1
|
Garg R, Manhas I, Chaturvedi D. Unveiling the orchestration: mycobacterial small RNAs as key mediators in host-pathogen interactions. Front Microbiol 2024; 15:1399280. [PMID: 38903780 PMCID: PMC11188477 DOI: 10.3389/fmicb.2024.1399280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Small RNA (sRNA) molecules, a class of non-coding RNAs, have emerged as pivotal players in the regulation of gene expression and cellular processes. Mycobacterium tuberculosis and other pathogenic mycobacteria produce diverse small RNA species that modulate bacterial physiology and pathogenesis. Recent advances in RNA sequencing have enabled identification of novel small RNAs and characterization of their regulatory functions. This review discusses the multifaceted roles of bacterial small RNAs, covering their biogenesis, classification, and functional diversity. Small RNAs (sRNAs) play pivotal roles in orchestrating diverse cellular processes, ranging from gene silencing to epigenetic modifications, across a broad spectrum of organisms. While traditionally associated with eukaryotic systems, recent research has unveiled their presence and significance within bacterial domains as well. Unlike their eukaryotic counterparts, which primarily function within the context of RNA interference (RNAi) pathways, bacterial sRNAs predominantly act through base-pairing interactions with target mRNAs, leading to post-transcriptional regulation. This fundamental distinction underscores the necessity of elucidating the unique roles and regulatory mechanisms of bacterial sRNAs in bacterial adaptation and survival. By doing these myriad functions, they regulate bacterial growth, metabolism, virulence, and drug resistance. In Mycobacterium tuberculosis, apart from having various roles in the bacillus itself, small RNA molecules have emerged as key regulators of gene expression and mediators of host-pathogen interactions. Understanding sRNA regulatory networks in mycobacteria can drive our understanding of significant role they play in regulating virulence and adaptation to the host environment. Detailed functional characterization of Mtb sRNAs at the host-pathogen interface is required to fully elucidate the complex sRNA-mediated gene regulatory networks deployed by Mtb, to manipulate the host. A deeper understanding of this aspect could pave the development of novel diagnostic and therapeutic strategies for tuberculosis.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Human Genetics and Molecular Medicine, Amity School of Health Sciences, Amity University, Mohali, Punjab, India
| | - Ishali Manhas
- Department of Biotechnology, Amity School of Biological Sciences, Amity University, Mohali, Punjab, India
| | - Diksha Chaturvedi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
2
|
Schnoor SB, Neubauer P, Gimpel M. Recent insights into the world of dual-function bacterial sRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1824. [PMID: 38039556 DOI: 10.1002/wrna.1824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/03/2023]
Abstract
Dual-function sRNAs refer to a small subgroup of small regulatory RNAs that merges base-pairing properties of antisense RNAs with peptide-encoding properties of mRNA. Both functions can be part of either same or in another metabolic pathway. Here, we want to update the knowledge of to the already known dual-function sRNAs and review the six new sRNAs found since 2017 regarding their structure, functional mechanisms, evolutionary conservation, and role in the regulation of distinct biological/physiological processes. The increasing identification of dual-function sRNAs through bioinformatics approaches, RNomics and RNA-sequencing and the associated increase in regulatory understanding will likely continue to increase at the same rate in the future. This may improve our understanding of the physiology, virulence and resistance of bacteria, as well as enable their use in technical applications. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| | - Matthias Gimpel
- Department of Bioprocess Engineering, Technische Universitat Berlin, Berlin, Germany
| |
Collapse
|
3
|
Aoyama JJ, Storz G. Two for one: regulatory RNAs that encode small proteins. Trends Biochem Sci 2023; 48:1035-1043. [PMID: 37777390 PMCID: PMC10841219 DOI: 10.1016/j.tibs.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
RNAs are commonly categorized as being either protein-coding mRNAs or noncoding RNAs. However, an increasing number of transcripts, in organisms ranging from bacteria to humans, are being found to have both coding and noncoding functions. In some cases, the sequences encoding the protein and the regulatory RNA functions are separated, while in other cases the sequences overlap. The protein and RNA can regulate similar or distinct pathways. Here we describe examples illustrating how these dual-function (also denoted bifunctional or dual-component) RNAs are identified and their mechanisms of action and cellular roles. We also discuss the synergy or competition between coding and RNA activity and how these regulators evolved, as well as how more dual-function RNAs might be discovered and exploited.
Collapse
Affiliation(s)
- Jordan J Aoyama
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA.
| |
Collapse
|
4
|
Walling LR, Kouse AB, Shabalina SA, Zhang H, Storz G. A 3' UTR-derived small RNA connecting nitrogen and carbon metabolism in enteric bacteria. Nucleic Acids Res 2022; 50:10093-10109. [PMID: 36062564 PMCID: PMC9508815 DOI: 10.1093/nar/gkac748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing numbers of small, regulatory RNAs (sRNAs) corresponding to 3' untranslated regions (UTR) are being discovered in bacteria. One such sRNA, denoted GlnZ, corresponds to the 3' UTR of the Escherichia coli glnA mRNA encoding glutamine synthetase. Several forms of GlnZ, processed from the glnA mRNA, are detected in cells growing with limiting ammonium. GlnZ levels are regulated transcriptionally by the NtrC transcription factor and post-transcriptionally by RNase III. Consistent with the expression, E. coli cells lacking glnZ show delayed outgrowth from nitrogen starvation compared to wild type cells. Transcriptome-wide RNA-RNA interactome datasets indicated that GlnZ binds to multiple target RNAs. Immunoblots and assays of fusions confirmed GlnZ-mediated repression of glnP and sucA, encoding proteins that contribute to glutamine transport and the citric acid cycle, respectively. Although the overall sequences of GlnZ from E. coli K-12, Enterohemorrhagic E. coli and Salmonella enterica have significant differences due to various sequence insertions, all forms of the sRNA were able to regulate the two targets characterized. Together our data show that GlnZ impacts growth of E. coli under low nitrogen conditions by modulating genes that affect carbon and nitrogen flux.
Collapse
Affiliation(s)
- Lauren R Walling
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Andrew B Kouse
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Hongen Zhang
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-4417, USA
| |
Collapse
|
5
|
Ponath F, Hör J, Vogel J. An overview of gene regulation in bacteria by small RNAs derived from mRNA 3' ends. FEMS Microbiol Rev 2022; 46:fuac017. [PMID: 35388892 PMCID: PMC9438474 DOI: 10.1093/femsre/fuac017] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past two decades, small noncoding RNAs (sRNAs) that regulate mRNAs by short base pairing have gone from a curiosity to a major class of post-transcriptional regulators in bacteria. They are integral to many stress responses and regulatory circuits, affecting almost all aspects of bacterial life. Following pioneering sRNA searches in the early 2000s, the field quickly focused on conserved sRNA genes in the intergenic regions of bacterial chromosomes. Yet, it soon emerged that there might be another rich source of bacterial sRNAs-processed 3' end fragments of mRNAs. Several such 3' end-derived sRNAs have now been characterized, often revealing unexpected, conserved functions in diverse cellular processes. Here, we review our current knowledge of these 3' end-derived sRNAs-their biogenesis through ribonucleases, their molecular mechanisms, their interactions with RNA-binding proteins such as Hfq or ProQ and their functional scope, which ranges from acting as specialized regulators of single metabolic genes to constituting entire noncoding arms in global stress responses. Recent global RNA interactome studies suggest that the importance of functional 3' end-derived sRNAs has been vastly underestimated and that this type of cross-regulation between genes at the mRNA level is more pervasive in bacteria than currently appreciated.
Collapse
Affiliation(s)
- Falk Ponath
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Jens Hör
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Institute for Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
6
|
Abstract
While most small, regulatory RNAs are thought to be “noncoding,” a few have been found to also encode a small protein. Here we describe a 164-nucleotide RNA that encodes a 28-amino acid, amphipathic protein, which interacts with aerobic glycerol-3-phosphate dehydrogenase and increases dehydrogenase activity but also base pairs with two mRNAs to reduce expression. The coding and base-pairing sequences overlap, and the two regulatory functions compete. Bacteria have evolved small RNAs (sRNAs) to regulate numerous biological processes and stress responses. While sRNAs generally are considered to be “noncoding,” a few have been found to also encode a small protein. Here we describe one such dual-function RNA that modulates carbon utilization in Escherichia coli. The 164-nucleotide RNA was previously shown to encode a 28-amino acid protein (denoted AzuC). We discovered the membrane-associated AzuC protein interacts with GlpD, the aerobic glycerol-3-phosphate dehydrogenase, and increases dehydrogenase activity. Overexpression of the RNA encoding AzuC results in a growth defect in glycerol and galactose medium. The defect in galactose medium was still observed for a stop codon mutant derivative, suggesting a second role for the RNA. Consistent with this observation, we found that cadA and galE are repressed by base pairing with the RNA (denoted AzuR). Interestingly, AzuC translation interferes with the observed repression of cadA and galE by the RNA and base pairing interferes with AzuC translation, demonstrating that the translation and base-pairing functions compete.
