1
|
Toker P, Ayten H, Demiralay ÖD, Bınarcı B, Turan G, Olgun ÇE, Yaşar P, Akman HB, Muyan M. A reappraisal of cell cycle phase enrichment in synchronized estrogen receptor-positive cell models derived from breast adenocarcinomas. Sci Rep 2025; 15:5949. [PMID: 39966575 PMCID: PMC11836305 DOI: 10.1038/s41598-025-90456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
17β-estradiol (E2), the main circulating estrogen hormone, is a critical signaling factor for the growth, differentiation, and function of breast epithelial cells. The effects of E2 on the breast tissue are primarily mediated by the estrogen receptor α (ERα). Deregulation of the E2-ERα signaling contributes to the initiation/progression of breast cancer and resistance to treatments. Cell lines from breast adenocarcinomas as in vitro model systems provide invaluable insight into cellular events, drug discovery, and drug resistance. Among ERα-synthesizing cell lines, MCF7 and T47D cells are widely used to elucidate cell cycle phase-specific molecular events that coordinate cellular proliferation mediated by E2-ERα. Due to variable results in generating phase-enriched populations with various approaches, we wanted to reassess cell cycle synchronization-coupled phase enrichment with charcoal dextran-treated fetal bovine serum, CD-FBS, as an effective hormone withdrawal approach, alone or in combination with excess thymidine, as a DNA replication inhibitor, and/or nocodazole, a microtubule poison, in MCF7 and T47D cells. We find that hormone withdrawal synchronizes both MCF7 and T47D cells at the G0/G1 phase. Supplementation of CD-FBS with E2 enriches the S phase population. E2 with nocodazole and nocodazole-coupled mitotic shake-off augments the G2/M phase population of MCF7 cells. However, the double thymidine block approach with nocodazole or nocodazole-coupled mitotic shake-off is more effective in enriching S and G2/M phase populations of T47D cells. Our results highlight the differential efficacy of synchronization approaches in MCF7 and T47D cells that could provide a framework for cell cycle-specific applications in breast cancer research.
Collapse
Affiliation(s)
- Pelin Toker
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye
| | - Hazal Ayten
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye
| | - Öykü Deniz Demiralay
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye
- Paul Langerhans Institute Dresden (PLID) of Helmholtz Center Munich at the University Clinic Carl Gustav Carus of TU Dresden, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Büşra Bınarcı
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye
| | - Gizem Turan
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye
| | - Çağla Ece Olgun
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye
| | - Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye
- Current Address: Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Hesna Begüm Akman
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, 06800, Çankaya-Ankara, Türkiye.
| |
Collapse
|
2
|
Turan G, Olgun ÇE, Ayten H, Toker P, Ashyralyyev A, Savaş B, Karaca E, Muyan M. Dynamic proximity interaction profiling suggests that YPEL2 is involved in cellular stress surveillance. Protein Sci 2024; 33:e4859. [PMID: 38145972 PMCID: PMC10804680 DOI: 10.1002/pro.4859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/27/2023]
Abstract
YPEL2 is a member of the evolutionarily conserved YPEL family involved in cellular proliferation, mobility, differentiation, senescence, and death. However, the mechanism by which YPEL2, or YPEL proteins, mediates its effects is largely unknown. Proteins perform their functions in a network of proteins whose identities, amounts, and compositions change spatiotemporally in a lineage-specific manner in response to internal and external stimuli. Here, we explored interaction partners of YPEL2 by using dynamic TurboID-coupled mass spectrometry analyses to infer a function for the protein. Our results using inducible transgene expressions in COS7 cells indicate that proximity interaction partners of YPEL2 are mainly involved in RNA and mRNA metabolic processes, ribonucleoprotein complex biogenesis, regulation of gene silencing by miRNA, and cellular responses to stress. We showed that YPEL2 interacts with the RNA-binding protein ELAVL1 and the selective autophagy receptor SQSTM1. We also found that YPEL2 localizes stress granules in response to sodium arsenite, an oxidative stress inducer, which suggests that YPEL2 participates in stress granule-related processes. Establishing a point of departure in the delineation of structural/functional features of YPEL2, our results suggest that YPEL2 may be involved in stress surveillance mechanisms.
