1
|
Hartl B, Risi S, Levin M. Evolutionary Implications of Self-Assembling Cybernetic Materials with Collective Problem-Solving Intelligence at Multiple Scales. ENTROPY (BASEL, SWITZERLAND) 2024; 26:532. [PMID: 39056895 PMCID: PMC11275831 DOI: 10.3390/e26070532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024]
Abstract
In recent years, the scientific community has increasingly recognized the complex multi-scale competency architecture (MCA) of biology, comprising nested layers of active homeostatic agents, each forming the self-orchestrated substrate for the layer above, and, in turn, relying on the structural and functional plasticity of the layer(s) below. The question of how natural selection could give rise to this MCA has been the focus of intense research. Here, we instead investigate the effects of such decision-making competencies of MCA agential components on the process of evolution itself, using in silico neuroevolution experiments of simulated, minimal developmental biology. We specifically model the process of morphogenesis with neural cellular automata (NCAs) and utilize an evolutionary algorithm to optimize the corresponding model parameters with the objective of collectively self-assembling a two-dimensional spatial target pattern (reliable morphogenesis). Furthermore, we systematically vary the accuracy with which the uni-cellular agents of an NCA can regulate their cell states (simulating stochastic processes and noise during development). This allows us to continuously scale the agents' competency levels from a direct encoding scheme (no competency) to an MCA (with perfect reliability in cell decision executions). We demonstrate that an evolutionary process proceeds much more rapidly when evolving the functional parameters of an MCA compared to evolving the target pattern directly. Moreover, the evolved MCAs generalize well toward system parameter changes and even modified objective functions of the evolutionary process. Thus, the adaptive problem-solving competencies of the agential parts in our NCA-based in silico morphogenesis model strongly affect the evolutionary process, suggesting significant functional implications of the near-ubiquitous competency seen in living matter.
Collapse
Affiliation(s)
- Benedikt Hartl
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
- Institute for Theoretical Physics, Center for Computational Materials Science (CMS), TU Wien, 1040 Wien, Austria
| | - Sebastian Risi
- Digital Design, IT University of Copenhagen, 2300 Copenhagen, Denmark;
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA;
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Levin M. Darwin's agential materials: evolutionary implications of multiscale competency in developmental biology. Cell Mol Life Sci 2023; 80:142. [PMID: 37156924 PMCID: PMC10167196 DOI: 10.1007/s00018-023-04790-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023]
Abstract
A critical aspect of evolution is the layer of developmental physiology that operates between the genotype and the anatomical phenotype. While much work has addressed the evolution of developmental mechanisms and the evolvability of specific genetic architectures with emergent complexity, one aspect has not been sufficiently explored: the implications of morphogenetic problem-solving competencies for the evolutionary process itself. The cells that evolution works with are not passive components: rather, they have numerous capabilities for behavior because they derive from ancestral unicellular organisms with rich repertoires. In multicellular organisms, these capabilities must be tamed, and can be exploited, by the evolutionary process. Specifically, biological structures have a multiscale competency architecture where cells, tissues, and organs exhibit regulative plasticity-the ability to adjust to perturbations such as external injury or internal modifications and still accomplish specific adaptive tasks across metabolic, transcriptional, physiological, and anatomical problem spaces. Here, I review examples illustrating how physiological circuits guiding cellular collective behavior impart computational properties to the agential material that serves as substrate for the evolutionary process. I then explore the ways in which the collective intelligence of cells during morphogenesis affect evolution, providing a new perspective on the evolutionary search process. This key feature of the physiological software of life helps explain the remarkable speed and robustness of biological evolution, and sheds new light on the relationship between genomes and functional anatomical phenotypes.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave. 334 Research East, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan St., Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Shreesha L, Levin M. Cellular Competency during Development Alters Evolutionary Dynamics in an Artificial Embryogeny Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25010131. [PMID: 36673272 PMCID: PMC9858125 DOI: 10.3390/e25010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 05/25/2023]
