1
|
Li X, Du H, Zhou H, Huang Y, Tang S, Yu C, Guo Y, Luo W, Gong Y. FOXL2 regulates RhoA expression to change actin cytoskeleton rearrangement in granulosa cells of chicken pre-ovulatory follicles†. Biol Reprod 2024; 111:391-405. [PMID: 38832713 DOI: 10.1093/biolre/ioae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024] Open
Abstract
Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells, such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on granulosa cell morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes were significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, FOXL2 overexpression in granulosa cells induced the depolymerization of F-actin and disordered the actin filaments, resulting in a slowdown in the expansion of granulosa cells, while FOXL2 silencing inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating granulosa cell expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing granulosa cells. This study revealed for the first time that FOXL2 regulated granulosa cell actin cytoskeleton by RhoA/ROCK pathway, thus affecting granulosa cell expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.
Collapse
Affiliation(s)
- Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongting Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Haobo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chengzhi Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
2
|
von Schalburg KR, Gowen BE, Christensen KA, Ignatz EH, Hall JR, Rise ML. The late-evolving salmon and trout join the GnRH1 club. Histochem Cell Biol 2023; 160:517-539. [PMID: 37566258 DOI: 10.1007/s00418-023-02227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 08/12/2023]
Abstract
Although it is known that the whitefish, an ancient salmonid, expresses three distinct gonadotropin-releasing hormone (GnRH) forms in the brain, it has been thought that the later-evolving salmonids (salmon and trout) had only two types of GnRH: GnRH2 and GnRH3. We now provide evidence for the expression of GnRH1 in the gonads of Atlantic salmon by rapid amplification of cDNA ends, real-time quantitative PCR and immunohistochemistry. We examined six different salmonid genomes and found that each assembly has one gene that likely encodes a viable GnRH1 prepropeptide. In contrast to both functional GnRH2 and GnRH3 paralogs, the GnRH1 homeolog can no longer express the hormone. Furthermore, the viable salmonid GnRH1 mRNA is composed of only three exons, rather than the four exons that build the GnRH2 and GnRH3 mRNAs. Transcribed gnrh1 is broadly expressed (in 17/18 tissues examined), with relative abundance highest in the ovaries. Expression of the gnrh2 and gnrh3 mRNAs is more restricted, primarily to the brain, and not in the gonads. The GnRH1 proximal promoter presents composite binding elements that predict interactions with complexes that contain diverse cell fate and differentiation transcription factors. We provide immunological evidence for GnRH1 peptide in the nucleus of 1-year-old type A spermatogonia and cortical alveoli oocytes. GnRH1 peptide was not detected during other germ cell or reproductive stages. GnRH1 activity in the salmonid gonad may occur only during early stages of development and play a key role in a regulatory network that controls mitotic and/or meiotic processes within the germ cell.
Collapse
Affiliation(s)
- Kristian R von Schalburg
- Department of Biology, Electron Microscopy Laboratory, University of Victoria, Victoria, BC, V8W 3N5, Canada.
| | - Brent E Gowen
- Department of Biology, Electron Microscopy Laboratory, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Kris A Christensen
- Department of Biology, University of Victoria, Victoria, BC, V8W 3N5, Canada
| | - Eric H Ignatz
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| |
Collapse
|
3
|
Mubeen A, Parra-Herran C. FOXL2: a gene central to ovarian function. J Clin Pathol 2023; 76:798-801. [PMID: 37798106 DOI: 10.1136/jcp-2023-208827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
The FOXL2 (forkhead box L2) gene is located on chromosome 3 and encodes for forkhead box (FOX) family of transcription factors which play a critical role in various biological processes. Germline FOXL2 mutations have been identified in blepharophimosis/ptosis/epicanthus inversus syndrome. The somatic missense mutation in FOXL2 (FOXL2 C134W) is now known to be the defining molecular feature of adult-type granulosa cell tumour of the ovary, present in over 90% of cases of this tumour type. Immunohistochemistry for FOXL2 is used as a marker of sex cord-stromal differentiation. However, expression is not restricted to lesions harbouring FOXL2 mutations, and it is positive in a variety of sex cord-stromal proliferations other than adult-type granulosa cell tumour.
Collapse
Affiliation(s)
- Aysha Mubeen
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Carlos Parra-Herran
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Summey RM, Rader JS, Moh M, Bradley W, Uyar D, Bishop E, McAlarnen L, Hopp E. A case series of triplet anti-hormonal therapy in androgen receptor-positive recurrent adult ovarian granulosa cell tumor. Gynecol Oncol Rep 2022; 44:101118. [PMID: 36579182 PMCID: PMC9791298 DOI: 10.1016/j.gore.2022.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Therapeutic options for recurrent adult granulosa cell tumors (AGCT) are limited. After examining the hormonal pathways involved in FOXL2-mutated granulosa cell tumor development, a novel treatment regimen was utilized for recurrent AGCT: a combination of an androgen receptor antagonist, a gonadotropin-releasing hormone receptor agonist, and an aromatase inhibitor for hormonal blockade. In this case series, seven patients at our institution were treated with bicalutamide 50 mg orally once daily, Leuprolide acetate 7.5 mg intramuscular (IM) injection every 4 weeks, and a daily oral aromatase inhibitor. These patients had recurrent AGCT with androgen receptor positive tumors and had failed prior aromatase inhibitor therapy. All patients had undergone multiple surgical resections and many cycles of chemotherapy. Patients were monitored for toxicities and for response to treatment. Of the seven patients receiving the triple therapy, six saw clinical benefit. Two patients demonstrated a partial response and four patients had stable disease. One patient had progressive disease on the regimen. For the two patients who had a partial response to the triple therapy, there was strong expression of the androgen receptor (AR) noted on tumor immunohistochemistry. This drug combination was well-tolerated except for severe hot flashes in one patient. In conclusion, the triple therapy combination of an androgen receptor antagonist, aromatase inhibitor, and GnRH agonist demonstrated measurable responses in patients with recurrent AGCTs after multiple previous treatments. A prospective clinical trial is planned to further investigate these findings.
Collapse
Affiliation(s)
- Rebekah M. Summey
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Janet S. Rader
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Michelle Moh
- Department of Pathology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - William Bradley
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Denise Uyar
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Erin Bishop
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Lindsey McAlarnen
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| | - Elizabeth Hopp
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
5
|
Tucker EJ. The Genetics and Biology of FOXL2. Sex Dev 2021; 16:184-193. [PMID: 34727551 DOI: 10.1159/000519836] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022] Open
Abstract
FOXL2 encodes a transcription factor that regulates a wide array of target genes including those involved in sex development, eyelid development, ovarian function and maintenance, genomic integrity as well as cellular pathways such as cell-cycle progression, proliferation, and apoptosis. The role of FOXL2 has been widely studied in humans and animals. Consistent with its role in ovarian and eyelid development, over 100 germline variants in FOXL2 are associated with blepharophimosis, ptosis, and epicanthus inversus syndrome in humans, an autosomal dominant condition characterised by ovarian dysgenesis/premature ovarian insufficiency, as well as defective eyelid development. Reflecting its role in apoptosis and proliferation, a somatic variant in FOXL2 causes adult granulosa cell tumours in humans. Despite being widely studied and having clear relevance to human disease, much remains unknown about the genes FOXL2 regulates and how it exerts its wide-reaching effect on multiple organs. This review focuses on FOXL2 and its varied roles as a transcription factor in sex determination, ovarian maintenance and function, eyelid development, genome integrity, and cell regulation, followed by discussion of the in vivo disruption of FOXL2 in humans and other species.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Ryan GE, Bohaczuk SC, Cassin J, Witham EA, Shojaei S, Ho EV, Thackray VG, Mellon PL. Androgen receptor positively regulates gonadotropin-releasing hormone receptor in pituitary gonadotropes. Mol Cell Endocrinol 2021; 530:111286. [PMID: 33872733 PMCID: PMC8177864 DOI: 10.1016/j.mce.2021.111286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 11/30/2022]
Abstract
Within pituitary gonadotropes, the gonadotropin-releasing hormone receptor (GnRHR) receives hypothalamic input from GnRH neurons that is critical for reproduction. Previous studies have suggested that androgens may regulate GnRHR, although the mechanisms remain unknown. In this study, we demonstrated that androgens positively regulate Gnrhr mRNA in mice. We then investigated the effects of androgens and androgen receptor (AR) on Gnrhr promoter activity in immortalized mouse LβT2 cells, which represent mature gonadotropes. We found that AR positively regulates the Gnrhr proximal promoter, and that this effect requires a hormone response element (HRE) half site at -159/-153 relative to the transcription start site. We also identified nonconsensus, full-length HREs at -499/-484 and -159/-144, which are both positively regulated by androgens on a heterologous promoter. Furthermore, AR associates with the Gnrhr promoter in ChIP. Altogether, we report that GnRHR is positively regulated by androgens through recruitment of AR to the Gnrhr proximal promoter.
Collapse
Affiliation(s)
- Genevieve E Ryan
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Stephanie C Bohaczuk
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jessica Cassin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Emily A Witham
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Shadi Shojaei
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Emily V Ho
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Varykina G Thackray
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Xu G, Li J, Zhang D, Su T, Li X, Cui S. HSP70 inhibits pig pituitary gonadotrophin synthesis and secretion by regulating the corticotropin-releasing hormone signaling pathway and targeting SMAD3. Domest Anim Endocrinol 2021; 74:106533. [PMID: 32992141 DOI: 10.1016/j.domaniend.2020.106533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022]
Abstract
High levels or long periods of stress have been shown to negatively impact cell homeostasis, including with respect to abnormalities in domestic animal reproduction, which are typically activated through the hypothalamus-pituitary-adrenal axis, in which corticotropin-releasing hormone (CRH) and heat shock protein 70 (HSP70) are involved. In addition, CRH has been reported to inhibit pituitary gonadotrophin synthesis, and HSP70 is expressed in the pituitary gland. The aim of this study was to determine whether HSP70 was involved in regulating gonadotrophin synthesis and secretion by mediating the CRH pathway in the porcine pituitary gland. Our results showed that HSP70 was highly expressed in the porcine pituitary gland, with over 90% of gonadotrophic cells testing HSP70 positive. The results of functional studies demonstrated that the HSP70 inducer decreased FSH and LH levels in cultured porcine primary pituitary cells, whereas an HSP70 inhibitor blocked the negative effect of CRH on gonadotrophin synthesis and secretion. Furthermore, our results demonstrated that HSP70 inhibited gonadotrophin synthesis and secretion by blocking GnRH-induced SMAD3 phosphorylation, which acts as the targeting molecule of HSP70, while CRH upregulated HSP70 expression through the PKC and ERK pathways. Collectively, these data demonstrate that HSP70 inhibits pituitary gonadotrophin synthesis and secretion by regulating the CRH signaling pathway and inhibiting SMAD3 phosphorylation, which are important for our understanding the mechanisms of the stress affects domestic animal reproductive functions.
