov
- the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Miklukho-Maklaya 16/10, Russia
| | - Vladimir O. Popov
- the A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 117234 Moscow, Russia
| | - Mikhail V. Kovalchuk
- the Institute of Crystallography, Russian Academy of Sciences, Leninsky Prospect 59, 119333 Moscow, Russia, and
| | - Alexander Wlodawer
- the Protein Structure Section, Macromolecular Crystallography Laboratory, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Zbigniew Dauter
- From the Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute/SAIC-Frederick Inc., Argonne, Illinois 60439
| | - Vladimir Pletnev
- the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Miklukho-Maklaya 16/10, Russia
| |
Collapse
|
5
|
Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proc Natl Acad Sci U S A 2009; 106:9221-5. [PMID: 19458251 DOI: 10.1073/pnas.0904140106] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibody-photosensitizer chemical conjugates are used successfully to kill cancer cells in photodynamic therapy. However, chemical conjugation of photosensitizers presents several limitations, such as poor reproducibility, aggregation, and free photosensitizer impurities. Here, we report a fully genetically encoded immunophotosensitizer, consisting of a specific anti-p185(HER-2-ECD) antibody fragment 4D5scFv fused with the phototoxic fluorescent protein KillerRed. Both parts of the recombinant protein preserved their functional properties: high affinity to antigen and light activation of sensitizer. 4D5scFv-KillerRed showed fine targeting properties and efficiently killed p185(HER-2-ECD)-expressing cancer cells upon light irradiation. It also showed a remarkable additive effect with the commonly used antitumor agent cisplatin, further demonstrating the potential of the approach.
Collapse
|
6
|
Wang YT, Jin WJ. H-aggregation of cationic palladium-porphyrin as a function of anionic surfactant studied using phosphorescence, absorption and RLS spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 70:871-877. [PMID: 18032095 DOI: 10.1016/j.saa.2007.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 10/02/2007] [Indexed: 05/25/2023]
Abstract
Room temperature phosphorescence (RTP) was used as a useful analytical tool to investigate the interaction behavior between tetracationic meso-tetrakis (4-trimethylaminophenyl) porphyrin palladium (Pd-TAPP) and anionic sodium dodecyl sulfate (SDS). UV-vis absorption and resonance light scattering (RLS) were further applied to characterize the system. It was presumably suggested that nonspecific self-aggregates among porphyrins formed considering the relatively high concentration of Pd-TAPP. Furthermore, Pd-TAPP changed from free monomer/nonspecific aggregate to H-aggregate and then to out-micellized monomer/nonspecific aggregate as a function of SDS concentration. The fact that RTP signal enhanced obviously and excitation spectrum was blue-shifted by 1580cm(-1) in energy with respect to energy of free Pd-TAPP monomer demonstrated that 1:4 electrostatic interaction between Pd-TAPP and SDS led to the formation of the premicellar porphyrin-surfactant H-aggregates. The RLS spectrum reviewed that the formed H-aggregates were multiple porphyrin units, and UV-vis spectra revealed that cationic groups of monomers/nonspecific aggregates of Pd-TAPP were electrostatically attracted in favor of the surface of anionic micelles but were not encapsulated within apolar regions of SDS micelles when the concentration of SDS was above its critical micelle concentration (CMC).
Collapse
Affiliation(s)
- Ying Te Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | | |
Collapse
|
7
|
Krasilnikov PM, Mamonov PA. Effect of hydrogen bonds on the energetics of macromolecules in the course of electron transfer. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906020102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Knox PP, Baptista MS, Uchoa AF, Zakharova NI. Effects of Oxygen, Heavy Water, and Glycerol on Electron Transfer in the Acceptor Part of Rhodobacter sphaeroides Reaction Centers. BIOCHEMISTRY (MOSCOW) 2005; 70:1268-73. [PMID: 16336188 DOI: 10.1007/s10541-005-0258-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The kinetics of electron transfer between primary and secondary quinone acceptors of the photosynthetic reaction center (RC) of the purple bacterium Rhodobacter sphaeroides wild type was studied at the wavelengths 400 and 450 nm. It was shown that removing of molecular oxygen from RC preparations slowed down the fast phase of the process from 4-4.5 microsec to tens of microseconds. Similar effects were observed after the incubation of RC in heavy water for 72 h or glycerol addition (90% v/v) to RC preparations. The observed effects are interpreted in terms of the influence of these agents on the hydrogen bond system of the RC. The state of this system can determine the formation of different RC conformations that are characterized by different rates of electron transfer between quinone acceptors.