Abstract
Biological genotypes do not code directly for phenotypes; developmental physiology is the control layer that separates genomes from capacities ascertained by selection. A key aspect is cellular competency, since cells are not passive materials but descendants of unicellular organisms with complex context-sensitive behavioral capabilities. To probe the effects of different degrees of cellular competency on evolutionary dynamics, we used an evolutionary simulation in the context of minimal artificial embryogeny. Virtual embryos consisted of a single axis of positional information values provided by cells' 'structural genes', operated upon by an evolutionary cycle in which embryos' fitness was proportional to monotonicity of the axial gradient. Evolutionary dynamics were evaluated in two modes: hardwired development (genotype directly encodes phenotype), and a more realistic mode in which cells interact prior to evaluation by the fitness function ("regulative" development). We find that even minimal ability of cells with to improve their position in the embryo results in better performance of the evolutionary search. Crucially, we observed that increasing the behavioral competency masks the raw fitness encoded by structural genes, with selection favoring improvements to its developmental problem-solving capacities over improvements to its structural genome. This suggests the existence of a powerful ratchet mechanism: evolution progressively becomes locked in to improvements in the intelligence of its agential substrate, with reduced pressure on the structural genome. This kind of feedback loop in which evolution increasingly puts more effort into the developmental software than perfecting the hardware explains the very puzzling divergence of genome from anatomy in species like planaria. In addition, it identifies a possible driver for scaling intelligence over evolutionary time, and suggests strategies for engineering novel systems in silico and in bioengineering.
Collapse
Affiliation(s)
- Lakshwin Shreesha
- UFR Fundamental and Biomedical Sciences, Université Paris Cité, 75006 Paris, France
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
4
|
Budaev S, Kristiansen TS, Giske J, Eliassen S. Computational animal welfare: towards cognitive architecture models of animal sentience, emotion and wellbeing. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201886. [PMID: 33489298 PMCID: PMC7813262 DOI: 10.1098/rsos.201886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/04/2020] [Indexed: 05/08/2023]
Abstract
To understand animal wellbeing, we need to consider subjective phenomena and sentience. This is challenging, since these properties are private and cannot be observed directly. Certain motivations, emotions and related internal states can be inferred in animals through experiments that involve choice, learning, generalization and decision-making. Yet, even though there is significant progress in elucidating the neurobiology of human consciousness, animal consciousness is still a mystery. We propose that computational animal welfare science emerges at the intersection of animal behaviour, welfare and computational cognition. By using ideas from cognitive science, we develop a functional and generic definition of subjective phenomena as any process or state of the organism that exists from the first-person perspective and cannot be isolated from the animal subject. We then outline a general cognitive architecture to model simple forms of subjective processes and sentience. This includes evolutionary adaptation which contains top-down attention modulation, predictive processing and subjective simulation by re-entrant (recursive) computations. Thereafter, we show how this approach uses major characteristics of the subjective experience: elementary self-awareness, global workspace and qualia with unity and continuity. This provides a formal framework for process-based modelling of animal needs, subjective states, sentience and wellbeing.
Collapse
Affiliation(s)
- Sergey Budaev
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Tore S. Kristiansen
- Research Group Animal Welfare, Institute of Marine Research, PO Box 1870, 5817 Bergen, Norway
| | - Jarl Giske
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| | - Sigrunn Eliassen
- Department of Biological Sciences, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| |
Collapse
|
5
|
Tosh CR, McNally L. The relative efficiency of modular and non-modular networks of different size. Proc Biol Sci 2016; 282:rspb.2014.2568. [PMID: 25631996 PMCID: PMC4344152 DOI: 10.1098/rspb.2014.2568] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity.