Collapse
Affiliation(s)
- G Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - J Li
- Department of Reproductive Medicine and Genetics, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - D Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - T Su
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - X Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - S Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China.
| |
Collapse
|
8
|
Lents CA, Lindo AN, Hileman SM, Nonneman DJ. Physiological and genomic insight into neuroendocrine regulation of puberty in gilts. Domest Anim Endocrinol 2020; 73:106446. [PMID: 32199704 DOI: 10.1016/j.domaniend.2020.106446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
The timing of pubertal attainment in gilts is a critical factor for pork production and is an early indicator of future reproductive potential. Puberty, defined as age at first standing estrus in the presence of a boar, is brought about by an escape from estrogen inhibition of the GnRH pulse generator, which allows for increasing LH pulses leading to the onset of cyclicity. The biological mechanisms that control the timing of these events is related to decreasing inhibitory signals with a concomitant increase in stimulatory signals within the hypothalamus. The roles of gamma-aminobutyric acid, endogenous opioid peptides, and gonadotropin-inhibitory hormone in negatively regulating gonadotropin secretion in gilts is explored. Developmental changes in stimulatory mechanisms of glutamatergic and kisspeptin neurons are important for increased LH pulsatility required for the occurrence of puberty in pigs. Age at first estrus of gilts is metabolically gated, and numerous metabolites, metabolic hormones, and appetite-regulating neurotransmitters have been implicated in the nutritional regulation of gonadotropin secretion. Leptin is an important metabolic signal linking body energy reserves with age at puberty in gilts. Leptin acting through neuropeptide Y and proopiomelanocortin neurons in the hypothalamus has important impacts on the function of the reproductive neurosecretory axis of gilts. Age at puberty in swine is heritable, and genomic analyses reveal it to be a polygenic trait. Genome-wide association studies for pubertal age in gilts have revealed several genomic regions in common with those identified for age at menarche in humans. Candidate genes have been identified that have important functions in growth and adiposity. Numerous genes regulating hypothalamic neuronal function, gonadotropes in the adenohypophysis, and ovarian follicular development have been identified and illustrate the complex maturational changes occurring in the hypothalamic-pituitary-ovarian axis during puberty in gilts.
Collapse
Affiliation(s)
- C A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Reproduction Research Unit, Clay Center, NE 68966-0166, USA.
| | - A N Lindo
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506-9600, USA
| | - S M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506-9600, USA
| | - D J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Reproduction Research Unit, Clay Center, NE 68966-0166, USA
| |
Collapse
|
9
|
Carles A, Trigo-Gonzalez G, Cao Q, Cheng SWG, Moksa M, Bilenky M, Huntsman DG, Morin GB, Hirst M. The Pathognomonic FOXL2 C134W Mutation Alters DNA-Binding Specificity. Cancer Res 2020; 80:3480-3491. [PMID: 32641414 DOI: 10.1158/0008-5472.can-20-0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/04/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022]
Abstract
The somatic missense point mutation c.402C>G (p.C134W) in the FOXL2 transcription factor is pathognomonic for adult-type granulosa cell tumors (AGCT) and a diagnostic marker for this tumor type. However, the molecular consequences of this mutation and its contribution to the mechanisms of AGCT pathogenesis remain unclear. To explore these mechanisms, we engineered V5-FOXL2WT- and V5-FOXL2C134W-inducible isogenic cell lines and performed chromatin immunoprecipitation sequencing and transcriptome profiling. FOXL2C134W associated with the majority of the FOXL2 wild-type DNA elements as well as a large collection of unique elements genome wide. This model enabled confirmation of altered DNA-binding specificity for FOXL2C134W and identification of unique targets of FOXL2C134W including SLC35F2, whose expression increased sensitivity to YM155. Our results suggest FOXL2C134W drives AGCT by altering the binding affinity of FOXL2-containing complexes to engage an oncogenic transcriptional program. SIGNIFICANCE: A mechanistic understanding of FOXL2C134W-induced regulatory state alterations drives discovery of a rationally designed therapeutic strategy.
Collapse
Affiliation(s)
- Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Genny Trigo-Gonzalez
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - S-W Grace Cheng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Penrad-Mobayed M, Perrin C, Herman L, Todeschini AL, Nigon F, Cosson B, Caburet S, Veitia RA. Conventional and unconventional interactions of the transcription factor FOXL2 uncovered by a proteome-wide analysis. FASEB J 2019; 34:571-587. [PMID: 31914586 DOI: 10.1096/fj.201901573r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/11/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Abstract
Beyond the study of its transcriptional target genes, the identification of the various interactors of a transcription factor (TF) is crucial to understand its diverse cellular roles. We focused on FOXL2, a winged-helix forkhead TF important for ovarian development and maintenance. FOXL2 has been implicated in diverse cellular processes, including apoptosis, the control of cell cycle or the regulation of steroid hormone synthesis. To reliably identify partners of endogenous FOXL2, we performed a proteome-wide analysis using co-immunoprecipitation in the murine granulosa cell-derived AT29c and the pituitary-derived alpha-T3 cell lines, using three antibodies targeting different parts of the protein. Following a stringent selection of mass spectrometry data on the basis of identification reliability and protein enrichment, we identified a core set of 255 partners common to both cell lines. Their analysis showed that we could co-precipitate several complexes involved in mRNA processing, chromatin remodeling and DNA replication and repair. We further validated (direct and/or indirect) interactions with selected partners, suggesting an unexpected role for FOXL2 in those processes. Overall, this comprehensive analysis of the endogenous FOXL2 interactome sheds light on its numerous and diverse interactors and unconventional cellular roles.
Collapse
Affiliation(s)
- May Penrad-Mobayed
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Caroline Perrin
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Laetitia Herman
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | | | - Fabienne Nigon
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Bertrand Cosson
- Epigenetics and Cell Fate, CNRS UMR7216, Université de Paris, Paris, France
| | - Sandrine Caburet
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| | - Reiner A Veitia
- Institut Jacques Monod, CNRS UMR7592, Université de Paris, Paris, France
| |
Collapse
|
11
|
Tao JJ, Cangemi NA, Makker V, Cadoo KA, Liu JF, Rasco DW, Navarro WH, Haqq CM, Hyman DM. First-in-Human Phase I Study of the Activin A Inhibitor, STM 434, in Patients with Granulosa Cell Ovarian Cancer and Other Advanced Solid Tumors. Clin Cancer Res 2019; 25:5458-5465. [PMID: 31068369 DOI: 10.1158/1078-0432.ccr-19-1065] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE STM 434 is a soluble receptor ligand trap targeting activin A, a protein in the TGFβ family that plays important roles in growth, differentiation, and cancer cachexia. This study evaluated the safety, antitumor activity, and metabolic effects of STM 434 in a first-in-human, multicenter, phase I clinical trial (NCT02262455). PATIENTS AND METHODS Patients with advanced solid tumors were enrolled in 8 dose cohorts ranging from 0.25 mg/kg every 4 weeks to 8 mg/kg every 2 weeks via a 3 + 3 dose-escalation design. The primary endpoint was maximum tolerated dose (MTD). Secondary endpoints included safety, pharmacokinetics, and response. As activin A is implicated in metabolism and muscle function, changes in key metabolic parameters, including lean body mass and 6-minute walk test, were serially measured. RESULTS Thirty-two patients were treated on study. The most common treatment-related adverse events were fatigue (41%) and mucocutaneous bleeding complications including epistaxis (34%) and gingival bleeding (22%), likely related to off-target inhibition of bone morphogenetic protein 9 (BMP9). STM 434 treatment resulted in the expected follicle-stimulating hormone level decreases in most patients and in metabolic parameter changes, including an increase in total lean body mass and 6-minute walk test distance. No responses were observed in the 30 evaluable patients, but the stable disease rate in patients with granulosa cell ovarian cancer was 10 of 12 (80%). CONCLUSIONS Although no direct antitumor efficacy was documented, potentially clinically meaningful dose-related metabolic effects, including treatment of cancer cachexia, were observed that support further exploration of activin A inhibitors that limit BMP9 blockade.See related commentary by Bonilla and Oza, p. 5432.
Collapse
Affiliation(s)
- Jessica J Tao
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas A Cangemi
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicky Makker
- Gynecologic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karen A Cadoo
- Gynecologic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joyce F Liu
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Drew W Rasco
- South Texas Accelerated Research Therapeutics, San Antonio, Texas
| | | | | | - David M Hyman
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
12
|
Belli M, Iwata N, Nakamura T, Iwase A, Stupack D, Shimasaki S. FOXL2C134W-Induced CYP19 Expression via Cooperation With SMAD3 in HGrC1 Cells. Endocrinology 2018; 159:1690-1703. [PMID: 29471425 PMCID: PMC6238151 DOI: 10.1210/en.2017-03207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
Germline knockout studies in female mice demonstrated an essential role for forkhead box L2 (FOXL2) in early follicle development, whereas an inducible granulosa cell (GC)-specific deletion of Foxl2 in adults has shown ovary-to-testis somatic sex reprogramming. In women, over 120 different germline mutations in the FOXL2 gene have been shown to cause blepharophimosis/ptosis/epicantus inversus syndrome associated with or without primary ovarian insufficiency. By contrast, a single somatic mutation (FOXL2C134W) accounts for almost all adult-type GC tumors (aGCTs). To test the hypothesis that FOXL2C134W differentially regulates the expression of aGCT markers, we investigated the effect of FOXL2C134W on inhibin B and P450 aromatase expression using a recently established human GC line (HGrC1), which we now show to bear two normal alleles of FOXL2. Neither FOXL2wt nor FOXL2C134W regulate INHBB messenger RNA (mRNA) expression. However, FOXL2C134W selectively displays a 50-fold induction of CYP19 mRNA expression dependent upon activin A. Mechanistically, the CYP19 promoter is activated in a similar way by FOXL2C134W interaction with SMAD3, but not by FOXL2wt. SMAD2 had no effect. Moreover, FOXL2C134W interactions with SMAD3 and with the FOX binding element located at -199 bp upstream of the ATG initiation codon of CYP19 are more sustainable than FOXL2wt. Thus, FOXL2C134W potentiates CYP19 expression in HGrC1 cells via enhanced recruitment of SMAD3 to a proximal FOX binding element. These findings may explain the pathophysiology of estrogen excess in patients with aGCT.