Collapse
|
7
|
Cui Z, Zhang Y, Kakar KU, Kong X, Li R, Loh B, Leptihn S, Li B. Involvement of non-coding RNAs during infection of rice by Acidovorax oryzae. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:540-554. [PMID: 34121356 DOI: 10.1111/1758-2229.12982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
The expression of non-coding RNAs (ncRNAs) has been observed in a variety of bacteria. However, the function of ncRNAs and their regulatory targets are largely unknown, and few ncRNAs are found to be associated with bacterial virulence. The bacterial brown stripe pathogen Acidovorax oryzae (Ao) RS-1 shows a high level of condition-dependent differential expression of ncRNA, which we identified in a genome wide screen. We experimentally validated 66 differentially expressed ncRNAs using an integrative analysis of conservative genome sequences and transcriptomic data during in vivo interaction of the bacterial pathogen with the rice plant. To test the relevance of the differentially expressed ncRNAs, we chose four with different positions within the genome, and with different secondary structures and promoter activities. The results show that the overexpression of the four ncRNAs caused a significant change in virulence-related phenotypes, resistance to various environmental stresses, expression of secretion systems and effector proteins, while changing the expression of ncRNA putative target genes. We conclude that these ncRNAs are examples for the inherent regulatory roles for many of the observed ncRNAs in response to changing conditions such as host interaction or environmental adaption.
Collapse
Affiliation(s)
- Zhouqi Cui
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Kaleem U Kakar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Xiangdong Kong
- Institute of Bioinformatics, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruihui Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou, 314400, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Mihailovic MK, Ekdahl AM, Chen A, Leistra AN, Li B, González Martínez J, Law M, Ejindu C, Massé É, Freddolino PL, Contreras LM. Uncovering Transcriptional Regulators and Targets of sRNAs Using an Integrative Data-Mining Approach: H-NS-Regulated RseX as a Case Study. Front Cell Infect Microbiol 2021; 11:696533. [PMID: 34327153 PMCID: PMC8313858 DOI: 10.3389/fcimb.2021.696533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial small RNAs (sRNAs) play a vital role in pathogenesis by enabling rapid, efficient networks of gene attenuation during infection. In recent decades, there has been a surge in the number of proposed and biochemically-confirmed sRNAs in both Gram-positive and Gram-negative pathogens. However, limited homology, network complexity, and condition specificity of sRNA has stunted complete characterization of the activity and regulation of these RNA regulators. To streamline the discovery of the expression of sRNAs, and their post-transcriptional activities, we propose an integrative in vivo data-mining approach that couples DNA protein occupancy, RNA-seq, and RNA accessibility data with motif identification and target prediction algorithms. We benchmark the approach against a subset of well-characterized E. coli sRNAs for which a degree of in vivo transcriptional regulation and post-transcriptional activity has been previously reported, finding support for known regulation in a large proportion of this sRNA set. We showcase the abilities of our method to expand understanding of sRNA RseX, a known envelope stress-linked sRNA for which a cellular role has been elusive due to a lack of native expression detection. Using the presented approach, we identify a small set of putative RseX regulators and targets for experimental investigation. These findings have allowed us to confirm native RseX expression under conditions that eliminate H-NS repression as well as uncover a post-transcriptional role of RseX in fimbrial regulation. Beyond RseX, we uncover 163 putative regulatory DNA-binding protein sites, corresponding to regulation of 62 sRNAs, that could lead to new understanding of sRNA transcription regulation. For 32 sRNAs, we also propose a subset of top targets filtered by engagement of regions that exhibit binding site accessibility behavior in vivo. We broadly anticipate that the proposed approach will be useful for sRNA-reliant network characterization in bacteria. Such investigations under pathogenesis-relevant environmental conditions will enable us to deduce complex rapid-regulation schemes that support infection.
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Bridget Li
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Javier González Martínez
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Matthew Law
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Cindy Ejindu
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Éric Massé
- Department of Biochemistry and Functional Genomics, Universitéde Sherbrooke, RNA Group, Sherbrooke, QC, Canada
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
9
|
Biswas R, Ghosh D, Dutta B, Halder U, Goswami P, Bandopadhyay R. Potential Non-coding RNAs from Microorganisms and their Therapeutic Use in the Treatment of Different Human Cancers. Curr Gene Ther 2021; 21:207-215. [PMID: 33390136 DOI: 10.2174/1566523220999201230204814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Cancer therapy describes the treatment of cancer, often with surgery, chemotherapy, and radiotherapy. Additionally, RNA interference (RNAi) is likely to be considered a new emerging, alternative therapeutic approach for silencing/targeting cancer-related genes. RNAi can exert antiproliferative and proapoptotic effects by targeting functional carcinogenic molecules or knocking down gene products of cancer-related genes. However, in contrast to conventional cancer therapies, RNAi based therapy seems to have fewer side effects. Transcription signal sequence and conserved sequence analysis-showed that microorganisms could be a potent source of non-coding RNAs. This review concluded that mapping of RNAi mechanism and RNAi based drug delivery approaches is expected to lead a better prospective of cancer therapy.
Collapse
Affiliation(s)
- Raju Biswas
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Dipanjana Ghosh
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Bhramar Dutta
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Urmi Halder
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Prittam Goswami
- Haldia Institute of Technology, HIT College Rd, Kshudiram Nagar, Haldia-721657, West Bengal, India
| | - Rajib Bandopadhyay
- UGC-Center of Advanced study, Department of Botany, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
10
|
Bar A, Argaman L, Altuvia Y, Margalit H. Prediction of Novel Bacterial Small RNAs From RIL-Seq RNA-RNA Interaction Data. Front Microbiol 2021; 12:635070. [PMID: 34093460 PMCID: PMC8175672 DOI: 10.3389/fmicb.2021.635070] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
The genomic revolution and subsequent advances in large-scale genomic and transcriptomic technologies highlighted hidden genomic treasures. Among them stand out non-coding small RNAs (sRNAs), shown to play important roles in post-transcriptional regulation of gene expression in both pro- and eukaryotes. Bacterial sRNA-encoding genes were initially identified in intergenic regions, but recent evidence suggest that they can be encoded within other, well-defined, genomic elements. This notion was strongly supported by data generated by RIL-seq, a RNA-seq-based methodology we recently developed for deciphering chaperon-dependent sRNA-target networks in bacteria. Applying RIL-seq to Hfq-bound RNAs in Escherichia coli, we found that ∼64% of the detected RNA pairs involved known sRNAs, suggesting that yet unknown sRNAs may be included in the ∼36% remaining pairs. To determine the latter, we first tested and refined a set of quantitative features derived from RIL-seq data, which distinguish between Hfq-dependent sRNAs and “other RNAs”. We then incorporated these features in a machine learning-based algorithm that predicts novel sRNAs from RIL-seq data, and identified high-scoring candidates encoded in various genomic regions, mostly intergenic regions and 3′ untranslated regions, but also 5′ untranslated regions and coding sequences. Several candidates were further tested and verified by northern blot analysis as Hfq-dependent sRNAs. Our study reinforces the emerging concept that sRNAs are encoded within various genomic elements, and provides a computational framework for the detection of additional sRNAs in Hfq RIL-seq data of E. coli grown under different conditions and of other bacteria manifesting Hfq-mediated sRNA-target interactions.
Collapse
Affiliation(s)
- Amir Bar
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yael Altuvia
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Okaro U, George S, Anderson B. What Is in a Cat Scratch? Growth of Bartonella henselae in a Biofilm. Microorganisms 2021; 9:835. [PMID: 33919891 PMCID: PMC8070961 DOI: 10.3390/microorganisms9040835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Bartonella henselae (B. henselae) is a gram-negative bacterium that causes cat scratch disease, bacteremia, and endocarditis, as well as other clinical presentations. B. henselae has been shown to form a biofilm in vitro that likely plays a role in the establishment and persistence of the bacterium in the host. Biofilms are also known to form in the cat flea vector; hence, the ability of this bacterium to form a biofilm has broad biological significance. The release of B. henselae from a biofilm niche appears to be important in disease persistence and relapse in the vertebrate host but also in transmission by the cat flea vector. It has been shown that the BadA adhesin of B. henselae is critical for adherence and biofilm formation. Thus, the upregulation of badA is important in initiating biofilm formation, and down-regulation is important in the release of the bacterium from the biofilm. We summarize the current knowledge of biofilm formation in Bartonella species and the role of BadA in biofilm formation. We discuss the evidence that defines possible mechanisms for the regulation of the genes required for biofilm formation. We further describe the regulation of those genes in the conditions that mimic both the arthropod vector and the mammalian host for B. henselae. The treatment for persistent B. henselae infection remains a challenge; hence, a better understanding of the mechanisms by which this bacterium persists in its host is critical to inform future efforts to develop drugs to treat such infections.
Collapse
Affiliation(s)
- Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Sierra George
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Burt Anderson
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| |
Collapse
|
12
|
Aoyama JJ, Raina M, Storz G. Synthetic dual-function RNA reveals features necessary for target regulation. J Bacteriol 2021; 204:JB0034521. [PMID: 34460309 PMCID: PMC8765420 DOI: 10.1128/jb.00345-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Small base pairing RNAs (sRNAs) and small proteins comprise two classes of regulators that allow bacterial cells to adapt to a wide variety of growth conditions. A limited number of transcripts encoding both of these activities, regulation of mRNA expression by base pairing and synthesis of a small regulatory protein, have been identified. Given that few have been characterized, little is known about the interplay between the two regulatory functions. To investigate the competition between the two activities, we constructed synthetic dual-function RNAs, hereafter referred to as MgtSR or MgtRS, comprised of the Escherichia coli sRNA MgrR and the open reading frame encoding the small protein MgtS. MgrR is a 98 nt base pairing sRNA that negatively regulates eptB encoding phosphoethanolamine transferase. MgtS is a 31 aa small inner membrane protein that is required for the accumulation of MgtA, a magnesium (Mg2+) importer. Expression of the separate genes encoding MgrR and MgtS is normally induced in response to low Mg2+ by the PhoQP two-component system. By generating various versions of this synthetic dual-function RNA, we probed how the organization of components and the distance between the coding and base pairing sequences contribute to the proper function of both activities of a dual-function RNA. By understanding the features of natural and synthetic dual-function RNAs, future synthetic molecules can be designed to maximize their regulatory impact. IMPORTANCE Dual-function RNAs in bacteria encode a small protein and also base pair with mRNAs to act as small, regulatory RNAs. Given that only a limited number of dual-function RNAs have been characterized, further study of these regulators is needed to increase understanding of their features. This study demonstrates that a functional synthetic dual-regulator can be constructed from separate components and used to study the functional organization of dual-function RNAs, with the goal of exploiting these regulators.