Collapse
Affiliation(s)
- Gizem Turan
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Çağla Ece Olgun
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Hazal Ayten
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | - Pelin Toker
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
| | | | - Büşra Savaş
- İzmir Biomedicine and Genome CenterİzmirTürkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTürkiye
| | - Ezgi Karaca
- İzmir Biomedicine and Genome CenterİzmirTürkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylül UniversityIzmirTürkiye
| | - Mesut Muyan
- Department of Biological SciencesMiddle East Technical UniversityAnkaraTürkiye
- CanSyl LaboratoriesMiddle East Technical UniversityAnkaraTürkiye
| |
Collapse
|
3
|
Estradiol-Estrogen Receptor α Mediates the Expression of the CXXC5 Gene through the Estrogen Response Element-Dependent Signaling Pathway. Sci Rep 2016; 6:37808. [PMID: 27886276 PMCID: PMC5122896 DOI: 10.1038/srep37808] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/02/2016] [Indexed: 12/12/2022] Open
Abstract
17β-estradiol (E2), the primary circulating estrogen hormone, mediates physiological and pathophysiological functions of breast tissue mainly through estrogen receptor α (ERα). Upon binding to E2, ERα modulates the expression of target genes involved in the regulation of cellular proliferation primarily through interactions with specific DNA sequences, estrogen response elements (EREs). Our previous microarray results suggested that E2-ERα modulates CXXC5 expression. Because of the presence of a zinc-finger CXXC domain (ZF-CXXC), CXXC5 is considered to be a member of the ZF-CXXC family, which binds to non-methylated CpG dinucleotides. Although studies are limited, CXXC5 appears to participate as a transcription factor, co-regulator and/or epigenetic factor in the regulation of cellular events induced by various signaling pathways. However, how signaling pathways mediate the expression of CXXC5 is yet unclear. Due to the importance of E2-ERα signaling in breast tissue, changes in the CXXC5 transcription/synthesis could participate in E2-mediated cellular events as well. To address these issues, we initially examined the mechanism whereby E2-ERα regulates CXXC5 expression. We show here that CXXC5 is an E2-ERα responsive gene regulated by the interaction of E2-ERα with an ERE present at a region upstream of the initial translation codon of the gene.
Collapse
|
4
|
Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators. PLoS One 2015; 10:e0136423. [PMID: 26295471 PMCID: PMC4546503 DOI: 10.1371/journal.pone.0136423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor α (ERα), as a ligand-dependent transcription factor, mediates 17β-estradiol (E2) effects. ERα is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ERα dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ERα-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ERα. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ERα or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ERα or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue.
Collapse
|
5
|
Huang Y, Li X, Muyan M. Estrogen receptors similarly mediate the effects of 17β-estradiol on cellular responses but differ in their potencies. Endocrine 2011; 39:48-61. [PMID: 21069581 PMCID: PMC3683410 DOI: 10.1007/s12020-010-9411-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/04/2010] [Indexed: 02/06/2023]
Abstract
17β-estradiol (E2), as the main circulating estrogen hormone, plays critical roles in the physiology and pathophysiology of various tissues. The E2 information is primarily conveyed by the transcription factors, estrogen receptors (ERs) α and β. ERs share similar structural and functional features. Experimental studies indicate that upon binding to E2, ERs directly or indirectly interact with DNA and regulate gene expressions with ERα being more potent transregulator than ERβ. However, studies also showed that ERβ induces alterations in phenotypic features of cancer cell lines independent of E2. These observations suggested that the manner in which the unliganded ERβ induces phenotypic alterations in cancer cell models differs from that of ERα. Studies demonstrated that while requiring E2 for function at low levels of synthesis, the unliganded ERα at augmented concentrations modulates gene expressions and cellular growth. We, therefore, anticipated that heightened levels of ERβ synthesis could similarly circumvent the dependency on E2 leading to gene transcriptions and cellular proliferation. To test this prediction, we used adenovirus-infected cancer cell lines in which ERs were shown to induce genomic and cellular responses. We found that while ERβ at low levels of synthesis was dependent upon E2 for function, the receptor at high levels regulated gene expression and cellular proliferation independent of E2. We then addressed whether ERs at comparable levels that require E2 for function differentially alter gene expressions and cellular responses. We found that ERs mediate the effects of E2 on gene expression, cellular proliferation, apoptosis, and motility with an overlapping pattern. However, ERα was more potent regulator than ERβ in inducing cellular responses. Our results suggest that differences in potencies to regulate the expression of genes are a critical feature of the ER subtypes in mediating E2 signaling in cancer cell lines.