Collapse
Affiliation(s)
- Martina Belli
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Nahoko Iwata
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Tomoko Nakamura
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Akira Iwase
- Center for Maternal-Perinatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Dwayne Stupack
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Shunichi Shimasaki
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, California
- Correspondence: Shunichi Shimasaki, PhD, Department of Reproductive Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
13
|
Jonak CR, Lainez NM, Boehm U, Coss D. GnRH Receptor Expression and Reproductive Function Depend on JUN in GnRH Receptor‒Expressing Cells. Endocrinology 2018; 159:1496-1510. [PMID: 29409045 PMCID: PMC5839737 DOI: 10.1210/en.2017-00844] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) from the hypothalamus regulates synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the anterior pituitary gonadotropes. LH and FSH are heterodimers composed of a common α-subunit and unique β-subunits, which provide biological specificity and are limiting components of mature hormone synthesis. Gonadotrope cells respond to GnRH via specific expression of the GnRH receptor (Gnrhr). GnRH induces the expression of gonadotropin genes and of the Gnrhr by activation of specific transcription factors. The JUN (c-Jun) transcription factor binds to AP-1 sites in the promoters of target genes and mediates induction of the FSHβ gene and of the Gnrhr in gonadotrope-derived cell lines. To analyze the role of JUN in reproductive function in vivo, we generated a mouse model that lacks JUN specifically in GnRH receptor‒expressing cells (conditional JUN knockout; JUN-cKO). JUN-cKO mice displayed profound reproductive anomalies such as reduced LH levels resulting in lower gonadal steroid levels, longer estrous cycles in females, and diminished sperm numbers in males. Unexpectedly, FSH levels were unchanged in these animals, whereas Gnrhr expression in the pituitary was reduced. Steroidogenic enzyme expression was reduced in the gonads of JUN-cKO mice, likely as a consequence of reduced LH levels. GnRH receptor‒driven Cre activity was detected in the hypothalamus but not in the GnRH neuron. Female, but not male, JUN-cKO mice exhibited reduced GnRH expression. Taken together, our results demonstrate that GnRH receptor‒expression levels depend on JUN and are critical for reproductive function.
Collapse
Affiliation(s)
- Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Nancy M. Lainez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, 66421 Homburg, Germany
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California 92521
- Correspondence: Djurdjica Coss, PhD, Division of Biomedical Sciences, School of Medicine, 303 SOM Research Building, University of California, Riverside, Riverside, California 92521. E-mail:
| |
Collapse
|
14
|
Lim D, Oliva E. Ovarian sex cord-stromal tumours: an update in recent molecular advances. Pathology 2017; 50:178-189. [PMID: 29275930 DOI: 10.1016/j.pathol.2017.10.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
Abstract
Sex cord-stromal tumours (SCSTs) consist of a heterogeneous group of neoplasms with diverse clinicopathological features and biological behaviour. They often present as a diagnostic challenge as they have varied and occasionally overlapping histomorphology and some may even mimic non-SCSTs. An accurate diagnosis is important for therapeutic and prognostic purposes. The use of a panel of immunohistochemical markers which are sensitive and specific for sex cord-stromal differentiation such as α-inhibin, calretinin, SF-1 and FOXL2, may be helpful in confirming the cellular lineage of these tumours, but is of limited utility in distinguishing between the different tumour types within this category. Additionally, the development of new therapeutic strategies in patients with SCSTs is also hampered by the infrequent occurrence of these neoplasms. Recent molecular analyses of some SCSTs has led to the discovery of novel molecular events, which may have important diagnostic, prognostic and therapeutic implications. The salient pathological features, management issues and recently described genetic aberrations in adult and juvenile granulosa cell tumours as well as Sertoli-Leydig cell tumours are discussed in this review, with particular emphasis on the clinical significance of FOXL2 and DICER1 mutations. An in-depth understanding of the molecular pathogenesis underlying SCSTs may aid in improving tumour classification and disease prognostication and also potentially lead to the discovery of more effective treatment strategies.
Collapse
Affiliation(s)
- Diana Lim
- Department of Pathology, National University Hospital, Singapore; Translational Centre for Development and Research, National University Health System, Singapore.
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
15
|
Li Y, Schang G, Boehm U, Deng CX, Graff J, Bernard DJ. SMAD3 Regulates Follicle-stimulating Hormone Synthesis by Pituitary Gonadotrope Cells in Vivo. J Biol Chem 2016; 292:2301-2314. [PMID: 27994055 DOI: 10.1074/jbc.m116.759167] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Pituitary follicle-stimulating hormone (FSH) is an essential regulator of fertility in females and of quantitatively normal spermatogenesis in males. Pituitary-derived activins are thought to act as major stimulators of FSH synthesis by gonadotrope cells. In vitro, activins signal via SMAD3, SMAD4, and forkhead box L2 (FOXL2) to regulate transcription of the FSHβ subunit gene (Fshb). Consistent with this model, gonadotrope-specific Smad4 or Foxl2 knock-out mice have greatly reduced FSH and are subfertile. The role of SMAD3 in vivo is unresolved; however, residual FSH production in Smad4 conditional knock-out mice may derive from partial compensation by SMAD3 and its ability to bind DNA in the absence of SMAD4. To test this hypothesis and determine the role of SMAD3 in FSH biosynthesis, we generated mice lacking both the SMAD3 DNA binding domain and SMAD4 specifically in gonadotropes. Conditional knock-out females were hypogonadal, acyclic, and sterile and had thread-like uteri; their ovaries lacked antral follicles and corpora lutea. Knock-out males were fertile but had reduced testis weights and epididymal sperm counts. These phenotypes were consistent with those of Fshb knock-out mice. Indeed, pituitary Fshb mRNA levels were nearly undetectable in both male and female knock-outs. In contrast, gonadotropin-releasing hormone receptor mRNA levels were significantly elevated in knock-outs in both sexes. Interestingly, luteinizing hormone production was altered in a sex-specific fashion. Overall, our analyses demonstrate that SMAD3 is required for FSH synthesis in vivo.
Collapse
Affiliation(s)
- Yining Li
- From the Centre for Research in Reproduction and Development, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gauthier Schang
- From the Centre for Research in Reproduction and Development, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Ulrich Boehm
- the Department of Pharmacology and Toxicology, University of Saarland School of Medicine, D-66421 Homburg, Germany
| | - Chu-Xia Deng
- the Faculty of Health Sciences, University of Macau, Macau SAR 999078, China, and
| | - Jonathan Graff
- the Department of Developmental Biology, University of Texas Southwestern, Dallas, Texas 75390
| | - Daniel J Bernard
- From the Centre for Research in Reproduction and Development, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada,
| |
Collapse
|
16
|
Laverrière JN, L'Hôte D, Tabouy L, Schang AL, Quérat B, Cohen-Tannoudji J. Epigenetic regulation of alternative promoters and enhancers in progenitor, immature, and mature gonadotrope cell lines. Mol Cell Endocrinol 2016; 434:250-65. [PMID: 27402603 DOI: 10.1016/j.mce.2016.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/25/2022]
Abstract
Gonadotrope cell identity genes emerge in a stepwise process during mouse pituitary development. Cga, encoding for the α-subunit of TSH, LH, and FSH, is initially detected at E11.5 followed by Gnrhr and steroidogenic factor Sf1 at E13.5, specifying cells engaged in a gonadotrope cell fate. Lhb and Fshb appear at E16.5 and 17.5, respectively, typifying differentiated gonadotrope cells. Using the αT1-1, αT3-1 and LβT2 cell lines recapitulating these stages of gonadotrope differentiation, DNA methylation at Gnrhr and Sf1 was investigated. Regulatory regions were found hypermethylated in progenitor αT1-1 cells and hypomethylated in differentiated LβT2 cells. Abundance of RNA polymerase II together with active histone modifications including H3K4me1, H3K4me3, and H3K27ac were strictly correlated with DNA hypomethylation. Analyses of epigenomic modifications and chromatin accessibility were further extended to Isl1, Lhx3, Gata2, and Pitx2, highlighting alternative usages of specific regulatory gene domains in progenitor αT1-1, immature αT3-1, and mature LβT2 gonadotrope cells.
Collapse
Affiliation(s)
- Jean-Noël Laverrière
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France.
| | - David L'Hôte
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| | - Laure Tabouy
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| | - Anne-Laure Schang
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| | - Bruno Quérat
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| | - Joëlle Cohen-Tannoudji
- Univ Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative (BFA), F-75013, Paris, France; CNRS UMR 8251, F-75013, Paris, France; Physiologie de l'axe gonadotrope INSERM U1133, F-75013, Paris, France
| |
Collapse
|
17
|
Pannetier M, Chassot AA, Chaboissier MC, Pailhoux E. Involvement of FOXL2 and RSPO1 in Ovarian Determination, Development, and Maintenance in Mammals. Sex Dev 2016; 10:167-184. [PMID: 27649556 DOI: 10.1159/000448667] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/19/2022] Open
Abstract
In mammals, sex determination is a process through which the gonad is committed to differentiate into a testis or an ovary. This process relies on a delicate balance between genetic pathways that promote one fate and inhibit the other. Once the gonad is committed to the female pathway, ovarian differentiation begins and, depending on the species, is completed during gestation or shortly after birth. During this step, granulosa cell precursors, steroidogenic cells, and primordial germ cells start to express female-specific markers in a sex-dimorphic manner. The germ cells then arrest at prophase I of meiosis and, together with somatic cells, assemble into functional structures. This organization gives the ovary its definitive morphology and functionality during folliculogenesis. Until now, 2 main genetic cascades have been shown to be involved in female sex differentiation. The first is driven by FOXL2, a transcription factor that also plays a crucial role in folliculogenesis and ovarian fate maintenance in adults. The other operates through the WNT/CTNNB1 canonical pathway and is regulated primarily by R-spondin1. Here, we discuss the roles of FOXL2 and RSPO1/WNT/ CTNNB1 during ovarian development and homeostasis in different models, such as humans, goats, and rodents.