Collapse
Affiliation(s)
- P P Knox
- Biology Faculty, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | | | |
Collapse
|
9
|
Paschenko VZ, Gorokhov VV, Knox PP, Krasilnikov PM, Redlin H, Renger G, Rubin AB. Energetics and mechanisms of high efficiency of charge separation and electron transfer processes in Rhodobacter sphaeroides reaction centers. Bioelectrochemistry 2003; 61:73-84. [PMID: 14642912 DOI: 10.1016/s1567-5394(03)00077-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Effects of environmental changes due to D(2)O/H(2)O substitution and cryosolvent addition on the energetics of the special pair and the rate constants of forward and back electron transfer reactions in the picosecond-nanosecond time domain have been studied in isolated reaction centers (RC) of the anaxogenic purple bacterium Rhodobacter sphaeroides. The following results were obtained: (i). replacement of H(2)O by D(2)O or addition of either 70% (v/v) glycerol or 35% (v/v) DMSO do not influence the absorption spectra; (ii). in marked contrast to this invariance of absorption, the maxima of fluorescence spectra are red shifted relative to control by 3.5, 6.8 and 14.5 nm for RCs suspended in glycerol, D(2)O or DMSO, respectively; (iii). D(2)O/H(2)O substitution or DMSO addition give rise to an increase of the time constants of charge separation (tau(e)), and Q(A)(-) formation (tau(Q)) by a factors of 2.5-3.1 and 1.7-2.5, respectively; (iv). addition of 70% glycerol is virtually without effect on the values of tau(e) and tau(Q); (v). the midpoint potential E(m) of P/P(+) is shifted by about 30 and 45 mV towards higher values by addition of 70% glycerol and 35% DMSO, respectively, but remains invariant to D(2)O/H(2)O exchange; and (vi). an additional fast component with tau(1)=0.5-0.8 ns in the kinetics of charge recombination P(+)H(A)(-)-->P*(P)H(A) emerges in RC suspensions modified either by D(2)O/H(2)O substitution or by DMSO treatment. The results have been analysed with special emphasis on the role of deformations of hydrogen bonds for the solvation mechanism of nonequilibrium states of cofactors. Reorientation of hydrogen bonds provides the major contribution of the very fast environmental response to excitation of the special pair P. The Gibbs standard free energy gap between 1P* and P(+)B(A)(-) due to solvation is estimated to be approximately 70, 59 and 48 meV for control, D(2)O- and DMSO-treated RC samples, respectively.
Collapse
Affiliation(s)
- Vladimir Z Paschenko
- Department of Biophysics, Biology Faculty, Lomonosov State University, Moscow 119899, Russia.
| | | | | | | | | | | | | |
Collapse
|
10
|
Kriegl JM, Forster FK, Nienhaus GU. Charge recombination and protein dynamics in bacterial photosynthetic reaction centers entrapped in a sol-gel matrix. Biophys J 2003; 85:1851-70. [PMID: 12944298 PMCID: PMC1303357 DOI: 10.1016/s0006-3495(03)74613-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Many proteins can be immobilized in silica hydrogel matrices without compromising their function, making this a suitable technique for biosensor applications. Immobilization will in general affect protein structure and dynamics. To study these effects, we have measured the P(+)Q(A)(-) charge recombination kinetics after laser excitation of Q(B)-depleted wild-type photosynthetic reaction centers from Rhodobacter sphaeroides in a tetramethoxysilane (TMOS) sol-gel matrix and, for comparison, also in cryosolvent. The nonexponential electron transfer kinetics observed between 10 and 300 K were analyzed quantitatively using the spin boson model for the intrinsic temperature dependence of the electron transfer and an adiabatic change of the energy gap and electronic coupling caused by protein motions in response to the altered charge distributions. The analysis reveals similarities and differences in the TMOS-matrix and bulk-solvent samples. In both preparations, electron transfer is coupled to the same spectrum of low frequency phonons. As in bulk solvent, charge-solvating protein motions are present in the TMOS matrix. Large-scale conformational changes are arrested in the hydrogel, as evident from the nonexponential kinetics even at room temperature. The altered dynamics is likely responsible for the observed changes in the electronic coupling matrix element.
Collapse
Affiliation(s)
- Jan M Kriegl
- Department of Biophysics, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
11
|
Udal’tsov A, Kazarin L, Sinani V, Sweshnikov A. Water–porphyrin interactions and their influence on self assembly of large scale porphyrin aggregates. J Photochem Photobiol A Chem 2002. [DOI: 10.1016/s1010-6030(02)00145-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Fan C, Lu J, Zhang W, Suzuki I, Li G. Enhanced Electron-Transfer Reactivity of Cytochrome b5by Dimethylsulfoxide and N,N'-Dimethylformamide. ANAL SCI 2002; 18:1031-3. [PMID: 12243399 DOI: 10.2116/analsci.18.1031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Chunhai Fan
- Department of Biochemistry, Nanjing University, PR China
| | | | | | | | | |
Collapse
|