Collapse
Affiliation(s)
- Yanfang Huang
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
6
|
Nott SL, Huang Y, Kalkanoglu A, Harper K, Chen M, Paoni SF, Fenton BM, Muyan M. Designer monotransregulators provide a basis for a transcriptional therapy for de novo endocrine-resistant breast cancer. Mol Med 2009; 16:10-8. [PMID: 19946606 DOI: 10.2119/molmed.2009.00107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/15/2009] [Indexed: 02/05/2023] Open
Abstract
The main circulating estrogen hormone 17beta-estradiol (E2) contributes to the initiation and progression of breast cancer. Estrogen receptors (ERs), as transcription factors, mediate the effects of E2. Ablation of the circulating E2 and/or prevention of ER functions constitute approaches for ER-positive breast cancer treatments. These modalities are, however, ineffective in de novo endocrine-resistant breast neoplasms that do not express ERs. The interaction of E2-ERs with specific DNA sequences, estrogen responsive elements (EREs), of genes constitutes one genomic pathway necessary for cellular alterations. We herein tested the prediction that specific regulation of ERE-driven genes by an engineered monomeric and constitutively active transcription factor, monotransregulator, provides a basis for the treatment of ER-negative breast cancer. Using adenovirus infected ER-negative MDA-MB-231 cells derived from a breast adenocarcinoma, we found that the monotransregulator, but not the ERE-binding defective counterpart, repressed cellular proliferation and motility, and induced apoptosis through expression of genes that required ERE interactions. Similarly, the monotransregulator suppressed the growth of ER-negative BT-549 cells derived from a breast-ductal carcinoma. Moreover, the ERE-binding monotransregulator repressed xenograft tumor growth in a nude mice model. Thus, specific regulation of genes bearing EREs could offer a therapeutic approach for de novo endocrine-resistant breast cancers.
Collapse
Affiliation(s)
- Stephanie L Nott
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nott SL, Huang Y, Li X, Fluharty BR, Qiu X, Welshons WV, Yeh S, Muyan M. Genomic responses from the estrogen-responsive element-dependent signaling pathway mediated by estrogen receptor alpha are required to elicit cellular alterations. J Biol Chem 2009; 284:15277-88. [PMID: 19321454 DOI: 10.1074/jbc.m900365200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrogen (E2) signaling is conveyed by the transcription factors estrogen receptor (ER) alpha and beta. ERs modulate the expression of genes involved in cellular proliferation, motility, and death. The regulation of transcription by E2-ERalpha through binding to estrogen-responsive elements (EREs) in DNA constitutes the ERE-dependent signaling pathway. E2-ERalpha also modulates gene expression by interacting with transregulators bound to cognate DNA-regulatory elements, and this regulation is referred to as the ERE-independent signaling pathway. The relative importance of the ERE-independent pathway in E2-ERalpha signaling is unclear. To address this issue, we engineered an ERE-binding defective ERalpha mutant (ERalpha(EBD)) by changing residues in an alpha-helix of the protein involved in DNA binding to render the receptor functional only through the ERE-independent signaling pathway. Using recombinant adenovirus-infected ER-negative MDA-MB-231 cells derived from a breast adenocarcinoma, we found that E2-ERalpha(EBD) modulated the expression of a subset of ERalpha-responsive genes identified by microarrays and verified by quantitative PCR. However, E2-ERalpha(EBD) did not affect cell cycle progression, cellular growth, death, or motility in contrast to E2-ERalpha.ERalpha(EBD) in the presence of E2 was also ineffective in inducing phenotypic alterations in ER-negative U-2OS cells derived from an osteosarcoma. E2-ERalpha, on the other hand, effectively repressed growth in this cell line. Our findings suggest that genomic responses from the ERE-dependent signaling pathway are required for E2-ERalpha to induce alterations in cellular responses.