Collapse
Affiliation(s)
- Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | | | |
Collapse
|
18
|
Stallings CE, Kapali J, Ellsworth BS. Mouse Models of Gonadotrope Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:1-48. [PMID: 27697200 DOI: 10.1016/bs.pmbts.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotrope is central to reproductive function. Gonadotropes develop in a systematic process dependent on signaling factors secreted from surrounding tissues and those produced within the pituitary gland itself. These signaling pathways are important for stimulating specific transcription factors that ultimately regulate the expression of genes and define gonadotrope identity. Proper gonadotrope development and ultimately gonadotrope function are essential for normal sexual maturation and fertility. Understanding the mechanisms governing differentiation programs of gonadotropes is important to improve treatment and molecular diagnoses for patients with gonadotrope abnormalities. Much of what is known about gonadotrope development has been elucidated from mouse models in which important factors contributing to gonadotrope development and function have been deleted, ectopically expressed, or modified. This chapter will focus on many of these mouse models and their contribution to our current understanding of gonadotrope development.
Collapse
Affiliation(s)
- C E Stallings
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - J Kapali
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States
| | - B S Ellsworth
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL, United States.
| |
Collapse
|
19
|
McDonald EA, Smith JE, Cederberg RA, White BR. Divergent activity of the gonadotropin-releasing hormone receptor gene promoter among genetic lines of pigs is partially conferred by nuclear factor (NF)-B, specificity protein (SP)1-like and GATA-4 binding sites. Reprod Biol Endocrinol 2016; 14:36. [PMID: 27356969 PMCID: PMC4928339 DOI: 10.1186/s12958-016-0170-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Binding of gonadotropin-releasing hormone (GnRH) to its receptor (GnRHR) on gonadotropes within the anterior pituitary gland is essential to reproduction. In pigs, the GnRHR gene is also located near a genetic marker for ovulation rate, a primary determinant of prolificacy. We hypothesized that pituitary expression of the GnRHR gene is alternatively regulated in genetic strains with elevated ovulation rates (Chinese Meishan and Nebraska Index) vs. standard white crossbred swine (Control). METHODS Luciferase reporter vectors containing 5118 bp of GnRHR gene promoter from either the Control, Index or Meishan swine lines were generated. Transient transfection of line-specific, full length, deletion and mutation constructs into gonadotrope-derived αT3-1 cells were performed to compare promoter activity and identify regions necessary for divergent regulation of the porcine GnRHR gene. Additionally, transcription factors that bind the GnRHR promoter from each line were identified with electrophoretic mobility shift assays (EMSA). RESULTS Dramatic differences in luciferase activity among Control, Index and Meishan promoters (19-, 27- and 49-fold over promoterless control, respectively; P < 0.05) were established. A single bp substitution (-1690) within a previously identified upstream enhancer (-1779/-1667) bound GATA-4 in the Meishan promoter and the p52/p65 subunits of nuclear factor (NF)-κB in the homologous Control/Index promoters. Transient transfection of vectors containing block replacement mutations of either the GATA-4 or NF-κB binding sites within the context of their native promoters resulted in a 50 and 60 % reduction of luciferase activity, respectively (P < 0.05). Furthermore, two single-bp substitutions in the Meishan compared to Control/Index promoters resulted in binding of the p52 and p65 subunits of NF-κB and a specificity protein 1 (SP1)-like factor (-1235) as well as GATA-4 (-845). Vectors containing the full-length Meishan promoter harboring individual mutations spanning these regions reduced luciferase activity by 25 and 20 %, respectively, compared to native sequence (P < 0.05). CONCLUSIONS Elevated activity of the Meishan GnRHR gene promoter over Control/Index promoters in αT3-1 cells is partially due to three single nucleotide polymorphisms resulting in the unique binding of GATA-4 (-1690), the p52/p65 subunits of NF-kB in combination with a SP1-like factor (-1235), and GATA-4 (-845).
Collapse
Affiliation(s)
- Emily A. McDonald
| | - Jacqueline E. Smith
| | - Rebecca A. Cederberg
| | - Brett R. White
| |
Collapse
|
20
|
Wang DD, Zhang GR, Wei KJ, Ji W, Gardner JPA, Yang RB, Chen KC. Molecular identification and expression of the Foxl2 gene during gonadal sex differentiation in northern snakehead Channa argus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1419-1433. [PMID: 26159319 DOI: 10.1007/s10695-015-0096-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
Channa argus is one of the most commercially important fish species in China. Studies show that males of C. argus grow faster than females at the same age. In order to explore the sex differentiation mechanism of C. argus, we isolated the full length of the sex-related gene Foxl2 cDNA and analysed its expression patterns during gonadal sex differentiation. Alignment of known Foxl2 amino acid sequences from vertebrates confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. Quantitative RT-PCR revealed that Foxl2 is predominantly expressed in brain, pituitary, gill and ovary, with its highest level in ovary but low levels in testis and other tissues, reflecting a potential role for Foxl2 in the brain-pituitary-gonad axis in C. argus. Our ontogenetic stage data showed that C. argus Foxl2 expression was significantly upregulated from 1 to 11 days posthatching (dph) and that the initiation of expression preceded the first anatomical ovarian differentiation (27 dph), suggesting that Foxl2 might play a potential role in early gonadal sex differentiation in C. argus. In addition, the Foxl2 protein was primarily located in granulosa cells surrounding the oocytes of mature C. argus, implying that Foxl2 may have a basic function in granulosa cell differentiation and the maintenance of oocytes.
Collapse
Affiliation(s)
- Dan-Dan Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Gui-Rong Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Kai-Jian Wei
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| | - Wei Ji
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Jonathan P A Gardner
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Rui-Bin Yang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Kun-Ci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, People's Republic of China
| |
Collapse
|
21
|
FOXL2 down-regulates vitellogenin expression at mature stage in Eriocheir sinensis. Biosci Rep 2015; 35:BSR20150151. [PMID: 26430246 PMCID: PMC4708011 DOI: 10.1042/bsr20150151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/16/2015] [Indexed: 11/17/2022] Open
Abstract
The present study highlights that forkhead transcription factor (FOXL)2 down-regulates vitellogenin (VTG) synthesis not only through the regulation of follicular cell apoptosis with DEAD-box RNA helicase 20 (DDX20), but also may through the steroidogenic pathway with fushi tarazu factor (FTZ-F)1 at mature stage in Eriocheir sinensis. Ovarian development in crustaceans is characterized by rapid production of egg yolk protein in a process called vitellogenesis. In the present study, we investigated the involvement of a DEAD (Asp-Glu-Ala-Asp) box RNA helicase 20 (DDX20), forkhead transcription factor (FOXL)2 and fushi tarazu factor (FTZ-F)1 in the regulation of vitellogenesis. Based on ESTs from the testis and accessory gland of Eriocheir sinensis, we cloned the full-length cDNAs of foxl2 and fushitarazu factor 1 (ftz-f1), which include the conserved structural features of the forkhead family and nuclear receptor 5A (NR5A) family respectively. The expression of foxl2 mRNA surged at the mature stage of the ovary, when vtg mRNA swooped, suggesting that foxl2 negatively affects the vitellogenin (VTG) synthesis at this developmental stage. Etoposide (inducing germ cell apoptosis) treatment up-regulated FOXL2 and DDX20 at both the mRNA and the protein levels, primarily in the follicular cells as shown by immunofluorescence analysis. Furthermore, foxl2, ddx20 and ftz-f1 mRNA levels increased significantly with right-eyestalk ablation. Interactions between FOXL2 and DDX20 or FTZ-F1 were confirmed by co-immunoprecipitation and the forkhead domain of FOXL2 was identified as the specific structure interacting with FTZ-F1. In conclusion, FOXL2 down-regulates VTG expression by binding with DDX20 in regulation of follicular cell apoptosis and with FTZ-F1 to repress the synthesis of VTG at the mature stage. This report is the first to describe the molecular mechanism of VTG synthesis in E. sinensis and may shed new light on the regulation of cytochrome P450 enzyme by FOXL2 and FTZ-F1 in vitellogenesis.
Collapse
|
22
|
Xie C, Jonak CR, Kauffman AS, Coss D. Gonadotropin and kisspeptin gene expression, but not GnRH, are impaired in cFOS deficient mice. Mol Cell Endocrinol 2015; 411:223-31. [PMID: 25958044 PMCID: PMC4764054 DOI: 10.1016/j.mce.2015.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022]
Abstract
cFOS is a pleiotropic transcription factor, which binds to the AP1 site in the promoter of target genes. In the pituitary gonadotropes, cFOS mediates induction of FSHβ and GnRH receptor genes. Herein, we analyzed reproductive function in the cFOS-deficient mice to determine its role in vivo. In the pituitary cFOS is necessary for gonadotropin subunit expression, while TSHβ is unaffected. Additionally, cFOS null animals have the same sex-steroid levels, although gametogenesis is impeded. In the brain, cFOS is not necessary for GnRH neuronal migration, axon targeting, cell number, or mRNA levels. Conversely, cFOS nulls, particularly females, have decreased Kiss1 neuron numbers and lower Kiss1 mRNA levels. Collectively, our novel findings suggest that cFOS plays a cell-specific role at multiple levels of the hypothalamic-pituitary-gonadal axis, affecting gonadotropes but not thyrotropes in the pituitary, and kisspeptin neurons but not GnRH neurons in the hypothalamus, thereby contributing to the overall control of reproduction.
Collapse
Affiliation(s)
- Changchuan Xie
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, CA 92093-0674, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Alexander S Kauffman
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, CA 92093-0674, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
23
|
Loss of Foxm1 Results in Reduced Somatotrope Cell Number during Mouse Embryogenesis. PLoS One 2015; 10:e0128942. [PMID: 26075743 PMCID: PMC4468165 DOI: 10.1371/journal.pone.0128942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/01/2015] [Indexed: 12/31/2022] Open
Abstract
FOXM1, a member of the forkhead box transcription factor family, plays a key role in cell cycling progression by regulating the expression of critical G1/S and G2/M phase transition genes. In vivo studies reveal that Foxm1 null mice have a 91% lethality rate at e18.5 due to significant cardiovascular and hepatic hypoplasia. Thus, FOXM1 has emerged as a key protein regulating mitotic division and cell proliferation necessary for embryogenesis. In the current study, we assess the requirement for Foxm1 in the developing pituitary gland. We find that Foxm1 is expressed in the pituitary at embryonic days 10.5-e18.5 and localizes with markers for active cell proliferation (BrdU). Interestingly, direct analysis of Foxm1 null mice at various embryonic ages, reveals no difference in gross pituitary morphology or cell proliferation. We do observe a downward trend in overall pituitary cell number and a small reduction in pituitary size in e18.5 embryos suggesting there may be subtle changes in pituitary proliferation not detected with our proliferation makers. Consistent with this, Foxm1 null mice have reductions in both the somatotrope and gonadotrope cell populations.