Collapse
Affiliation(s)
- Jordan J. Aoyama
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Biological Sciences Graduate Program, University of Maryland, College Park, Maryland, USA
| | - Medha Raina
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Hör J, Di Giorgio S, Gerovac M, Venturini E, Förstner KU, Vogel J. Grad-seq shines light on unrecognized RNA and protein complexes in the model bacterium Escherichia coli. Nucleic Acids Res 2020; 48:9301-9319. [PMID: 32813020 PMCID: PMC7498339 DOI: 10.1093/nar/gkaa676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Silvia Di Giorgio
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Elisa Venturini
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Konrad U Förstner
- ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany.,TH Köln, Faculty of Information Science and Communication Studies, D-50678 Cologne, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
14
|
Holmqvist E, Berggren S, Rizvanovic A. RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194596. [PMID: 32565402 DOI: 10.1016/j.bbagrm.2020.194596] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/02/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
Regulatory small RNAs (sRNAs) ubiquitously impact bacterial physiology through antisense-mediated control of mRNA translation and stability. In Gram negative bacteria, sRNAs often associate with RNA-binding proteins (RBPs), both to gain cellular stability and to enable regulatory efficiency. The Hfq and CsrA proteins were for long the only known global RBPs implicated in sRNA biology. During the last five years, the FinO domain-containing protein ProQ has emerged as another global RBP with a broad spectrum of sRNA and mRNA ligands. This review provides a summary of the current knowledge of enterobacterial ProQ, with a special focus on RNA binding activity, RNA ligand preferences, influence on RNA stability and gene expression, and impact on bacterial physiology. Considering that characterization of ProQ is still in its infancy, we highlight aspects that, when addressed, will provide important clues to the physiological functions and regulatory mechanisms of this globally acting RBP.
Collapse
MESH Headings
- Gene Expression Regulation, Bacterial
- Ligands
- Protein Binding
- Protein Interaction Domains and Motifs
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Erik Holmqvist
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden.
| | - Sofia Berggren
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden
| | - Alisa Rizvanovic
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Husargatan 3, S-75124 Uppsala, Sweden
| |
Collapse
|
15
|
Jørgensen MG, Pettersen JS, Kallipolitis BH. sRNA-mediated control in bacteria: An increasing diversity of regulatory mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194504. [PMID: 32061884 DOI: 10.1016/j.bbagrm.2020.194504] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022]
Abstract
Small regulatory RNAs (sRNAs) act as post-transcriptional regulators controlling bacterial adaptation to environmental changes. Our current understanding of the mechanisms underlying sRNA-mediated control is mainly based on studies in Escherichia coli and Salmonella. Ever since the discovery of sRNAs decades ago, these Gram-negative species have served as excellent model organisms in the field of sRNA biology. More recently, the role of sRNAs in gene regulation has become the center of attention in a broader range of species, including Gram-positive model organisms. Here, we highlight some of the most apparent similarities and differences between Gram-negative and Gram-positive bacteria with respect to the mechanisms underlying sRNA-mediated control. Although key aspects of sRNA regulation appear to be highly conserved, novel themes are arising from studies in Gram-positive species, such as a clear abundance of sRNAs acting through multiple C-rich motifs, and an apparent lack of RNA-binding proteins with chaperone activity.
Collapse
Affiliation(s)
- Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | - Birgitte H Kallipolitis
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
16
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
17
|
Madikonda AK, Shaikh A, Khanra S, Yakkala H, Yellaboina S, Lin-Chao S, Siddavattam D. Metabolic remodeling in Escherichia coli MG1655. A prophage e14-encoded small RNA, co293, post-transcriptionally regulates transcription factors HcaR and FadR. FEBS J 2020; 287:4767-4782. [PMID: 32061118 DOI: 10.1111/febs.15247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 11/26/2022]
Abstract
In previous studies, we have shown the existence of metabolic remodeling in glucose-grown Escherichia coli MG1655 cells expressing the esterase Orf306 from the opd island of Sphingobium fuliginis. We now show that Orf306-dependent metabolic remodeling is due to regulation of a novel small RNA (sRNA). Endogenous propionate, produced due to the esterase/lipase activity of Orf306, repressed expression of a novel E. coli sRNA, co293. This sRNA post-transcriptionally regulates expression of the transcription factors HcaR and FadR either by inhibiting translation or by destabilizing their transcripts. Hence, repression of co293 expression elevates the levels of HcaR and FadR with consequent activation of alternative carbon catabolic pathways. HcaR activates the hca and MHP operons leading to upregulation of the phenyl propionate and hydroxy phenyl propionate (HPP) degradation pathways. Similarly, FadR stimulates the expression of the transcription factor IclR which negatively regulates the glyoxylate bypass pathway genes, aceBAK.
Collapse
Affiliation(s)
- Ashok Kumar Madikonda
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Akbarpasha Shaikh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sonali Khanra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Harshita Yakkala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sailu Yellaboina
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Nangang, Taiwan
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| |
Collapse
|
18
|
Saha J, Saha BK, Pal Sarkar M, Roy V, Mandal P, Pal A. Comparative Genomic Analysis of Soil Dwelling Bacteria Utilizing a Combinational Codon Usage and Molecular Phylogenetic Approach Accentuating on Key Housekeeping Genes. Front Microbiol 2019; 10:2896. [PMID: 31921071 PMCID: PMC6928123 DOI: 10.3389/fmicb.2019.02896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
Soil is a diversified and complex ecological niche, home to a myriad of microorganisms particularly bacteria. The physico-chemical complexities of soil results in a plethora of physiological variations to exist within the different types of soil dwelling bacteria, giving rise to a wide variation in genome structure and complexity. This serves as an attractive proposition to analyze and compare the genome of a large number soil bacteria to comprehend their genome complexity and evolution. In this study a combination of codon usage and molecular phylogenetics of the whole genome and key housekeeping genes like infB (translation initiation factor 2), trpB (tryptophan synthase, beta subunit), atpD (ATP synthase, beta subunit), and rpoB (RNA polymerase, beta subunit) of 92 soil bacterial species spread across the entire eubacterial domain and residing in different soil types was performed. The results indicated the direct relationship of genome size with codon bias and coding frequency in the studied bacteria. The codon usage profile demonstrated by the gene trpB was found to be relatively different from the rest of the housekeeping genes with a large number of bacteria having a greater percentage of genes with Nc values less than the Nc of trpB. The results from the overall codon usage bias profile also depicted that the codon usage bias in the key housekeeping genes of soil bacteria was majorly due to selectional pressure and not mutation. The analysis of hydrophobicity of the gene product encoded by the rpoB coding sequences demonstrated tight clustering across all the soil bacteria suggesting conservation of protein structure for maintenance of form and function. The phylogenetic affinities inferred using 16S rRNA gene and the housekeeping genes demonstrated conflicting signals with trpB gene being the noisiest one. The housekeeping gene atpD was found to depict the least amount of evolutionary change in the soil bacteria considered in this study except in two Clostridium species. The phylogenetic and codon usage analysis of the soil bacteria consistently demonstrated the relatedness of Azotobacter chroococcum with different species of the genus Pseudomonas.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Barnan K. Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
19
|
Taneja S, Dutta T. On a stake-out: Mycobacterial small RNA identification and regulation. Noncoding RNA Res 2019; 4:86-95. [PMID: 32083232 PMCID: PMC7017587 DOI: 10.1016/j.ncrna.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/30/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022] Open
Abstract
Persistence of mycobacteria in the hostile environment of human macrophage is pivotal for its successful pathogenesis. Rapid adaptation to diverse stresses is the key aspect for their survival in the host cells. A range of heterogeneous mechanisms operate in bacteria to retaliate stress conditions. Small RNAs (sRNA) have been implicated in many of those mechanisms in either a single or multiple regulatory networks to post-transcriptionally modulate bacterial gene expression. Although small RNA profiling in mycobacteria by advanced technologies like deep sequencing, tilling microarray etc. have identified hundreds of sRNA, however, a handful of those small RNAs have been unearthed with precise regulatory mechanism. Extensive investigations on sRNA-mediated gene regulations in eubacteria like Escherichia coli revealed the existence of a plethora of distinctive sRNA mechanisms e.g. base pairing, protein sequestration, RNA decoy etc. Increasing studies on mycobacterial sRNA also discovered several eccentric mechanisms where sRNAs act at the posttranscriptional stage to either activate or repress target gene expression that lead to promote mycobacterial survival in stresses. Several intrinsic features like high GC content, absence of any homologue of abundant RNA chaperones, Hfq and ProQ, isolate sRNA mechanisms of mycobacteria from that of other bacteria. An insightful approach has been taken in this review to describe sRNA identification and its regulations in mycobacterial species especially in Mycobacterium tuberculosis.