Collapse
Affiliation(s)
- Stephanie L Nott
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li X, Nott SL, Huang Y, Hilf R, Bambara RA, Qiu X, Yakovlev A, Welle S, Muyan M. Gene expression profiling reveals that the regulation of estrogen-responsive element-independent genes by 17 beta-estradiol-estrogen receptor beta is uncoupled from the induction of phenotypic changes in cell models. J Mol Endocrinol 2008; 40:211-29. [PMID: 18434428 PMCID: PMC3683411 DOI: 10.1677/jme-07-0156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Estrogen hormone 17beta-estradiol (E(2)) is involved in the physiology and pathology of many tissues. E(2) information is conveyed by the transcription factors estrogen receptors (ER) alpha and beta that mediate a complex array of nuclear and non-nuclear events. The interaction of ER with specific DNA sequences, estrogen-responsive elements (EREs), constitutes a critical nuclear signaling pathway. In addition, E(2)-ER regulates transcription through interactions with transfactors bound to their cognate regulatory elements on DNA, hence the ERE-independent signaling pathway. However, the relative importance of the ERE-independent pathway in E(2)-ERbeta signaling is unclear. To address this issue, we engineered an ERE-binding defective ERbeta mutant (ERbeta(EBD)) by changing critical residues in the DNA-binding domain required for ERE binding. Biochemical and functional studies revealed that ERbeta(EBD) signaled exclusively through the ERE-independent pathway. Using the adenovirus infected ER-negative cancer cell models, we found that although E(2)-ERbeta(EBD) regulated the expression of a number of genes identified by microarrays, it was ineffective in altering cellular proliferation, motility, and death in contrast to E(2)-ERbeta. Our results indicate that genomic responses from the ERE-independent pathway to E(2)-ERbeta are not sufficient to alter the cellular phenotype. These findings suggest that the ERE-dependent pathway is a required signaling route for E(2)-ERbeta to induce cellular responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Xing Qiu
- Department of Biochemistry & Biophysics, Biostatistics & Computational Biology, University of Rochester Medical School, Rochester, NY 14642
| | - Andrei Yakovlev
- Department of Biochemistry & Biophysics, Biostatistics & Computational Biology, University of Rochester Medical School, Rochester, NY 14642
| | - Stephen Welle
- Department of Medicine, University of Rochester Medical School, Rochester, NY 14642
| | - Mesut Muyan
- Address correspondence to: Mesut Muyan, 601 Elmwood Avenue, Box 712, Rochester, NY 14642; (585) 275 5613, Fax: (585) 271 2683;
| |
Collapse
|
9
|
Huang J, Li X, Maguire CA, Hilf R, Bambara RA, Muyan M. Binding of estrogen receptor beta to estrogen response element in situ is independent of estradiol and impaired by its amino terminus. Mol Endocrinol 2005; 19:2696-712. [PMID: 15976006 DOI: 10.1210/me.2005-0120] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The functions of 17beta-estradiol (E2) are mediated by estrogen receptor (ER) alpha and beta. ERs display similar DNA- and ligand-binding properties in vitro. However, ERbeta shows lower transcriptional activity than ERalpha from the estrogen response element (ERE)-dependent signaling. We predicted that distinct amino termini contribute to differences in transcription efficacies of ERs by affecting in situ ER-ERE interactions. We used chromatin immunoprecipitation and a novel in situ ERE competition assay, which is based on the ability of ER to compete for ERE binding with a designer activator that constitutively induces transcription from an ERE-driven reporter construct. Interference of activator-mediated transcription by unliganded or liganded ERs was taken as an indication of ER-ERE interaction. Results revealed that ERs interacted with ERE similarly in the absence of E2. However, E2 enhanced the ERE binding of ERalpha but not that of ERbeta. The removal of the amino terminus increased the ERbeta-ERE interaction independent of E2. The ERbeta amino terminus also prevented E2-mediated enhancement of the chimeric ERalpha-ERE interaction. Thus, the amino terminus of ERbeta impairs the binding of ERbeta to ERE. The abrogation of ligand-dependent activation function 2 of the amino-terminally truncated ERbeta resulted in the manifestation of E2 effect on ERbeta-ERE interaction. This implies that E2-mediated enhancement of ERbeta-ERE interaction is masked by the activation function 2, whereas the intact amino terminus is a dominant region that decreases the binding of ERbeta to ERE. Thus, ERbeta-ERE interaction is independent of E2 and is impaired by its amino terminus. These findings provide an additional explanation for differences between ERalpha and ERbeta functions that could differentially affect the physiology and pathophysiology of E2 signaling.