Collapse
|
24
|
Herndon MK, Nilson JH. Maximal expression of Foxl2 in pituitary gonadotropes requires ovarian hormones. PLoS One 2015; 10:e0126527. [PMID: 25955311 PMCID: PMC4425675 DOI: 10.1371/journal.pone.0126527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/03/2015] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and activin regulate synthesis of FSH and ultimately fertility. Recent in vivo studies cast SMAD4 and FOXL2 as master transcriptional mediators of activin signaling that act together and independently of GnRH to regulate Fshb gene expression and female fertility. Ovarian hormones regulate GnRH and its receptor (GNRHR) through negative and positive feedback loops. In contrast, the role of ovarian hormones in regulating activin, activin receptors, and components of the activin signaling pathway, including SMAD4 and FOXL2, remains understudied. The widespread distribution of activin and many of its signaling intermediates complicates analysis of the effects of ovarian hormones on their synthesis in gonadotropes, one of five pituitary cell types. We circumvented this complication by using a transgenic model that allows isolation of polyribosomes selectively from gonadotropes of intact females and ovariectomized females treated with or without a GnRH antagonist. This paradigm allows assessment of ovarian hormonal feedback and distinguishes responses that are either independent or dependent on GnRH. Surprisingly, our results indicate that Foxl2 levels in gonadotropes decline significantly in the absence of ovarian input and independently of GnRH. Expression of the genes encoding other members of the activin signaling pathway are unaffected by loss of ovarian hormonal feedback, highlighting their selective effect on Foxl2. Expression of Gnrhr, a known target of FOXL2, also declines upon ovariectomy consistent with reduced expression of Foxl2 and loss of ovarian hormones. In contrast, Fshb mRNA increases dramatically post-ovariectomy due to increased compensatory input from GnRH. Together these data suggest that ovarian hormones regulate expression of Foxl2 thereby expanding the number of genes controlled by the hypothalamic-pituitary-gonadal axis that ultimately dictate reproductive fitness.
Collapse
Affiliation(s)
- Maria K. Herndon
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - John H. Nilson
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Fortin J, Ongaro L, Li Y, Tran S, Lamba P, Wang Y, Zhou X, Bernard DJ. Minireview: Activin Signaling in Gonadotropes: What Does the FOX say… to the SMAD? Mol Endocrinol 2015; 29:963-77. [PMID: 25942106 DOI: 10.1210/me.2015-1004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The activins were discovered and named based on their abilities to stimulate FSH secretion and FSHβ (Fshb) subunit expression by pituitary gonadotrope cells. According to subsequent in vitro observations, activins also stimulate the transcription of the GnRH receptor (Gnrhr) and the activin antagonist, follistatin (Fst). Thus, not only do activins stimulate FSH directly, they have the potential to regulate both FSH and LH indirectly by modulating gonadotrope sensitivity to hypothalamic GnRH. Moreover, activins may negatively regulate their own actions by stimulating the production of one of their principal antagonists. Here, we describe our current understanding of the mechanisms through which activins regulate Fshb, Gnrhr, and Fst transcription in vitro. The activin signaling molecules SMAD3 and SMAD4 appear to partner with the winged-helix/forkhead transcription factor, forkhead box L2 (FOXL2), to regulate expression of all 3 genes. However, in vivo data paint a different picture. Although conditional deletion of Foxl2 and/or Smad4 in murine gonadotropes produces impairments in FSH synthesis and secretion as well as in pituitary Fst expression, Gnrhr mRNA levels are either unperturbed or increased in these animals. Surprisingly, gonadotrope-specific deletion of Smad3 alone or with Smad2 does not impair FSH production or fertility; however, mice harboring these mutations may express a DNA binding-deficient, but otherwise functional, SMAD3 protein. Collectively, the available data firmly establish roles for FOXL2 and SMAD4 in Fshb and Fst expression in gonadotrope cells, whereas SMAD3's role requires further investigation. Gnrhr expression, in contrast, appears to be FOXL2, SMAD4, and, perhaps, activin independent in vivo.
Collapse
Affiliation(s)
- Jérôme Fortin
- Department of Pharmacology and Therapeutics (J.F., L.O., Y.L., S.T., P.L., Y.W., X.Z., D.J.B.), McGill University, Montréal, Québec, Canada H3G 1Y6; The Campbell Family Cancer Research Institute (J.F.), Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2C1; Diabetes Center (S.T.), Department of Medicine, University of California-San Francisco, San Francisco, California 94143; and Psychiatry (P.L.), St Mary Mercy Hospital, Livonia, Michigan 48154
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics (J.F., L.O., Y.L., S.T., P.L., Y.W., X.Z., D.J.B.), McGill University, Montréal, Québec, Canada H3G 1Y6; The Campbell Family Cancer Research Institute (J.F.), Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2C1; Diabetes Center (S.T.), Department of Medicine, University of California-San Francisco, San Francisco, California 94143; and Psychiatry (P.L.), St Mary Mercy Hospital, Livonia, Michigan 48154
| | - Yining Li
- Department of Pharmacology and Therapeutics (J.F., L.O., Y.L., S.T., P.L., Y.W., X.Z., D.J.B.), McGill University, Montréal, Québec, Canada H3G 1Y6; The Campbell Family Cancer Research Institute (J.F.), Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2C1; Diabetes Center (S.T.), Department of Medicine, University of California-San Francisco, San Francisco, California 94143; and Psychiatry (P.L.), St Mary Mercy Hospital, Livonia, Michigan 48154
| | - Stella Tran
- Department of Pharmacology and Therapeutics (J.F., L.O., Y.L., S.T., P.L., Y.W., X.Z., D.J.B.), McGill University, Montréal, Québec, Canada H3G 1Y6; The Campbell Family Cancer Research Institute (J.F.), Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2C1; Diabetes Center (S.T.), Department of Medicine, University of California-San Francisco, San Francisco, California 94143; and Psychiatry (P.L.), St Mary Mercy Hospital, Livonia, Michigan 48154
| | - Pankaj Lamba
- Department of Pharmacology and Therapeutics (J.F., L.O., Y.L., S.T., P.L., Y.W., X.Z., D.J.B.), McGill University, Montréal, Québec, Canada H3G 1Y6; The Campbell Family Cancer Research Institute (J.F.), Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2C1; Diabetes Center (S.T.), Department of Medicine, University of California-San Francisco, San Francisco, California 94143; and Psychiatry (P.L.), St Mary Mercy Hospital, Livonia, Michigan 48154
| | - Ying Wang
- Department of Pharmacology and Therapeutics (J.F., L.O., Y.L., S.T., P.L., Y.W., X.Z., D.J.B.), McGill University, Montréal, Québec, Canada H3G 1Y6; The Campbell Family Cancer Research Institute (J.F.), Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2C1; Diabetes Center (S.T.), Department of Medicine, University of California-San Francisco, San Francisco, California 94143; and Psychiatry (P.L.), St Mary Mercy Hospital, Livonia, Michigan 48154
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics (J.F., L.O., Y.L., S.T., P.L., Y.W., X.Z., D.J.B.), McGill University, Montréal, Québec, Canada H3G 1Y6; The Campbell Family Cancer Research Institute (J.F.), Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2C1; Diabetes Center (S.T.), Department of Medicine, University of California-San Francisco, San Francisco, California 94143; and Psychiatry (P.L.), St Mary Mercy Hospital, Livonia, Michigan 48154
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics (J.F., L.O., Y.L., S.T., P.L., Y.W., X.Z., D.J.B.), McGill University, Montréal, Québec, Canada H3G 1Y6; The Campbell Family Cancer Research Institute (J.F.), Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada M5G 2C1; Diabetes Center (S.T.), Department of Medicine, University of California-San Francisco, San Francisco, California 94143; and Psychiatry (P.L.), St Mary Mercy Hospital, Livonia, Michigan 48154
| |
Collapse
|
26
|
Hu Q, Guo W, Gao Y, Tang R, Li D. Molecular cloning and analysis of gonadal expression of Foxl2 in the rice-field eel Monopterus albus. Sci Rep 2014; 4:6884. [PMID: 25363394 PMCID: PMC4217102 DOI: 10.1038/srep06884] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022] Open
Abstract
We isolated the complete Foxl2 (Foxl2a) cDNA from the Monopterus albus ovary. An alignment of known Foxl2 amino-acid sequences confirmed the conservation of the Foxl2 open reading frame, especially the forkhead domain and C-terminal region. The expression of Foxl2 was detected in the brain, eyes, and gonads. A high level of Foxl2 expression in the ovary before sex reversal, but its transcripts decreased sharply when the gonad developed into the ovotestis and testis. The correlation between the Foxl2 expression and the process of sex development revealed the important function of Foxl2 during the sex reversal of M. albus. Immunohistochemical analysis showed that Foxl2 was expressed abundantly in granulosa cells and in the interstitial cells of the ovotestis and testis. These results suggest that Foxl2 plays a pivotal role in the development and maintenance of ovarian function. Foxl2 may be also involved in the early development of testis and the development of ocular structures of M. albus.
Collapse
Affiliation(s)
- Qing Hu
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [3] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Wei Guo
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [3] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Yu Gao
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [3] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Rong Tang
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [3] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Dapeng Li
- 1] College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China [2] Life Science College, Hunan University of Arts and Science, Changde 415000, China [3] Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China [4] Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
27
|
Roybal LL, Hambarchyan A, Meadows JD, Barakat NH, Pepa PA, Breen KM, Mellon PL, Coss D. Roles of binding elements, FOXL2 domains, and interactions with cJUN and SMADs in regulation of FSHβ. Mol Endocrinol 2014; 28:1640-55. [PMID: 25105693 DOI: 10.1210/me.2014-1008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified FOXL2 as a critical component in FSHβ gene transcription. Here, we show that mice deficient in FOXL2 have lower levels of gonadotropin gene expression and fewer LH- and FSH-containing cells, but the same level of other pituitary hormones compared to wild-type littermates, highlighting a role of FOXL2 in the pituitary gonadotrope. Further, we investigate the function of FOXL2 in the gonadotrope cell and determine which domains of the FOXL2 protein are necessary for induction of FSHβ transcription. There is a stronger induction of FSHβ reporter transcription by truncated FOXL2 proteins, but no induction with the mutant lacking the forkhead domain. Specifically, FOXL2 plays a role in activin induction of FSHβ, functioning in concert with activin-induced SMAD proteins. Activin acts through multiple promoter elements to induce FSHβ expression, some of which bind FOXL2. Each of these FOXL2-binding sites is either juxtaposed or overlapping with a SMAD-binding element. We determined that FOXL2 and SMAD4 proteins form a higher order complex on the most proximal FOXL2 site. Surprisingly, two other sites important for activin induction bind neither SMADs nor FOXL2, suggesting additional factors at work. Furthermore, we show that FOXL2 plays a role in synergistic induction of FSHβ by GnRH and activin through interactions with the cJUN component of the AP1 complex that is necessary for GnRH responsiveness. Collectively, our results demonstrate the necessity of FOXL2 for proper FSH production in mice and implicate FOXL2 in integration of transcription factors at the level of the FSHβ promoter.