Collapse
Key Words
- Anti-antisense
- Antisense
- Base pairing
- CDS, coding sequence
- Gene regulation by sRNA
- IGR, intergenic region
- ORF, open reading frame
- RBS, Ribosome binding site
- RNAP, RNA polymerase
- SD, Shine Dalgarno sequence
- Small RNAs
- TF, transcription factor
- TIR, translation initiation region
- UTR, untranslated region
- nt, nucleotide
- sRNA, small RNA
Collapse
Affiliation(s)
| | - Tanmay Dutta
- RNA Biology Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
20
|
Coordinate regulation of the expression of SdsR toxin and its downstream pphA gene by RyeA antitoxin in Escherichia coli. Sci Rep 2019; 9:9627. [PMID: 31270363 PMCID: PMC6610125 DOI: 10.1038/s41598-019-45998-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
In Escherichia coli, SdsR and RyeA, a unique pair of mutually cis-encoded small RNAs (sRNAs), act as toxin and antitoxin, respectively. SdsR and RyeA expression are reciprocally regulated; however, how each regulates the synthesis of the other remains unclear. Here, we characterized the biosynthesis of the two sRNAs during growth and investigated their coordinate regulation using sdsR and ryeA promoter mutant strains. We found that RyeA transcription occurred even upon entry of cells into the stationary phase, but its apparent expression was restricted to exponentially growing cells because of its degradation by SdsR. Likewise, the appearance of SdsR was delayed owing to its RyeA-mediated degradation. We also found that the sdsR promoter was primarily responsible for transcription of the downstream pphA gene encoding a phosphatase and that pphA mRNA was synthesized by transcriptional read-through over the sdsR terminator. Transcription from the σ70-dependent ryeA promoter inhibited transcription from the σS-dependent sdsR promoter through transcriptional interference. This transcriptional inhibition also downregulated pphA expression, but RyeA itself did not downregulate pphA expression.
Collapse
|
21
|
Redefining the Small Regulatory RNA Transcriptome in Streptococcus pneumoniae Serotype 2 Strain D39. J Bacteriol 2019; 201:JB.00764-18. [PMID: 30833353 DOI: 10.1128/jb.00764-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/26/2019] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human respiratory pathogen and a leading cause of bacterial pneumonia worldwide. Small regulatory RNAs (sRNAs), which often act by posttranscriptionally regulating gene expression, have been shown to be crucial for the virulence of S. pneumoniae and other bacterial pathogens. Over 170 putative sRNAs have been identified in the S. pneumoniae TIGR4 strain (serotype 4) through transcriptomic studies, and a subset of these sRNAs has been further implicated in regulating pneumococcal pathogenesis. However, there is little overlap in the sRNAs identified among these studies, which indicates that the approaches used for sRNA identification were not sufficiently sensitive and robust and that there are likely many more undiscovered sRNAs encoded in the S. pneumoniae genome. Here, we sought to comprehensively identify sRNAs in Avery's virulent S. pneumoniae strain D39 using two independent RNA sequencing (RNA-seq)-based approaches. We developed an unbiased method for identifying novel sRNAs from bacterial RNA-seq data and have further tested the specificity of our analysis program toward identifying sRNAs encoded by both strains D39 and TIGR4. Interestingly, the genes for 15% of the putative sRNAs identified in strain TIGR4, including ones previously implicated in virulence, are not present in the strain D39 genome, suggesting that the differences in sRNA repertoires between these two serotypes may contribute to their strain-specific virulence properties. Finally, this study has identified 66 new sRNA candidates in strain D39, 30 of which have been further validated, raising the total number of sRNAs that have been identified in strain D39 to 112.IMPORTANCE Recent work has shown that sRNAs play crucial roles in S. pneumoniae pathogenesis, as inactivation of nearly one-third of the putative sRNA genes identified in one study led to reduced fitness or virulence in a murine model. Yet our understanding of sRNA-mediated gene regulation in S. pneumoniae has been hindered by limited knowledge about these regulatory RNAs, including which sRNAs are synthesized by different S. pneumoniae strains. We sought to address this problem by developing a sensitive sRNA detection technique to identify sRNAs in S. pneumoniae D39. A comparison of our data set reported here to those of other RNA-seq studies for S. pneumoniae strain D39 and TIGR4 has provided new insights into the S. pneumoniae sRNA transcriptome.
Collapse
|
22
|
Weaver J, Mohammad F, Buskirk AR, Storz G. Identifying Small Proteins by Ribosome Profiling with Stalled Initiation Complexes. mBio 2019; 10:e02819-18. [PMID: 30837344 PMCID: PMC6401488 DOI: 10.1128/mbio.02819-18] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/24/2019] [Indexed: 11/20/2022] Open
Abstract
Small proteins consisting of 50 or fewer amino acids have been identified as regulators of larger proteins in bacteria and eukaryotes. Despite the importance of these molecules, the total number of small proteins remains unknown because conventional annotation pipelines usually exclude small open reading frames (smORFs). We previously identified several dozen small proteins in the model organism Escherichia coli using theoretical bioinformatic approaches based on sequence conservation and matches to canonical ribosome binding sites. Here, we present an empirical approach for discovering new proteins, taking advantage of recent advances in ribosome profiling in which antibiotics are used to trap newly initiated 70S ribosomes at start codons. This approach led to the identification of many novel initiation sites in intergenic regions in E. coli We tagged 41 smORFs on the chromosome and detected protein synthesis for all but three. Not only are the corresponding genes intergenic but they are also found antisense to other genes, in operons, and overlapping other open reading frames (ORFs), some impacting the translation of larger downstream genes. These results demonstrate the utility of this method for identifying new genes, regardless of their genomic context.IMPORTANCE Proteins comprised of 50 or fewer amino acids have been shown to interact with and modulate the functions of larger proteins in a range of organisms. Despite the possible importance of small proteins, the true prevalence and capabilities of these regulators remain unknown as the small size of the proteins places serious limitations on their identification, purification, and characterization. Here, we present a ribosome profiling approach with stalled initiation complexes that led to the identification of 38 new small proteins.
Collapse
Affiliation(s)
- Jeremy Weaver
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Fuad Mohammad
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Choi JS, Kim W, Suk S, Park H, Bak G, Yoon J, Lee Y. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli. RNA Biol 2018; 15:1319-1335. [PMID: 30293519 PMCID: PMC6284582 DOI: 10.1080/15476286.2018.1532252] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 01/08/2023] Open
Abstract
Most small noncoding RNAs (sRNAs) are known to base pair with target mRNAs and regulate mRNA stability or translation to trigger various changes in the cell metabolism of Escherichia coli. The SdsR sRNA is expressed specifically during the stationary phase and represses tolC and mutS expression. However, it was not previously known whether the growth-phase-dependent regulation of SdsR is important for cell growth. Here, we ectopically expressed SdsR during the exponential phase and examined cell growth and survival. We found that ectopic expression of SdsR led to a significant and Hfq-dependent cell death with accompanying cell filamentation. This SdsR-driven cell death was alleviated by overexpression of RyeA, an sRNA transcribed on the opposite DNA strand, suggesting that SdsR/RyeA is a novel type of toxin-antitoxin (T/A) system in which both the toxin and the antitoxin are sRNAs. We defined the minimal region required for the SdsR-driven cell death. We also performed RNA-seq analysis and identified 209 genes whose expression levels were altered by more than two-fold following pulse expression of ectopic SdsR at exponential phase. Finally, we found that that the observed SdsR-driven cell death was mainly caused by the SdsR-mediated repression of yhcB, which encodes an inner membrane protein.
Collapse
Affiliation(s)
| | | | - Shinae Suk
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | - Geunu Bak
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | |
Collapse
|
24
|
Deng Y, Su Y, Liu S, Guo Z, Cheng C, Ma H, Wu J, Feng J, Chen C. Identification of a Novel Small RNA srvg23535 in Vibrio alginolyticus ZJ-T and Its Characterization With Phenotype MicroArray Technology. Front Microbiol 2018; 9:2394. [PMID: 30349521 PMCID: PMC6186989 DOI: 10.3389/fmicb.2018.02394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/18/2018] [Indexed: 01/28/2023] Open
Abstract
Small non-coding RNAs (sRNAs) are important modulators of gene expression and are involved in the pathogenesis and survival of prokaryotes. However, few studies have been conducted with Vibrio alginolyticus, which limits our ability to probe the regulation of virulence and environmental adaptation by sRNAs in this opportunistic pathogen. In this study, the sRNA candidate srvg23535 was identified in V. alginolyticus ZJ-T. The precise transcript end, secondary structure, and sequence conservation were determined. A srvg23535 null mutant was constructed and characterized by using Phenotype MicroArray (PM) technology. In silico target prediction was conducted by IntaRNA and TargetRNA2. Subsequently, a 107 nt transcript was validated with a sigma70 promoter at the 5' end and a Rho-independent terminator at the 3' end. The sRNA srvg23535 had four stem-loop structures and was conserved among Vibrio harveyi, Vibrio parahaemolyticus, and Vibrio splendidus. Deletion of srvg23535 in V. alginolyticus ZJ-T led to a weaker utilization of D-mannose, D-melibiose, lactulose, and inosine as carbon sources but stronger utilization of L-cysteine as nitrogen source. Moreover, the srvg2353 mutant showed stronger resistance to osmotic stress but weaker resistance to pH stress. Additionally, a total of 22 common targets were identified and several were related to the observed phenotype of the mutant. This study indicated that the novel sRNA, srvg23535, is conserved and restricted to Vibrio spp., affecting the utilization of several carbon and nitrogen sources and the response to osmotic and pH stress. These results extend our understanding of sRNA regulation in V. alginolyticus and provide a significant resource for the further study of the precise target mRNAs of srvg23535, which may provide targets for antibacterial therapeutic or attenuated vaccines against Vibrio spp.