Collapse
Affiliation(s)
- Jing Huang
- University of Rochester School of Medicine and Dentistry, Department of Biochemistry and Biophysics, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
10
|
Li X, Huang J, Yi P, Bambara RA, Hilf R, Muyan M. Single-chain estrogen receptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways. Mol Cell Biol 2004; 24:7681-94. [PMID: 15314175 PMCID: PMC506997 DOI: 10.1128/mcb.24.17.7681-7694.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of estrogens, particularly 17beta-estradiol (E2), are mediated by estrogen receptor alpha (ERalpha) and ERbeta. Upon binding to E2, ERs homo- and heterodimerize when coexpressed. The ER dimer then regulates the transcription of target genes through estrogen responsive element (ERE)-dependent and -independent pathways that constitute genomic estrogen signaling. Although ERalpha and ERbeta have similar ERE and E2 binding properties, they display different transregulatory capacities in both ERE-dependent and -independent signaling pathways. It is therefore likely that the heterodimerization provides novel functions to ERs by combining distinct properties of the contributing partners. The elucidation of the role of the ER heterodimer is critical for the understanding of physiology and pathophysiology of E2 signaling. However, differentially determining target gene responses during cosynthesis of ER subtypes is difficult, since dimers formed are a heterogeneous population of homo- and heterodimers. To circumvent the pivotal dimerization step in ER action and hence produce a homogeneous ER heterodimer population, we utilized a genetic fusion strategy. We joined the cDNAs of ERalpha and/or ERbeta to produce single-chain ERs to simulate the ER homo- and heterodimers. The fusion ERs interacted with ERE and E2 in a manner similar to that observed with the ER dimers. The homofusion receptors mimicked the functions of the parent ER dimers in the ERE-dependent and -independent pathways in transfected mammalian cells, whereas heterofusion receptors emulated the transregulatory properties of the ERalpha dimer. These results suggest that ERalpha is the functionally dominant partner in the ERalpha/beta heterodimer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
11
|
Huang J, Li X, Yi P, Hilf R, Bambara RA, Muyan M. Targeting estrogen responsive elements (EREs): design of potent transactivators for ERE-containing genes. Mol Cell Endocrinol 2004; 218:65-78. [PMID: 15130512 DOI: 10.1016/j.mce.2003.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Revised: 12/17/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
The estrogen hormone (E2) plays an important role in the physiology and pathophysiology of target tissues. The effects of E2 are conveyed by the estrogen receptors (ER) alpha and beta. The E2-ER complex mediates an array of genomic and non-genomic events that orchestrate the expression of a number of genes involved in the regulation of cell proliferation and differentiation. The interaction of with the regulatory DNA sequence, estrogen responsive element (ERE), of each responsive gene constitutes a critical genomic signaling pathway. However, the relative importance of ERE-dependent E2-ER signaling in cell proliferation remains to be elucidated. To address this issue, we engineered ERE-binding activators (EBAs) that specifically and potently regulate ERE-containing genes. The modular nature of ER allowed us to initially design a monomeric ERE-binding module by genetically joining two DNA-binding domains with the hinge domain. Integration of strong activation domains from other transcription factors into this module generated constitutively active EBAs. These transactivators robustly induced the expression of only ERE-containing promoter constructs in transfected cells independent of ligand, dimerization, ER-subtype and -status. Moreover, EBAs altered cell cycle progression in breast cancer cell lines in a manner similar to E2-ER. These results demonstrate the importance of ERE-containing genes in the regulation of cell proliferation. These novel ERE-binding transregulators could also be a basis for the targeted regulation of ERE-containing genes, the identification of estrogen responsive gene networks, and the development of alternative/complementary therapeutic approaches for estrogen target tissue cancers.