Collapse
Affiliation(s)
- Lacey L Roybal
- Department of Reproductive Medicine (L.L.R., A.H., J.D.M., P.A.P., K.M.B., P.L.M., D.C.), Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674; Division of Biomedical Sciences (N.H.B., D.C.), School of Medicine, University of California, Riverside; Riverside, California 92521
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Thackray VG. Fox tales: regulation of gonadotropin gene expression by forkhead transcription factors. Mol Cell Endocrinol 2014; 385:62-70. [PMID: 24099863 PMCID: PMC3947687 DOI: 10.1016/j.mce.2013.09.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022]
Abstract
Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are produced by pituitary gonadotrope cells and are required for steroidogenesis, the maturation of ovarian follicles, ovulation, and spermatogenesis. Synthesis of LH and FSH is tightly regulated by a complex network of signaling pathways activated by hormones including gonadotropin-releasing hormone, activin and sex steroids. Members of the forkhead box (FOX) transcription factor family have been shown to act as important regulators of development, homeostasis and reproduction. In this review, we focus on the role of four specific FOX factors (FOXD1, FOXL2, FOXO1 and FOXP3) in gonadotropin hormone production and discuss our current understanding of the molecular function of these factors derived from studies in mouse genetic and cell culture models.
Collapse
Affiliation(s)
- Varykina G Thackray
- Department of Reproductive Medicine and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
29
|
Governini L, Carrarelli P, Rocha ALL, Leo VD, Luddi A, Arcuri F, Piomboni P, Chapron C, Bilezikjian LM, Petraglia F. FOXL2 in human endometrium: hyperexpressed in endometriosis. Reprod Sci 2014; 21:1249-55. [PMID: 24520083 DOI: 10.1177/1933719114522549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study investigated expression and protein localization of FOXL2 messenger RNA (mRNA) in endometrium of healthy women and in patients with endometriosis during endometrial cycle. In endometriotic lesions, FOXL2 mRNA and protein were evaluated and a possible correlation with activin A mRNA expression changes was also studied. Endometrium was collected from healthy women (n = 52) and from women with endometriosis (n = 31) by hysteroscopy; endometriotic tissues were collected by laparoscopy (n = 38). FOXL2 gene expression analysis in endometrium of healthy women showed a significant expression and no significant changes in mRNA levels between proliferative and secretory phases; a similar pattern was observed in endometrium of patients with endometriosis. Immunohistochemical evaluation showed that FOXL2 protein localized in stromal and glandular cells and colocalized with SUMO-1. FOXL2 mRNA expression was 3-fold higher in endometriosis than in healthy endometrium (P < .01) and a positive correlation between FOXL2 and activin A mRNA was found (P < .05) in endometriosis. In conclusion, FOXL2 mRNA expression and its protein localization do not change during endometrial cycle in eutopic endometrium from healthy individuals or patients with endometriosis; the hyperexpression of FOXL2 in endometriotic lesions suggests an involvement of this transcriptional regulator, probably associated with activin A expression and related to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Patrizia Carrarelli
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ana Luiza Lunardi Rocha
- Department of Obstetrics and Gynaecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Arcuri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Charles Chapron
- Department of Gynecology Obstetrics II and Reproductive Medicine, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, AP-HP, CHU Cochin, Paris, France
| | - Louise M Bilezikjian
- The Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Georges A, Auguste A, Bessière L, Vanet A, Todeschini AL, Veitia RA. FOXL2: a central transcription factor of the ovary. J Mol Endocrinol 2014; 52:R17-33. [PMID: 24049064 DOI: 10.1530/jme-13-0159] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Forkhead box L2 (FOXL2) is a gene encoding a forkhead transcription factor preferentially expressed in the ovary, the eyelids and the pituitary gland. Its germline mutations are responsible for the blepharophimosis ptosis epicanthus inversus syndrome, which includes eyelid and mild craniofacial defects associated with primary ovarian insufficiency. Recent studies have shown the involvement of FOXL2 in virtually all stages of ovarian development and function, as well as in granulosa cell (GC)-related pathologies. A central role of FOXL2 is the lifetime maintenance of GC identity through the repression of testis-specific genes. Recently, a highly recurrent somatic FOXL2 mutation leading to the p.C134W subtitution has been linked to the development of GC tumours in the adult, which account for up to 5% of ovarian malignancies. In this review, we summarise data on FOXL2 modulators, targets, partners and post-translational modifications. Despite the progresses made thus far, a better understanding of the impact of FOXL2 mutations and of the molecular aspects of its function is required to rationalise its implication in various pathophysiological processes.
Collapse
Affiliation(s)
- Adrien Georges
- CNRS UMR 7592, Institut Jacques Monod, 15 Rue Hélène Brion, 75013 Paris, France Université Paris Diderot, Paris VII, Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Mu WJ, Wen HS, Li JF, He F. Cloning and expression analysis of Foxl2 during the reproductive cycle in Korean rockfish, Sebastes schlegeli. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1419-1430. [PMID: 23546994 DOI: 10.1007/s10695-013-9796-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/23/2013] [Indexed: 06/02/2023]
Abstract
Foxl2 is a member of the winged helix/forkhead family of transcription factors and is known to regulate ovarian aromatase, which plays a crucial role in ovarian differentiation. To address the role of Foxl2 in gonads and brain during gonadal development, we isolated the full-length cDNA of Foxl2 and analyzed its spatiotemporal expression patterns in the viviparous teleost Korean rockfish, Sebastes schlegeli. Tissue distribution pattern revealed that the Foxl2 was detected in the liver, fat, gill, brain, and ovary, but could hardly be found in the testis. Reverse transcriptase PCR suggested that Foxl2 in Korean rockfish may involve in ovary development in the study of expression level during gonads development. It also revealed that the stage of highest expression level for Foxl2 was almost much earlier than cyp19a1a and cyp19a1b during the gonadal development stage in gonads and brain except for cyp19a1a in brain. Furthermore, the expression pattern of Foxl2 as well as aromatases may imply the role of Foxl2 in the up-regulation of aromatases not only in the female fish but also in male.
Collapse
Affiliation(s)
- Wei J Mu
- Fisheries College, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | | | | | | |
Collapse
|
32
|
Bryzgalov LO, Antontseva EV, Matveeva MY, Shilov AG, Kashina EV, Mordvinov VA, Merkulova TI. Detection of regulatory SNPs in human genome using ChIP-seq ENCODE data. PLoS One 2013; 8:e78833. [PMID: 24205329 PMCID: PMC3812152 DOI: 10.1371/journal.pone.0078833] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 09/17/2013] [Indexed: 11/18/2022] Open
Abstract
A vast amount of SNPs derived from genome-wide association studies are represented by non-coding ones, therefore exacerbating the need for effective identification of regulatory SNPs (rSNPs) among them. However, this task remains challenging since the regulatory part of the human genome is annotated much poorly as opposed to coding regions. Here we describe an approach aggregating the whole set of ENCODE ChIP-seq data in order to search for rSNPs, and provide the experimental evidence of its efficiency. Its algorithm is based on the assumption that the enrichment of a genomic region with transcription factor binding loci (ChIP-seq peaks) indicates its regulatory function, and thereby SNPs located in this region are more likely to influence transcription regulation. To ensure that the approach preferably selects functionally meaningful SNPs, we performed enrichment analysis of several human SNP datasets associated with phenotypic manifestations. It was shown that all samples are significantly enriched with SNPs falling into the regions of multiple ChIP-seq peaks as compared with the randomly selected SNPs. For experimental verification, 40 SNPs falling into overlapping regions of at least 7 TF binding loci were selected from OMIM. The effect of SNPs on the binding of the DNA fragments containing them to the nuclear proteins from four human cell lines (HepG2, HeLaS3, HCT-116, and K562) has been tested by EMSA. A radical change in the binding pattern has been observed for 29 SNPs, besides, 6 more SNPs also demonstrated less pronounced changes. Taken together, the results demonstrate the effective way to search for potential rSNPs with the aid of ChIP-seq data provided by ENCODE project.
Collapse
Affiliation(s)
| | - Elena V. Antontseva
- Institute of Cytology and Genetics SD RAS, Novosibirsk, Russian Federation
- * E-mail:
| | | | | | - Elena V. Kashina
- Institute of Cytology and Genetics SD RAS, Novosibirsk, Russian Federation
| | | | - Tatyana I. Merkulova
- Institute of Cytology and Genetics SD RAS, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
33
|
Characterization of the mechanism of inhibin α-subunit gene in mouse anterior pituitary cells by RNA interference. PLoS One 2013; 8:e74596. [PMID: 24098340 PMCID: PMC3789712 DOI: 10.1371/journal.pone.0074596] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 08/03/2013] [Indexed: 12/02/2022] Open
Abstract
Inhibin, a member of the transforming growth factor-β [TGF-β] superfamily, is a suppressor of follicle-stimulating hormone [FSH] release through pituitary–gonadal negative feedback loop to regulate follicular development. In this study, Inhibin α-subunit [Inha] gene was knocked down successfully in mice primary anterior pituitary cells at both transcriptional and translational levels by RNAi-Ready pSIREN-RetroQ-ZsGreen Vector mediated recombinant pshRNA vectors. The results indicated that inhibin silencing significantly promoted apoptosis by up-regulating Caspase-3, Bax and Bcl-2 genes without affecting p53 both at transcriptional and translational levels. Furthermore, it markedly impaired the progression of G1 phase of cell cycle and decreased the amount of cells in S phase [as detected by flow cytometry]. Inhibin silencing resulted in significant up-regulation of mRNA and protein expressions of Gondotropin releasing hormone receptors [GnRHR] and down-regulated mRNA levels of β-glycans with parellel change in the amount of its protein expression. Silencing of inhibin-a significantly increased [P<0.05] activin-β concentration without affecting FSH and LH levels in anterior pituitary cells. These findings revealed that up regulation of GnRH receptors by silencing inhibin a-subunit gene might increase the concentration of activin-β in the culture medium. Inhibin a silencing resulted in increased mRNA and protein expressions of inhibinβ which may demonstrate that both inhibin subunits co-participate in the regulation of reproductive events in anterior pituitary cells. This study concludes that inhibin is a broad regulatory marker in anterior pituitary cells by regulating apoptosis, cellular progression and simultaneously by vital fluctuations in the hormonal signaling.