Collapse
Affiliation(s)
- Yiqin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Youlu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhixun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changhong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Hongling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jinjun Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Xisha/Nansha Ocean Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
25
|
Yost S, Duran-Pinedo AE. The contribution of Tannerella forsythia dipeptidyl aminopeptidase IV in the breakdown of collagen. Mol Oral Microbiol 2018; 33:407-419. [PMID: 30171738 DOI: 10.1111/omi.12244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
In this study, we characterized a serine protease from Tannerella forsythia that degrades gelatin, type I, and III collagen. Tannerella forsythia is associated with periodontitis progression and severity. The primary goal of this research was to understand the mechanisms by which T. forsythia contributes to periodontitis progression. One of our previous metatranscriptomic analysis revealed that during periodontitis progression T. forsythia highly expressed the bfor_1659 ORF. The N-terminal end is homologous to dipeptidyl aminopeptidase IV (DPP IV). DPP IV is a serine protease that cleaves X-Pro or X-Ala dipeptide from the N-terminal end of proteins. Collagen type I is rich in X-Pro and X-Ala sequences, and it is the primary constituent of the periodontium. This work assessed the collagenolytic and gelatinolytic properties of BFOR_1659. To that end, the complete BFOR_1659 and its domains were purified as His-tagged recombinant proteins, and their collagenolytic activity was tested on collagen-like substrates, collagen type I and III combined, and on the extracellular matrix (ECM) formed on human gingival fibroblasts culture HGF-1. BFOR_1659 was only found in T. forsythia supernatants, highlighting its potential role on the pathogenicity of T. forsythia. We also found that BFOR_1659 efficiently degrades all tested substrates but the individual domains were inactive. Given that BFOR_1659 is highly expressed in the periodontal pocket, its clinical relevance is suggested to periodontitis progression.
Collapse
Affiliation(s)
- Susan Yost
- Forsyth Institute, Cambridge, Massachusetts
| | | |
Collapse
|
26
|
Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms. Gene 2018; 656:60-72. [PMID: 29501814 DOI: 10.1016/j.gene.2018.02.068] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/19/2018] [Accepted: 02/27/2018] [Indexed: 11/23/2022]
Abstract
Small RNAs (sRNAs) in bacteria have evolved with diverse mechanisms to balance their target gene expression in response to changes in the environment. Accumulating studies on bacterial regulatory processes firmly established that sRNAs modulate their target gene expression generally at the posttranscriptional level. Identification of large number of sRNAs by advanced technologies, like deep sequencing, tilling microarray, indicates the existence of a plethora of distinctive sRNA-mediated regulatory mechanisms in bacteria. Types of the novel mechanisms are increasing with the discovery of new sRNAs. Complementary base pairing between sRNAs and target RNAs assisted by RNA chaperones like Hfq and ProQ, in many occasions, to regulate the cognate gene expression is prevalent in sRNA mechanisms. sRNAs, in most studied cases, can directly base pair with target mRNA to remodel its expression. Base pairing can happen either in the untranslated regions or in the coding regions of mRNA to activate/repress its translation. sRNAs also act as target mimic to titrate away different regulatory RNAs from its target. Other mechanism includes the sequestration of regulatory proteins, especially transcription factors, by sRNAs. Numerous sRNAs, following analogous mechanism, are widespread in bacteria, and thus, has drawn immense attention for the development of RNA-based technologies. Nevertheless, typical sRNA mechanisms are also discovered to be confined in some bacteria. Analysis of the sRNA mechanisms unravels their existence in both the single step processes and the complex regulatory networks with a global effect on cell physiology. This review deals with the diverse array of mechanisms, which sRNAs follow to maintain bacterial lifestyle.
Collapse
|
27
|
Identification and functional characterization of bacterial small non-coding RNAs and their target: A review. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Lott SC, Wolfien M, Riege K, Bagnacani A, Wolkenhauer O, Hoffmann S, Hess WR. Customized workflow development and data modularization concepts for RNA-Sequencing and metatranscriptome experiments. J Biotechnol 2017; 261:85-96. [DOI: 10.1016/j.jbiotec.2017.06.1203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/14/2022]
|
29
|
Kay KL, Breidt F, Fratamico PM, Baranzoni GM, Kim GH, Grunden AM, Oh DH. Escherichia coli O157:H7 Acid Sensitivity Correlates with Flocculation Phenotype during Nutrient Limitation. Front Microbiol 2017; 8:1404. [PMID: 28798736 PMCID: PMC5526969 DOI: 10.3389/fmicb.2017.01404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 07/11/2017] [Indexed: 01/16/2023] Open
Abstract
Shiga toxin producing Escherichia coli (STEC) strains vary in acid resistance; however, little is known about the underlying mechanisms that result in strain specific differences. Among 25 STEC O157:H7 strains tested, 7 strains flocculated when grown statically for 18 h in minimal salts medium at 37°C, while 18 strains did not. Interestingly, the flocculation phenotype (cells came out of suspension) was found to correlate with degree of acid sensitivity in an assay with 400 mM acetic acid solution at pH 3.3 targeting acidified foods. Strains exhibiting flocculation were more acid sensitive and were designated FAS, for flocculation acid sensitive, while the acid resistant strain designated PAR for planktonic acid resistant. Flocculation was not observed for any strains during growth in complex medium (Luria Bertani broth). STEC strains B201 and B241 were chosen as representative FAS (2.4 log reduction) and PAR (0.15 log reduction) strains, respectively, due to differences in acid resistance and flocculation phenotype. Results from electron microscopy showed evidence of fimbriae production in B201, whereas fimbriae were not observed in B241.Curli fimbriae production was identified through plating on Congo red differential medium, and all FAS strains showed curli fimbriae production. Surprisingly, 5 PAR strains also had evidence of curli production. Transcriptomic and targeted gene expression data for B201 and B241indicated that csg and hde (curli and acid induced chaperone genes, respectively) expression positively correlated with the phenotypic differences observed for these strains. These data suggest that FAS strains grown in minimal medium express curli, resulting in a flocculation phenotype. This may be regulated by GcvB, which positively regulates curli fimbriae production and represses acid chaperone proteins. RpoS and other regulatory mechanisms may impact curli fimbriae production, as well. These findings may help elucidate mechanisms underlying differences among STEC strains in relating acid resistance and biofilm formation.
Collapse
Affiliation(s)
- Kathryn L. Kay
- Department of Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, United States
- Food Science Research Unit, United States Department of Agriculture-Agriculture Research ServiceRaleigh, NC, United States
| | - Frederick Breidt
- Department of Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, United States
- Food Science Research Unit, United States Department of Agriculture-Agriculture Research ServiceRaleigh, NC, United States
| | - Pina M. Fratamico
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research CenterWyndmoor, PA, United States
| | - Gian M. Baranzoni
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research CenterWyndmoor, PA, United States
| | - Gwang-Hee Kim
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research CenterWyndmoor, PA, United States
- Department of Food Science and Biotechnology, College of Bioscience and Biotechnology, Kangwon National UniversityChuncheon, South Korea
| | - Amy M. Grunden
- Department of Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, United States
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Bioscience and Biotechnology, Kangwon National UniversityChuncheon, South Korea
| |
Collapse
|
30
|
Transcriptional Variation of Diverse Enteropathogenic Escherichia coli Isolates under Virulence-Inducing Conditions. mSystems 2017; 2:mSystems00024-17. [PMID: 28766584 PMCID: PMC5527300 DOI: 10.1128/msystems.00024-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/06/2017] [Indexed: 12/23/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) bacteria are a diverse group of pathogens that cause moderate to severe diarrhea in young children in developing countries. EPEC isolates can be further subclassified as typical EPEC (tEPEC) isolates that contain the bundle-forming pilus (BFP) or as atypical EPEC (aEPEC) isolates that do not contain BFP. Comparative genomics studies have recently highlighted the considerable genomic diversity among EPEC isolates. In the current study, we used RNA sequencing (RNA-Seq) to characterize the global transcriptomes of eight tEPEC isolates representing the identified genomic diversity, as well as one aEPEC isolate. The global transcriptomes were determined for the EPEC isolates under conditions of laboratory growth that are known to induce expression of virulence-associated genes. The findings demonstrate that unique genes of EPEC isolates from diverse phylogenomic lineages contribute to variation in their global transcriptomes. There were also phylogroup-specific differences in the global transcriptomes, including genes involved in iron acquisition, which had significant differential expression in the EPEC isolates belonging to phylogroup B2. Also, three EPEC isolates from the same phylogenomic lineage (EPEC8) had greater levels of similarity in their genomic content and exhibited greater similarities in their global transcriptomes than EPEC from other lineages; however, even among closely related isolates there were isolate-specific differences among their transcriptomes. These findings highlight the transcriptional variability that correlates with the previously unappreciated genomic diversity of EPEC. IMPORTANCE Recent studies have demonstrated that there is considerable genomic diversity among EPEC isolates; however, it is unknown if this genomic diversity leads to differences in their global transcription. This study used RNA-Seq to compare the global transcriptomes of EPEC isolates from diverse phylogenomic lineages. We demonstrate that there are lineage- and isolate-specific differences in the transcriptomes of genomically diverse EPEC isolates during growth under in vitro virulence-inducing conditions. This study addressed biological variation among isolates of a single pathovar in an effort to demonstrate that while each of these isolates is considered an EPEC isolate, there is significant transcriptional diversity among members of this pathovar. Future studies should consider whether this previously undescribed transcriptional variation may play a significant role in isolate-specific variability of EPEC clinical presentations.