Collapse
Affiliation(s)
- Colin R Tosh
- School of Biology, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | - Luke McNally
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
6
|
Calabretta R, Neirotti J. Adaptive Agents in Changing Environments, the Role of Modularity. Neural Process Lett 2014. [DOI: 10.1007/s11063-014-9355-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Abstract
Modularity in the human brain remains a controversial issue, with disagreement over the nature of the modules that exist, and why, when, and how they emerge. It is a natural assumption that modularity offers some form of computational advantage, and hence evolution by natural selection has translated those advantages into the kind of modular neural structures familiar to cognitive scientists. However, simulations of the evolution of simplified neural systems have shown that, in many cases, it is actually non-modular architectures that are most efficient. In this paper, the relevant issues are discussed and a series of simulations are presented that reveal crucial dependencies on the details of the learning algorithms and tasks that are being modelled, and the importance of taking into account known physical brain constraints, such as the degree of neural connectivity. A pattern is established which provides one explanation of why modularity should emerge reliably across a range of neural processing tasks.
Collapse
|
8
|
Rabaglia CD, Marcus GF, Lane SP. What can individual differences tell us about the specialization of function? Cogn Neuropsychol 2012; 28:288-303. [PMID: 22185239 DOI: 10.1080/02643294.2011.609813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Can the study of individual differences inform debates about modularity and the specialization of function? In this article, we consider the implications of a highly replicated, robust finding known as positive manifold: Individual differences in different cognitive domains tend to be positively intercorrelated. Prima facie, this fact, which has generally been interpreted as reflecting the influence of a domain-general cognitive factor, might be seen as posing a serious challenge to a strong view of modularity. Drawing on a mixture of meta-analysis and computer simulation, we show that positive manifold derives instead largely from between-task neural overlap, suggesting a potential way of reconciling individual differences with some form of modularity.
Collapse
|
9
|
Durr P, Mattiussi C, Floreano D. Genetic Representation and Evolvability of Modular Neural Controllers. IEEE COMPUT INTELL M 2010. [DOI: 10.1109/mci.2010.937319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Giszter SF, Hart CB, Silfies SP. Spinal cord modularity: evolution, development, and optimization and the possible relevance to low back pain in man. Exp Brain Res 2009; 200:283-306. [PMID: 19838690 DOI: 10.1007/s00221-009-2016-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 09/09/2009] [Indexed: 12/16/2022]
Affiliation(s)
- Simon F Giszter
- Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
11
|
Calabretta R. Genetic interference reduces the evolvability of modular and non-modular visual neural networks. Philos Trans R Soc Lond B Biol Sci 2007; 362:403-10. [PMID: 17255016 PMCID: PMC2323558 DOI: 10.1098/rstb.2006.1967] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this paper is to propose an interdisciplinary evolutionary connectionism approach for the study of the evolution of modularity. It is argued that neural networks as a model of the nervous system and genetic algorithms as simulative models of biological evolution would allow us to formulate a clear and operative definition of module and to simulate the different evolutionary scenarios proposed for the origin of modularity. I will present a recent model in which the evolution of primate cortical visual streams is possible starting from non-modular neural networks. Simulation results not only confirm the existence of the phenomenon of neural interference in non-modular network architectures but also, for the first time, reveal the existence of another kind of interference at the genetic level, i.e. genetic interference, a new population genetic mechanism that is independent from the network architecture. Our simulations clearly show that genetic interference reduces the evolvability of visual neural networks and sexual reproduction can at least partially solve the problem of genetic interference. Finally, it is shown that entrusting the task of finding the neural network architecture to evolution and that of finding the network connection weights to learning is a way to completely avoid the problem of genetic interference. On the basis of this evidence, it is possible to formulate a new hypothesis on the origin of structural modularity, and thus to overcome the traditional dichotomy between innatist and empiricist theories of mind.
Collapse
Affiliation(s)
- Raffaele Calabretta
- Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome 00185, Italy.
| |
Collapse
|
12
|
Wagner W, Wagner GP. Examining the Modularity Concept in Evolutionary Psychology: The Level of Genes, Mind, and Culture. ACTA ACUST UNITED AC 2005. [DOI: 10.1556/jcep.1.2003.3-4.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|