Collapse
|
34
|
Nonis D, McTavish KJ, Shimasaki S. Essential but differential role of FOXL2wt and FOXL2C134W in GDF-9 stimulation of follistatin transcription in co-operation with Smad3 in the human granulosa cell line COV434. Mol Cell Endocrinol 2013; 372:42-8. [PMID: 23523567 PMCID: PMC3657561 DOI: 10.1016/j.mce.2013.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/30/2013] [Accepted: 02/26/2013] [Indexed: 02/02/2023]
Abstract
The FOXL2(C134W) mutation has been identified in virtually all adult granulosa cell tumors (GCTs). Here we show that the exogenous FOXL2 expression is necessary for GDF-9 stimulation of follistatin transcription in the human GCT cell line, COV434 that lacks endogenous FOXL2 expression. Interestingly, in the presence of Smad3 co-expression, FOXL2(C134W) negated GDF-9 stimulation of follistatin transcription. However, mutation of the Smad binding element (SBE) located in the intronic enhancer elements in the follistatin gene restored normal FOXL2 activity to FOXL2(C134W), thus the altered activity of FOXL2(C134W) is dependent on the ability of Smad3 to directly bind the SBE. Mutation of the FOXL2 binding element (FBE) or the FBE and SBE completely prevented GDF-9 activity, suggesting that the FBE is essential for GDF-9 stimulation in COV434. Overall, our study supports the view that altered interaction of FOXL2(C134W) with co-factors may underlie the pathogenesis of this mutation in GCTs.
Collapse
Affiliation(s)
- David Nonis
- Department of Reproductive Medicine, University of California San Diego, School of Medicine, La Jolla, CA 92093-0633, USA
| | | | | |
Collapse
|
35
|
McTavish KJ, Nonis D, Hoang YD, Shimasaki S. Granulosa cell tumor mutant FOXL2C134W suppresses GDF-9 and activin A-induced follistatin transcription in primary granulosa cells. Mol Cell Endocrinol 2013; 372:57-64. [PMID: 23567549 PMCID: PMC3669547 DOI: 10.1016/j.mce.2013.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 02/27/2013] [Accepted: 03/22/2013] [Indexed: 01/05/2023]
Abstract
A single somatic FOXL2 mutation (FOXL2(C134W)) was identified in almost all granulosa cell tumor (GCT) patients. In the pituitary, FOXL2 and Smad3 coordinately regulate activin stimulation of follistatin transcription. We explored whether a similar regulation occurs in the ovary, and whether FOXL2(C134W) has altered activity. We show that in primary granulosa cells, GDF-9 and activin increase Smad3-mediated follistatin transcription. In contrast to findings in the pituitary, FOXL2 negatively regulates GDF-9 and activin-stimulated follistatin transcription in the ovary. Knockdown of endogenous FOXL2 confirmed this inhibitory role. FOXL2(C134W) displayed enhanced inhibitory activity, completely ablating GDF-9 and activin-induced follistatin transcription. GDF-9 and activin activity was lost when either the smad binding element or the forkhead binding element were mutated, indicating that both sites are required for Smad3 actions. This study highlights that FOXL2 negatively regulates follistatin expression within the ovary, and that the pathogenesis of FOXL2(C134W) may involve an altered interaction with Smad3.
Collapse
Affiliation(s)
- Kirsten J McTavish
- Department of Reproductive Medicine, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0633, USA
| | | | | | | |
Collapse
|
36
|
Francis JC, Kolomeyevskaya N, Mach CM, Dietrich JE, Anderson ML. MicroRNAs and Recent Insights into Pediatric Ovarian Cancers. Front Oncol 2013; 3:95. [PMID: 23641362 PMCID: PMC3639433 DOI: 10.3389/fonc.2013.00095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 04/07/2013] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer is the most common pediatric gynecologic malignancy. When diagnosed in children, ovarian cancers present unique challenges that differ dramatically from those faced by adults. Here, we review the spectrum of ovarian cancers found in young women and girls and discuss the biology of these diseases. A number of advances have recently shed significant new understanding on the potential causes of ovarian cancer in this unique population. Particular emphasis is placed on understanding how altered expression of non-coding RNA transcripts known as microRNAs play a key role in the etiology of ovarian germ cell and sex cord-stromal tumors. Emerging transgenic models for these diseases are also reviewed. Lastly, future challenges and opportunities for understanding pediatric ovarian cancers, delineating clinically useful biomarkers, and developing targeted therapies are discussed.
Collapse
Affiliation(s)
- Jessica C Francis
- Department of Obstetrics and Gynecology, Baylor College of Medicine Houston, TX, USA
| | | | | | | | | |
Collapse
|
37
|
Bernard DJ, Tran S. Mechanisms of activin-stimulated FSH synthesis: the story of a pig and a FOX. Biol Reprod 2013; 88:78. [PMID: 23426431 DOI: 10.1095/biolreprod.113.107797] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activins were discovered and, in fact, named more than a quarter century ago based on their abilities to stimulate pituitary follicle-stimulating hormone (FSH) synthesis and secretion. However, it is only in the last decade that we have finally come to understand their underlying mechanisms of action in gonadotroph cells. In this minireview, we chronicle the research that led to the recent discovery of forkhead box L2 (FOXL2) as an essential mediator of activin-regulated FSH beta subunit (Fshb) transcription in vitro and in vivo.
Collapse
Affiliation(s)
- Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
38
|
Cheng JC, Klausen C, Leung PCK. Overexpression of wild-type but not C134W mutant FOXL2 enhances GnRH-induced cell apoptosis by increasing GnRH receptor expression in human granulosa cell tumors. PLoS One 2013; 8:e55099. [PMID: 23372819 PMCID: PMC3553060 DOI: 10.1371/journal.pone.0055099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/22/2012] [Indexed: 02/02/2023] Open
Abstract
The etiology of granulosa cell tumors (GCTs) is largely unknown. The primary mode of treatment is surgical, however not all women are cured by surgery alone. Thus, it is important to develop improved treatments through a greater understanding of the molecular mechanisms that contribute to this disease. Recently, it has been shown that a FOXL2 402C>G (C134W) mutation is present in 97% of human adult-type GCTs, suggesting an important role for this mutation in the development of GCTs. We have shown previously that gonadotropin-releasing hormone (GnRH)-I and -II induce apoptosis in cultured normal human granulosa cells. Moreover, it has been reported that FOXL2 can bind to the promoter of the mouse GnRH receptor gene and regulate its transcription. Thus, we hypothesized that C134W mutant FOXL2 could modulate the pro-apoptotic effects of GnRH via aberrant regulation of GnRH receptor levels. Using KGN cells, a human GCT-derived cell line which harbors the FOXL2 402C>G mutation, we show that treatment with GnRH-I and -II induces cell apoptosis, and that small interfering RNA-mediated depletion of GnRH receptor abolishes these effects. Overexpression of wild-type FOXL2 increases both mRNA and protein levels of GnRH receptor and consequently enhances GnRH-induced apoptosis. Importantly, neither the expression levels of GnRH receptor nor GnRH-induced apoptosis were affected by overexpression of the C134W mutant FOXL2. Interestingly, knockdown of endogenous FOXL2 down-regulates GnRHR expression in normal human granulosa cells with wild-type FOXL2, but not in KGN cells. These results suggest that the FOXL2 402C>G mutation may contribute to the development of human adult-type GCTs by reducing the expression of GnRH receptor, thus conferring resistance to GnRH-induced cell apoptosis.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Klausen
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter C. K. Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
39
|
Tran S, Zhou X, Lafleur C, Calderon MJ, Ellsworth BS, Kimmins S, Boehm U, Treier M, Boerboom D, Bernard DJ. Impaired fertility and FSH synthesis in gonadotrope-specific Foxl2 knockout mice. Mol Endocrinol 2013; 27:407-21. [PMID: 23340250 DOI: 10.1210/me.2012-1286] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Impairments in pituitary FSH synthesis or action cause infertility. However, causes of FSH dysregulation are poorly described, in part because of our incomplete understanding of mechanisms controlling FSH synthesis. Previously, we discovered a critical role for forkhead protein L2 (FOXL2) in activin-stimulated FSH β-subunit (Fshb) transcription in immortalized cells in vitro. Here, we tested the hypothesis that FOXL2 is required for FSH synthesis in vivo. Using a Cre/lox approach, we selectively ablated Foxl2 in murine anterior pituitary gonadotrope cells. Conditional knockout (cKO) mice developed overtly normally but were subfertile in adulthood. Testis size and spermatogenesis were significantly impaired in cKO males. cKO females exhibited reduced ovarian weight and ovulated fewer oocytes in natural estrous cycles compared with controls. In contrast, ovaries of juvenile cKO females showed normal responses to exogenous gonadotropin stimulation. Both male and female cKO mice were FSH deficient, secondary to diminished pituitary Fshb mRNA production. Basal and activin-stimulated Fshb expression was similarly impaired in Foxl2 depleted primary pituitary cultures. Collectively, these data definitively establish FOXL2 as the first identified gonadotrope-restricted transcription factor required for selective FSH synthesis in vivo.
Collapse
Affiliation(s)
- Stella Tran
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Davis SW, Ellsworth BS, Peréz Millan MI, Gergics P, Schade V, Foyouzi N, Brinkmeier ML, Mortensen AH, Camper SA. Pituitary gland development and disease: from stem cell to hormone production. Curr Top Dev Biol 2013; 106:1-47. [PMID: 24290346 DOI: 10.1016/b978-0-12-416021-7.00001-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many aspects of pituitary development have become better understood in the past two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multipotent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone-producing cell types. We now realize that pulsatile hormone secretion involves a 3D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade, we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas.
Collapse
Affiliation(s)
- Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The forkhead transcription factor, Foxd1, is necessary for pituitary luteinizing hormone expression in mice. PLoS One 2012; 7:e52156. [PMID: 23284914 PMCID: PMC3526578 DOI: 10.1371/journal.pone.0052156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/15/2012] [Indexed: 12/05/2022] Open
Abstract
The pituitary gland regulates numerous physiological functions including growth, reproduction, temperature and metabolic homeostasis, lactation, and response to stress. Pituitary organogenesis is dependent on signaling factors that are produced in and around the developing pituitary. The studies described in this report reveal that the forkhead transcription factor, Foxd1, is not expressed in the developing mouse pituitary gland, but rather in the mesenchyme surrounding the pituitary gland, which is an essential source of signaling factors that regulate pituitary organogenesis. Loss of Foxd1 causes a morphological defect in which the anterior lobe of the pituitary gland protrudes through the cartilage plate that is developing ventral to the pituitary at embryonic days (e)14.5, e16.5, and e18.5. The number of proliferating pituitary cells is increased at e14.5 and e16.5. Loss of Foxd1 also results in significantly decreased levels of Lhb expression at e18.5. This decrease in Lhb expression does not appear to be due to a change in the number of gonadotrope cells in the pituitary gland. Previous studies have shown that loss of the LIM homeodomain factor, Lhx3, which is activated by the FGF signaling pathway, results in loss of LH production. Although there is a difference in Lhb expression in Foxd1 null mice, the expression pattern of LHX3 is not altered in Foxd1 null mice. These studies suggest that Foxd1 is indirectly required for normal Lhb expression and cartilage formation.