Collapse
|
31
|
Neuhaus K, Landstorfer R, Simon S, Schober S, Wright PR, Smith C, Backofen R, Wecko R, Keim DA, Scherer S. Differentiation of ncRNAs from small mRNAs in Escherichia coli O157:H7 EDL933 (EHEC) by combined RNAseq and RIBOseq - ryhB encodes the regulatory RNA RyhB and a peptide, RyhP. BMC Genomics 2017; 18:216. [PMID: 28245801 PMCID: PMC5331693 DOI: 10.1186/s12864-017-3586-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/13/2017] [Indexed: 12/14/2022] Open
Abstract
Background While NGS allows rapid global detection of transcripts, it remains difficult to distinguish ncRNAs from short mRNAs. To detect potentially translated RNAs, we developed an improved protocol for bacterial ribosomal footprinting (RIBOseq). This allowed distinguishing ncRNA from mRNA in EHEC. A high ratio of ribosomal footprints per transcript (ribosomal coverage value, RCV) is expected to indicate a translated RNA, while a low RCV should point to a non-translated RNA. Results Based on their low RCV, 150 novel non-translated EHEC transcripts were identified as putative ncRNAs, representing both antisense and intergenic transcripts, 74 of which had expressed homologs in E. coli MG1655. Bioinformatics analysis predicted statistically significant target regulons for 15 of the intergenic transcripts; experimental analysis revealed 4-fold or higher differential expression of 46 novel ncRNA in different growth media. Out of 329 annotated EHEC ncRNAs, 52 showed an RCV similar to protein-coding genes, of those, 16 had RIBOseq patterns matching annotated genes in other enterobacteriaceae, and 11 seem to possess a Shine-Dalgarno sequence, suggesting that such ncRNAs may encode small proteins instead of being solely non-coding. To support that the RIBOseq signals are reflecting translation, we tested the ribosomal-footprint covered ORF of ryhB and found a phenotype for the encoded peptide in iron-limiting condition. Conclusion Determination of the RCV is a useful approach for a rapid first-step differentiation between bacterial ncRNAs and small mRNAs. Further, many known ncRNAs may encode proteins as well. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3586-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany. .,Core Facility Microbiome/NGS, ZIEL Institute for Food & Health, Weihenstephaner Berg 3, D-85354, Freising, Germany.
| | - Richard Landstorfer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Svenja Simon
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Steffen Schober
- Institut für Nachrichtentechnik, Universität Ulm, Albert-Einstein-Allee 43, D-89081, Ulm, Germany
| | - Patrick R Wright
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Cameron Smith
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science and BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, D-79110, Freiburg, Germany
| | - Romy Wecko
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Daniel A Keim
- Informatik und Informationswissenschaft, Universität Konstanz, D-78457, Konstanz, Germany
| | - Siegfried Scherer
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| |
Collapse
|
32
|
Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. mSphere 2017; 2:mSphere00009-17. [PMID: 28217741 PMCID: PMC5311112 DOI: 10.1128/msphere.00009-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 01/22/2023] Open
Abstract
Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.
Collapse
|
33
|
The Small RNA GcvB Promotes Mutagenic Break Repair by Opposing the Membrane Stress Response. J Bacteriol 2016; 198:3296-3308. [PMID: 27698081 PMCID: PMC5116933 DOI: 10.1128/jb.00555-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Microbes and human cells possess mechanisms of mutagenesis activated by stress responses. Stress-inducible mutagenesis mechanisms may provide important models for mutagenesis that drives host-pathogen interactions, antibiotic resistance, and possibly much of evolution generally. In Escherichia coli, repair of DNA double-strand breaks is switched to a mutagenic mode, using error-prone DNA polymerases, via the SOS DNA damage and general (σS) stress responses. We investigated small RNA (sRNA) clients of Hfq, an RNA chaperone that promotes mutagenic break repair (MBR), and found that GcvB promotes MBR by allowing a robust σS response, achieved via opposing the membrane stress (σE) response. Cells that lack gcvB were MBR deficient and displayed reduced σS-dependent transcription but not reduced σS protein levels. The defects in MBR and σS-dependent transcription in ΔgcvB cells were alleviated by artificially increasing σS levels, implying that GcvB promotes mutagenesis by allowing a normal σS response. ΔgcvB cells were highly induced for the σE response, and blocking σE response induction restored both mutagenesis and σS-promoted transcription. We suggest that GcvB may promote the σS response and mutagenesis indirectly, by promoting membrane integrity, which keeps σE levels lower. At high levels, σE might outcompete σS for binding RNA polymerase and so reduce the σS response and mutagenesis. The data show the delicate balance of stress response modulation of mutagenesis. IMPORTANCE Mutagenesis mechanisms upregulated by stress responses promote de novo antibiotic resistance and cross-resistance in bacteria, antifungal drug resistance in yeasts, and genome instability in cancer cells under hypoxic stress. This paper describes the role of a small RNA (sRNA) in promoting a stress-inducible-mutagenesis mechanism, mutagenic DNA break repair in Escherichia coli The roles of many sRNAs in E. coli remain unknown. This study shows that ΔgcvB cells, which lack the GcvB sRNA, display a hyperactivated membrane stress response and reduced general stress response, possibly because of sigma factor competition for RNA polymerase. This results in a mutagenic break repair defect. The data illuminate a function of GcvB sRNA in opposing the membrane stress response, and thus indirectly upregulating mutagenesis.
Collapse
|
34
|
Siqueira FM, de Morais GL, Higashi S, Beier LS, Breyer GM, de Sá Godinho CP, Sagot MF, Schrank IS, Zaha A, de Vasconcelos ATR. Mycoplasma non-coding RNA: identification of small RNAs and targets. BMC Genomics 2016; 17:743. [PMID: 27801290 PMCID: PMC5088518 DOI: 10.1186/s12864-016-3061-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Bacterial non-coding RNAs act by base-pairing as regulatory elements in crucial biological processes. We performed the identification of trans-encoded small RNAs (sRNA) from the genomes of Mycoplama hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis, which are Mycoplasma species that have been identified in the porcine respiratory system. Results A total of 47, 15 and 11 putative sRNAs were predicted in M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively. A comparative genomic analysis revealed the presence of species or lineage specific sRNA candidates. Furthermore, the expression profile of some M. hyopneumoniae sRNAs was determined by a reverse transcription amplification approach, in three different culture conditions. All tested sRNAs were transcribed in at least one condition. A detailed investigation revealed a differential expression profile for two M. hyopneumoniae sRNAs in response to oxidative and heat shock stress conditions, suggesting that their expression is influenced by environmental signals. Moreover, we analyzed sRNA-mRNA hybrids and accessed putative target genes for the novel sRNA candidates. The majority of the sRNAs showed interaction with multiple target genes, some of which could be linked to pathogenesis and cell homeostasis activity. Conclusion This study contributes to our knowledge of Mycoplasma sRNAs and their response to environmental changes. Furthermore, the mRNA target prediction provides a perspective for the characterization and comprehension of the function of the sRNA regulatory mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3061-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franciele Maboni Siqueira
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilherme Loss de Morais
- Laboratório Nacional de Computação Científica (LNCC), Laboratório de Bioinformática (LABINFO), Petrópolis, Rio de Janeiro, Brazil
| | - Susan Higashi
- Inria Grenoble Rhône-Alpes, 38330, Montbonnot Saint-Martin, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| | - Laura Scherer Beier
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriela Merker Breyer
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Caio Padoan de Sá Godinho
- Laboratório Nacional de Computação Científica (LNCC), Laboratório de Bioinformática (LABINFO), Petrópolis, Rio de Janeiro, Brazil
| | - Marie-France Sagot
- Inria Grenoble Rhône-Alpes, 38330, Montbonnot Saint-Martin, France.,Université Lyon 1, Villeurbanne, France.,CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France
| | - Irene Silveira Schrank
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Arnaldo Zaha
- Centro de Biotecnologia (CBiot), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | | |
Collapse
|
35
|
Garcia-Mazcorro JF, Barcenas-Walls JR. Thinking beside the box: Should we care about the non-coding strand of the 16S rRNA gene? FEMS Microbiol Lett 2016; 363:fnw171. [DOI: 10.1093/femsle/fnw171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/22/2022] Open
|
36
|
Ruiz-Larrabeiti O, Plágaro AH, Gracia C, Sevillano E, Gallego L, Hajnsdorf E, Kaberdin VR. A new custom microarray for sRNA profiling in Escherichia coli. FEMS Microbiol Lett 2016; 363:fnw131. [PMID: 27190161 DOI: 10.1093/femsle/fnw131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/25/2022] Open
Abstract
Bacterial small RNAs (sRNAs) play essential roles in the post-transcriptional control of gene expression. To improve their detection by conventional microarrays, we designed a custom microarray containing a group of probes targeting known and some putative Escherichia coli sRNAs. To assess its potential in detection of sRNAs, RNA profiling experiments were performed with total RNA extracted from E. coli MG1655 cells exponentially grown in rich (Luria-Bertani) and minimal (M9/glucose) media. We found that many sRNAs could yield reasonably strong and statistically significant signals corresponding to nearly all sRNAs annotated in the EcoCyc database. Besides differential expression of two sRNAs (GcvB and RydB), expression of other sRNAs was less affected by the composition of the growth media. Other examples of the differentially expressed sRNAs were revealed by comparing gene expression of the wild-type strain and its isogenic mutant lacking functional poly(A) polymerase I (pcnB). Further, northern blot analysis was employed to validate these data and to assess the existence of new putative sRNAs. Our results suggest that the use of custom microarrays with improved capacities for detection of sRNAs can offer an attractive opportunity for efficient gene expression profiling of sRNAs and their target mRNAs at the whole transcriptome level.