Collapse
Affiliation(s)
- Jing Huang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
12
|
Krueger C, Berens C, Schmidt A, Schnappinger D, Hillen W. Single-chain Tet transregulators. Nucleic Acids Res 2003; 31:3050-6. [PMID: 12799431 PMCID: PMC162254 DOI: 10.1093/nar/gkg421] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We demonstrate here that the Tet repressor (TetR), a dimeric allosterical regulatory protein, can be converted to a fully functional monomer when connected by a 29 amino acid linker. TetR-based transregulators are widely used to regulate gene expression in eukaryotes. They can be fused to form single-chain (sc) Tet transregulators with two TetR moieties and one eukaryotic regulatory domain. Sc variants of transactivator and transsilencer exhibit the same regulatory properties as their respective dimeric counterparts in human cell lines. In particular, the reverse 'tet-on' phenotype of rtTA variants is also present in the sc variants. Coexpression of a reverse transactivator and sc transsilencer leads to reduced background expression and shows full activation upon induction. The data demonstrate that sc Tet transregulators exhibit the phenotype of their respective dimers and lack functional interference when coexpressed in the same cell.
Collapse
Affiliation(s)
- Christel Krueger
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, D-91058 Erlangen, Germany
| | | | | | | | | |
Collapse
|
13
|
Sathya G, Yi P, Bhagat S, Bambara RA, Hilf R, Muyan M. Structural regions of ERalpha critical for synergistic transcriptional responses contain co-factor interacting surfaces. Mol Cell Endocrinol 2002; 192:171-85. [PMID: 12088878 DOI: 10.1016/s0303-7207(01)00673-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most highly estrogen responsive genes are synergistically activated by multiple copies of estrogen responsive elements (EREs) capable of binding to the estrogen receptor (ER). We examined here the structural features of the receptor necessary to interact with co-regulatory proteins and to produce a synergistic pattern of activation from multiple EREs. Using full length and truncated variants of ERalpha, we show in transfected mammalian cells that although the carboxyl (AF-2) and the amino (AF-1) terminal activation domains are functionally integrated to induce transcription, AF-1 is critical for mediating synergy. Partial characterization of AF-1 sub-domains revealed that both Box-1 and Box-2 regions (amino acids 41-64 and 87-108, respectively) are essential for a synergistic response to estrogen. We show that members of the p160 family of co-factors and TIF-1 interact with the AF-2 domain of ERalpha. We also found that TIF-2, a member of the p160 family, can interact with the Box-1 region of AF-1. Apparently, structural regions required for the ability of ERalpha to induce transcription synergistically from tandem ERE sequences are also critical for the interaction of the receptor with the co-regulatory proteins.
Collapse
Affiliation(s)
- Ganesan Sathya
- Department of Biochemistry and Biophysics, School of Medicine, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
14
|
Yi P, Driscoll MD, Huang J, Bhagat S, Hilf R, Bambara RA, Muyan M. The effects of estrogen-responsive element- and ligand-induced structural changes on the recruitment of cofactors and transcriptional responses by ER alpha and ER beta. Mol Endocrinol 2002; 16:674-93. [PMID: 11923465 DOI: 10.1210/mend.16.4.0810] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen signaling is mediated by ER alpha and -beta. ERs are converted from an inactive form to a transcriptionally active state through conformational changes induced by ligand and estrogen-responsive element (ERE) sequences. We show here that ER alpha and ER beta bind to an ERE independently from ER ligands. We found that although the binding affinity of ER beta for an ERE is 2-fold lower than that of ER alpha, both ERs use the same nucleotides for DNA contacts. We show that both EREs and ligands are independent modulators of ER conformation. Specifically, the ERE primarily determines the receptor-DNA affinity, whereas the structure of the ER ligand dictates the affinity of ER for particular cofactors. We found that the ligand-dependent cofactor transcriptional intermediary factor-2, through a distinct surface, also interacts with ER alpha preferentially and independently of ligand. The extent of interaction, however, is dependent upon the ER-ERE affinity. In transfected cells, ER alpha is more transcriptionally active than ER beta. The ERE sequence, however, determines the potency of gene induction when either ER subtype binds to an agonist. Antagonists prevent ERs from inducing transcription independently from ERE sequences. Thus, ERE- and ligand-induced structural changes are independent determinants for the recruitment of cofactors and transcriptional responses. The ability of ER alpha to differentially recruit a cofactor could contribute to ER subtype-specific gene responses.
Collapse
Affiliation(s)
- Ping Yi
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|