Collapse
Affiliation(s)
- Olatz Ruiz-Larrabeiti
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ander Hernández Plágaro
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Celine Gracia
- CNRS UMR8261 (previously FRE3630), University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Lucía Gallego
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Eliane Hajnsdorf
- CNRS UMR8261 (previously FRE3630), University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
37
|
Futai K, Terasaka N, Katoh T, Suga H. tRid, an enabling method to isolate previously inaccessible small RNA fractions. Methods 2016; 106:105-11. [PMID: 27163863 DOI: 10.1016/j.ymeth.2016.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
Detection of rare small RNA species whose sizes are overlapping with tRNAs often suffers from insufficient sensitivity due to the overwhelming abundance of tRNAs. We here report a method, named tRid (tRNA rid), for removing abundant tRNAs from small RNA fractions regardless of tRNA sequence species. By means of tRid, we are able to selectively enrich small RNAs which have been previously difficult to access due to mass existence of tRNAs in such fractions. A flexible tRNA-acylation ribozyme, known as flexizyme, is a key tool where the total tRNAs are aminoacylated with N-biotinylated phenylalanine regardless of tRNA sequences, and therefore the biotin-tagged tRNAs could be readily removed from the small RNA fractions by the use of streptavidin-immobilized magnetic beads. Next generation sequencing of the isolated small RNA fraction revealed that small RNAs with less than 200nt were effectively enriched, allowing us to identify previously unknown small RNAs in HeLa and E. coli.
Collapse
Affiliation(s)
- Kazuki Futai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
38
|
Abstract
Over the last decade, small (often noncoding) RNA molecules have been discovered as important regulators influencing myriad aspects of bacterial physiology and virulence. In particular, small RNAs (sRNAs) have been implicated in control of both primary and secondary metabolic pathways in many bacterial species. This chapter describes characteristics of the major classes of sRNA regulators, and highlights what is known regarding their mechanisms of action. Specific examples of sRNAs that regulate metabolism in gram-negative bacteria are discussed, with a focus on those that regulate gene expression by base pairing with mRNA targets to control their translation and stability.
Collapse
|
39
|
Abstract
Y. pestis exhibits dramatically different traits of pathogenicity and transmission, albeit their close genetic relationship with its ancestor-Y. pseudotuberculosis, a self-limiting gastroenteric pathogen. Y. pestis is evolved into a deadly pathogen and transmitted to mammals and/or human beings by infected flea biting or directly contacting with the infected animals. Various kinds of environmental changes are implicated into its complex life cycle and pathogenesis. Dynamic regulation of gene expression is critical for environmental adaptation or survival, primarily reflected by genetic regulation mediated by transcriptional factors and small regulatory RNAs at the transcriptional and posttranscriptional level, respectively. The effects of genetic regulation have been shown to profoundly influence Y. pestis physiology and pathogenesis such as stress resistance, biofilm formation, intracellular survival, and replication. In this chapter, we mainly summarize the progresses on popular methods of genetic regulation and on regulatory patterns and consequences of many key transcriptional and posttranscriptional regulators, with a particular emphasis on how genetic regulation influences the biofilm and virulence of Y. pestis.
Collapse
|
40
|
Rau MH, Bojanovič K, Nielsen AT, Long KS. Differential expression of small RNAs under chemical stress and fed-batch fermentation in E. coli. BMC Genomics 2015; 16:1051. [PMID: 26653712 PMCID: PMC4676190 DOI: 10.1186/s12864-015-2231-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/18/2015] [Indexed: 01/03/2023] Open
Abstract
Background Bacterial small RNAs (sRNAs) are recognized as posttranscriptional regulators involved in the control of bacterial lifestyle and adaptation to stressful conditions. Although chemical stress due to the toxicity of precursor and product compounds is frequently encountered in microbial bioprocessing applications, the involvement of sRNAs in this process is not well understood. We have used RNA sequencing to map sRNA expression in E. coli under chemical stress and high cell density fermentation conditions with the aim of identifying sRNAs involved in the transcriptional response and those with potential roles in stress tolerance. Results RNA sequencing libraries were prepared from RNA isolated from E. coli K-12 MG1655 cells grown under high cell density fermentation conditions or subjected to chemical stress with twelve compounds including four organic solvent-like compounds, four organic acids, two amino acids, geraniol and decanoic acid. We have discovered 253 novel intergenic transcripts with this approach, adding to the roughly 200 intergenic sRNAs previously reported in E. coli. There are eighty-four differentially expressed sRNAs during fermentation, of which the majority are novel, supporting possible regulatory roles for these transcripts in adaptation during different fermentation stages. There are a total of 139 differentially expressed sRNAs under chemical stress conditions, where twenty-nine exhibit significant expression changes in multiple tested conditions, suggesting that they may be involved in a more general chemical stress response. Among those with known functions are sRNAs involved in regulation of outer membrane proteins, iron availability, maintaining envelope homeostasis, as well as sRNAs incorporated into complex networks controlling motility and biofilm formation. Conclusions This study has used deep sequencing to reveal a wealth of hitherto undescribed sRNAs in E. coli and provides an atlas of sRNA expression during seventeen different growth and stress conditions. Although the number of novel sRNAs with regulatory functions is unknown, several exhibit specific expression patterns during high cell density fermentation and are differentially expressed in the presence of multiple chemicals, suggesting they may play regulatory roles during these stress conditions. These novel sRNAs, together with specific known sRNAs, are candidates for improving stress tolerance and our understanding of the E. coli regulatory network during fed-batch fermentation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2231-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Holm Rau
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Klara Bojanovič
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Alex Toftgaard Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| | - Katherine S Long
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, 2970, Hørsholm, Denmark.
| |
Collapse
|
41
|
van Nues RW, Castro-Roa D, Yuzenkova Y, Zenkin N. Ribonucleoprotein particles of bacterial small non-coding RNA IsrA (IS61 or McaS) and its interaction with RNA polymerase core may link transcription to mRNA fate. Nucleic Acids Res 2015; 44:2577-92. [PMID: 26609136 PMCID: PMC4824073 DOI: 10.1093/nar/gkv1302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/08/2015] [Indexed: 11/23/2022] Open
Abstract
Coupled transcription and translation in bacteria are tightly regulated. Some small RNAs (sRNAs) control aspects of this coupling by modifying ribosome access or inducing degradation of the message. Here, we show that sRNA IsrA (IS61 or McaS) specifically associates with core enzyme of RNAP in vivo and in vitro, independently of σ factor and away from the main nucleic-acids-binding channel of RNAP. We also show that, in the cells, IsrA exists as ribonucleoprotein particles (sRNPs), which involve a defined set of proteins including Hfq, S1, CsrA, ProQ and PNPase. Our findings suggest that IsrA might be directly involved in transcription or can participate in regulation of gene expression by delivering proteins associated with it to target mRNAs through its interactions with transcribing RNAP and through regions of sequence-complementarity with the target. In this eukaryotic-like model only in the context of a complex with its target, IsrA and its associated proteins become active. In this manner, in the form of sRNPs, bacterial sRNAs could regulate a number of targets with various outcomes, depending on the set of associated proteins.
Collapse
Affiliation(s)
- Rob W van Nues
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
42
|
Identification of novel sRNAs involved in biofilm formation, motility, and fimbriae formation in Escherichia coli. Sci Rep 2015; 5:15287. [PMID: 26469694 PMCID: PMC4606813 DOI: 10.1038/srep15287] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023] Open
Abstract
Bacterial small RNAs (sRNAs) are known regulators in many physiological processes. In Escherichia coli, a large number of sRNAs have been predicted, among which only about a hundred are experimentally validated. Despite considerable research, the majority of their functions remain uncovered. Therefore, collective analysis of the roles of sRNAs in specific cellular processes may provide an effective approach to identify their functions. Here, we constructed a collection of plasmids overexpressing 99 individual sRNAs, and analyzed their effects on biofilm formation and related phenotypes. Thirty-three sRNAs significantly affecting these cellular processes were identified. No consistent correlations were observed, except that all five sRNAs suppressing type I fimbriae inhibited biofilm formation. Interestingly, IS118, yet to be characterized, suppressed all the processes. Our data not only reveal potentially critical functions of individual sRNAs in biofilm formation and other phenotypes but also highlight the unexpected complexity of sRNA-mediated metabolic pathways leading to these processes.
Collapse
|
43
|
Small RNA Transcriptome of the Oral Microbiome during Periodontitis Progression. Appl Environ Microbiol 2015; 81:6688-99. [PMID: 26187962 DOI: 10.1128/aem.01782-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023] Open
Abstract
The oral microbiome is one of the most complex microbial communities in the human body, and due to circumstances not completely understood, the healthy microbial community becomes dysbiotic, giving rise to periodontitis, a polymicrobial inflammatory disease. We previously reported the results of community-wide gene expression changes in the oral microbiome during periodontitis progression and identified signatures associated with increasing severity of the disease. Small noncoding RNAs (sRNAs) are key players in posttranscriptional regulation, especially in fast-changing environments such as the oral cavity. Here, we expanded our analysis to the study of the sRNA metatranscriptome during periodontitis progression on the same samples for which mRNA expression changes were analyzed. We observed differential expression of 12,097 sRNAs, identifying a total of 20 Rfam sRNA families as being overrepresented in progression and 23 at baseline. Gene ontology activities regulated by the differentially expressed (DE) sRNAs included amino acid metabolism, ethanolamine catabolism, signal recognition particle-dependent cotranslational protein targeting to membrane, intron splicing, carbohydrate metabolism, control of plasmid copy number, and response to stress. In integrating patterns of expression of protein coding transcripts and sRNAs, we found that functional activities of genes that correlated positively with profiles of expression of DE sRNAs were involved in pathogenesis, proteolysis, ferrous iron transport, and oligopeptide transport. These findings represent the first integrated sequencing analysis of the community-wide sRNA transcriptome of the oral microbiome during periodontitis progression and show that sRNAs are key regulatory elements of the dysbiotic process leading to disease.
Collapse
|
44
|
Updegrove TB, Shabalina SA, Storz G. How do base-pairing small RNAs evolve? FEMS Microbiol Rev 2015; 39:379-91. [PMID: 25934120 DOI: 10.1093/femsre/fuv014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 01/12/2023] Open
Abstract
The increasing numbers of characterized base-pairing small RNAs (sRNAs) and the identification of these regulators in a broad range of bacteria are allowing comparisons between species and explorations of sRNA evolution. In this review, we describe some examples of trans-encoded base-pairing sRNAs that are species-specific and others that are more broadly distributed. We also describe examples of sRNA orthologs where different features are conserved. These examples provide the background for a discussion of mechanisms of sRNA evolution and selective pressures on the sRNAs and their mRNA target(s).
Collapse
Affiliation(s)
- Taylor B Updegrove
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Gisela Storz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
45
|
Tsai CH, Liao R, Chou B, Palumbo M, Contreras LM. Genome-wide analyses in bacteria show small-RNA enrichment for long and conserved intergenic regions. J Bacteriol 2015; 197:40-50. [PMID: 25313390 PMCID: PMC4288687 DOI: 10.1128/jb.02359-14] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022] Open
Abstract
Interest in finding small RNAs (sRNAs) in bacteria has significantly increased in recent years due to their regulatory functions. Development of high-throughput methods and more sophisticated computational algorithms has allowed rapid identification of sRNA candidates in different species. However, given their various sizes (50 to 500 nucleotides [nt]) and their potential genomic locations in the 5' and 3' untranslated regions as well as in intergenic regions, identification and validation of true sRNAs have been challenging. In addition, the evolution of bacterial sRNAs across different species continues to be puzzling, given that they can exert similar functions with various sequences and structures. In this study, we analyzed the enrichment patterns of sRNAs in 13 well-annotated bacterial species using existing transcriptome and experimental data. All intergenic regions were analyzed by WU-BLAST to examine conservation levels relative to species within or outside their genus. In total, more than 900 validated bacterial sRNAs and 23,000 intergenic regions were analyzed. The results indicate that sRNAs are enriched in intergenic regions, which are longer and more conserved than the average intergenic regions in the corresponding bacterial genome. We also found that sRNA-coding regions have different conservation levels relative to their flanking regions. This work provides a way to analyze how noncoding RNAs are distributed in bacterial genomes and also shows conserved features of intergenic regions that encode sRNAs. These results also provide insight into the functions of regions surrounding sRNAs and into optimization of RNA search algorithms.
Collapse
Affiliation(s)
- Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Rick Liao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Brendan Chou
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas, USA
| | - Michael Palumbo
- Computational Biology and Statistics, Wadsworth Center, Albany, New York, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
46
|
|
47
|
McClure R, Tjaden B, Genco C. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions. Front Microbiol 2014; 5:456. [PMID: 25221548 PMCID: PMC4148029 DOI: 10.3389/fmicb.2014.00456] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/11/2014] [Indexed: 01/17/2023] Open
Abstract
In the last several years, bacterial gene regulation via small RNAs (sRNAs) has been recognized as an important mechanism controlling expression of essential proteins that are critical to bacterial growth and metabolism. Technologies such as RNA-seq are rapidly expanding the field of sRNAs and are enabling a global view of the “sRNAome” of several bacterial species. While numerous sRNAs have been identified in a variety of both Gram-negative and Gram-positive bacteria, only a very small number have been fully characterized in the human pathogen Neisseria gonorrhoeae, the etiological agent of the STD gonorrhea. Here we present the first analysis of N. gonorrhoeae specifically focused on the identification of sRNAs through RNA-seq analysis of the organism cultured under different in vitro growth conditions. Using a new computational program, Rockhopper, to analyze prokaryotic RNA-seq data obtained from N. gonorrhoeae we identified several putative sRNAs and confirmed their expression and size through Northern blot analysis. In addition, RNA was collected from four different growth conditions (iron replete and deplete, as well as with and without co-culture with human endocervical cells). Many of the putative sRNAs identified shoed varying expression levels relative to the different growth conditions examine or were detected only under certain conditions but not others. Comparisons of identified sRNAs with the regulatory pattern of putative mRNA targets revealed possible functional roles for these sRNAs. These studies are the first to carry out a global analysis of N. gonorrhoeae specifically focused on sRNAs and show that RNA-mediated regulation may be an important mechanism of gene control in this human pathogen.
Collapse
Affiliation(s)
- Ryan McClure
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine Boston, MA, USA ; Department of Microbiology, Boston University School of Medicine Boston, MA, USA
| | - Brian Tjaden
- Department of Computer Science, Wellesley College Wellesley, MA, USA
| | - Caroline Genco
- Department of Medicine Section of Infectious Disease, Boston University School of Medicine Boston, MA, USA ; Department of Microbiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
48
|
Abstract
Efforts to understand the molecular basis of mycobacterial gene regulation are dominated by a protein-centric view. However, there is a growing appreciation that noncoding RNA, i.e., RNA that is not translated, plays a role in a wide variety of molecular mechanisms. Noncoding RNA comprises rRNA, tRNA, 4.5S RNA, RnpB, and transfer-messenger RNA, as well as a vast population of regulatory RNA, often dubbed "the dark matter of gene regulation." The regulatory RNA species comprise 5' and 3' untranslated regions and a rapidly expanding category of transcripts with the ability to base-pair with mRNAs or to interact with proteins. Regulatory RNA plays a central role in the bacterium's response to changes in the environment, and in this article we review emerging information on the presence and abundance of different types of noncoding RNA in mycobacteria.
Collapse
|
49
|
Aiso T, Kamiya S, Yonezawa H, Gamou S. Overexpression of an antisense RNA, ArrS, increases the acid resistance of Escherichia coli. MICROBIOLOGY-SGM 2014; 160:954-961. [PMID: 24600026 DOI: 10.1099/mic.0.075994-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The antisense RNA ArrS is complementary to a sequence in the 5' untranslated region of the gadE T3 mRNA, the largest transcript of gadE, which encodes a transcriptional activator of the glutamate-dependent acid resistance system in Escherichia coli. Expression of arrS is strongly induced during the stationary growth phase, particularly under acidic conditions, and transcription is dependent on σ(S) and GadE. The aim of the present study was to clarify the role of ArrS in controlling gadE expression by overexpressing arrS in E. coli. The results showed a marked increase in the survival of arrS-overexpressing cells at 2 h after a shift to pH 2.5. This was accompanied by increased expression of gadA, gadBC and gadE. The level of gadE T3 mRNA decreased markedly in response to arrS overexpression, and was accompanied by a marked increase in gadE mRNA T2. T2 mRNA had a monophosphorylated 5' terminus, which is usually found in cleaved mRNAs, and no T2 mRNA was observed in an RNase III-deficient cell strain. In addition, T2 mRNA was not generated by a P3-deleted gadE-luc translational fusion. These results suggest strongly that T2 mRNA is generated via the processing of T3 mRNA. Moreover, the T2 mRNA, which was abundant in arrS-overexpressing cells, was more stable than T3 mRNA in non-overexpressing cells. These results suggest that overexpression of ArrS positively regulates gadE expression in a post-transcriptional manner.
Collapse
Affiliation(s)
- Toshiko Aiso
- Department of Molecular Biology, Faculty of Health Sciences, Kyorin University, Hachioji, Tokyo 192-8508, Japan
| | - Shigeru Kamiya
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hideo Yonezawa
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2, Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Shinobu Gamou
- Department of Molecular Biology, Faculty of Health Sciences, Kyorin University, Hachioji, Tokyo 192-8508, Japan
| |
Collapse
|
50
|
Booth JA, Thomassen GOS, Rowe AD, Weel-Sneve R, Lagesen K, Kristiansen KI, Bjørås M, Rognes T, Lindvall JM. Tiling array study of MNNG treated Escherichia coli reveals a widespread transcriptional response. Sci Rep 2013; 3:3053. [PMID: 24157950 PMCID: PMC6505713 DOI: 10.1038/srep03053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/11/2013] [Indexed: 11/25/2022] Open
Abstract
The alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) is known to trigger the adaptive response by inducing the ada-regulon – consisting of three DNA repair enzymes Ada, AlkB, AlkA and the enigmatic AidB. We have applied custom designed tiling arrays to study transcriptional changes in Escherichia coli following a MNNG challenge. Along with the expected upregulation of the adaptive response genes (ada, alkA and alkB), we identified a number of differentially expressed transcripts, both novel and annotated. This indicates a wider regulatory response than previously documented. There were 250 differentially-expressed and 2275 similarly-expressed unannotated transcripts. We found novel upregulation of several stress-induced transcripts, including the SOS inducible genes recN and tisAB, indicating a novel role for these genes in alkylation repair. Furthermore, the ada-regulon A and B boxes were found to be insufficient to explain the regulation of the adaptive response genes after MNNG exposure, suggesting that additional regulatory elements must be involved.
Collapse
Affiliation(s)
- James A Booth
- 1] Centre for Molecular Biology and Neuroscience (CMBN) and Department of Microbiology, Oslo University Hospital, Rikshospitalet, PO Box 4950 Nydalen, NO-0424 Oslo, Norway [2] Department of Microbiology, University of Oslo, PO Box 4950 Nydalen, NO-0424 Oslo, Norway [3]
| | | | | | | | | | | | | | | | | |
Collapse
|