Collapse
|
42
|
Rosario R, Araki H, Print CG, Shelling AN. The transcriptional targets of mutant FOXL2 in granulosa cell tumours. PLoS One 2012; 7:e46270. [PMID: 23029457 PMCID: PMC3460904 DOI: 10.1371/journal.pone.0046270] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
Background Despite their distinct biology, granulosa cell tumours (GCTs) are treated the same as other ovarian tumours. Intriguingly, a recurring somatic mutation in the transcription factor Forkhead Box L2 (FOXL2) 402C>G has been found in nearly all GCTs examined. This investigation aims to identify the pathogenicity of mutant FOXL2 by studying its altered transcriptional targets. Methods The expression of mutant FOXL2 was reduced in the GCT cell line KGN, and wildtype and mutant FOXL2 were overexpressed in the GCT cell line COV434. Total RNA was hybridised to Affymetrix U133 Plus 2 microarrays. Comparisons were made between the transcriptomes of control cells and cells altered by FOXL2 knockdown and overexpression, to detect potential transcriptional targets of mutant FOXL2. Results The overexpression of wildtype and mutant FOXL2 in COV434, and the silencing of mutant FOXL2 expression in KGN, has shown that mutant FOXL2 is able to differentially regulate the expression of many genes, including two well known FOXL2 targets, StAR and CYP19A. We have shown that many of the genes regulated by mutant FOXL2 are clustered into functional annotations of cell death, proliferation, and tumourigenesis. Furthermore, TGF-β signalling was found to be enriched when using the gene annotation tools GATHER and GeneSetDB. This enrichment was still significant after performing a robust permutation analysis. Conclusion Given that many of the transcriptional targets of mutant FOXL2 are known TGF-β signalling genes, we suggest that deregulation of this key antiproliferative pathway is one way mutant FOXL2 contributes to the pathogenesis of adult-type GCTs. We believe this pathway should be a target for future therapeutic interventions, if outcomes for women with GCTs are to improve.
Collapse
Affiliation(s)
- Roseanne Rosario
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
43
|
Bilezikjian LM, Justice NJ, Blackler AN, Wiater E, Vale WW. Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Mol Cell Endocrinol 2012; 359:43-52. [PMID: 22330643 PMCID: PMC3367026 DOI: 10.1016/j.mce.2012.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 01/01/2023]
Abstract
Activins are multifunctional proteins and members of the TGF-β superfamily. Activins are expressed locally in most tissues and, analogous to the actions of other members of this large family of pleiotropic factors, play prominent roles in the regulation of diverse biological processes in both differentiated and embryonic stem cells. They have an essential role in maintaining tissue homeostasis in the adult and are known to contribute to the developmental programs in the embryo. Activins are further implicated in the growth and metastasis of tumor cells. Through distinct modes of action, inhibins and follistatins function as antagonists of activin and several other TGF-β family members, including a subset of BMPs/GDFs, and modulate cellular responses and the signaling cascades downstream of these ligands. In the pituitary, the activin pathway is known to regulate key aspects of gonadotrope functions and also exert effects on other pituitary cell types. As in other tissues, activin is produced locally by pituitary cells and acts locally by exerting cell-type specific actions on gonadotropes. These local actions of activin on gonadotropes are modulated by the autocrine/paracrine actions of locally secreted follistatin and by the feedback actions of gonadal inhibin. Knowledge about the mechanism of activin, inhibin and follistatin actions is providing information about their importance for pituitary function as well as their contribution to the pathophysiology of pituitary adenomas. The aim of this review is to highlight recent findings and summarize the evidence that supports the important functions of activin, inhibin and follistatin in the pituitary.
Collapse
Affiliation(s)
- Louise M Bilezikjian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
44
|
Eozenou C, Carvalho AV, Forde N, Giraud-Delville C, Gall L, Lonergan P, Auguste A, Charpigny G, Richard C, Pannetier M, Sandra O. FOXL2 Is Regulated During the Bovine Estrous Cycle and Its Expression in the Endometrium Is Independent of Conceptus-Derived Interferon Tau1. Biol Reprod 2012; 87:32. [DOI: 10.1095/biolreprod.112.101584] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
45
|
Caburet S, Georges A, L'Hôte D, Todeschini AL, Benayoun BA, Veitia RA. The transcription factor FOXL2: at the crossroads of ovarian physiology and pathology. Mol Cell Endocrinol 2012; 356:55-64. [PMID: 21763750 DOI: 10.1016/j.mce.2011.06.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 06/21/2011] [Indexed: 12/20/2022]
Abstract
FOXL2 is a gene encoding a forkhead transcription factor. Its mutations or misregulation have been shown to cause the blepharophimosis-ptosis-epicanthus inversus (BPES) syndrome and more recently have been associated with the development of Ovarian Granulosa Cell Tumors (OGCT). BPES is a genetic disorder involving mild craniofacial abnormalities often associated with premature ovarian failure. OGCTs are endocrine malignancies, accounting for 2-5% of ovarian cancers, the treatment of which is still challenging. In this review we summarize recent data concerning FOXL2 transcriptional targets and molecular partners, its post-translational modifications, its mutations and its involvement in newly discovered pathophysiological processes. In the ovary, FOXL2 is involved in the regulation of cholesterol and steroid metabolism, apoptosis, reactive oxygen species detoxification and cell proliferation. Interestingly, one of the main roles of FOXL2 is also to preserve the identity of ovarian granulosa cells even at the adult stage and to prevent their transdifferentiation into Sertoli-like cells. All these recent advances indicate that FOXL2 is central to ovarian development and maintenance. The elucidation of the impact of FOXL2 germinal and somatic mutations will allow a better understanding of the pathogenesis of BPES and of OGCTs.
Collapse
Affiliation(s)
- Sandrine Caburet
- CNRS UMR 7592, Institut Jacques Monod, Equipe Génétique et Génomique du Développement Gonadique, 75205 Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
46
|
Wang H, Wu T, Qin F, Wang L, Wang Z. Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:653-664. [PMID: 21850400 DOI: 10.1007/s10695-011-9548-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 08/03/2011] [Indexed: 05/31/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can affect normal sexual differentiation in fish. Foxl2, one forkhead transcription factor, plays an important role in ovarian differentiation in the early development of the female gonad in mammals and fish. How EDCs affect Foxl2 expression is little known. In this study, we isolated a Foxl2 cDNA from the ovary of rare minnow Gobiocypris rarus and examined its expression during early development stages and in different adult tissues. Then, we analyzed Foxl2 expression in G. rarus juvenile following 3-day exposure to 17α- ethinylestradiol (EE2), 4-n-nonylphenol (NP), and bisphenol A (BPA). Alignment of known Foxl2 sequences among vertebrates showed high identity in forkhead domain and C-terminal region with other vertebrate proteins. Quantitative RT-PCR analysis showed that Foxl2 expression was linear decrease and cyp19a1a, the downstream target gene of Foxl2, had no correlation with Foxl2 from 18 to 50 days post fertilization (dpf). Among different adult tissues, Foxl2 is mainly expressed in ovary, brain, gill, eye, and male spleen. In the 3-day exposure, the juvenile fish to EDCs, 0.1 nM EE2, and 1 nM BPA significantly up-regulated the expression of Foxl2 gene, while NP had no effect on Foxl2 expression. Altogether, these results provide basic data for further study on how Foxl2 mediates EDCs impact on the sexual differentiation in G. rarus.
Collapse
Affiliation(s)
- Houpeng Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, China
| | | | | | | | | |
Collapse
|
47
|
Jung DO, Jasurda JS, Egashira N, Ellsworth BS. The forkhead transcription factor, FOXP3, is required for normal pituitary gonadotropin expression in mice. Biol Reprod 2012; 86:144, 1-9. [PMID: 22357547 PMCID: PMC3364925 DOI: 10.1095/biolreprod.111.094904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/26/2011] [Accepted: 02/17/2012] [Indexed: 01/17/2023] Open
Abstract
The hypothalamic-pituitary-gonadal axis is central to normal reproductive function. This pathway begins with the release of gonadotropin-releasing hormone in systematic pulses by the hypothalamus. Gonadotropin-releasing hormone is bound by receptors on gonadotroph cells in the anterior pituitary gland and stimulates the synthesis and secretion of luteinizing hormone and, to some extent, follicle-stimulating hormone. Once stimulated by these glycoprotein hormones, the gonads begin gametogenesis and the synthesis of sex hormones. In humans, mutations of the forkhead transcription factor, FOXP3, lead to an autoimmune disorder known as immunodysregulation, polyendocrinopathy, and enteropathy, X-linked syndrome. Mice with a mutation in the Foxp3 gene have a similar autoimmune syndrome and are infertile. To understand why FOXP3 is required for reproductive function, we are investigating the reproductive phenotype of Foxp3 mutant mice (Foxp3(sf/Y)). Although the gonadotroph cells appear to be intact in Foxp3(sf/Y) mice, luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) expression are significantly decreased, demonstrating that these mice exhibit a hypogonadotropic hypogonadism. Hypothalamic expression of gonadotropin-releasing hormone is not significantly decreased in Foxp3(sf/Y) males. Treatment of Foxp3(sf/Y) males with a gonadotropin-releasing hormone receptor agonist does not rescue expression of Lhb or Fshb. Interestingly, we do not detect Foxp3 expression in the pituitary or hypothalamus, suggesting that the infertility seen in Foxp3(sf/Y) males is a secondary effect, possibly due to loss of FOXP3 in immune cells. Pituitary expression of glycoprotein hormone alpha (Cga) and prolactin (Prl) are significantly reduced in Foxp3(sf/Y) males, whereas the precursor for adrenocorticotropic hormone, pro-opiomelanocortin (Pomc), is increased. Human patients diagnosed with IPEX often exhibit thyroiditis due to destruction of the thyroid gland by autoimmune cells. We find that Foxp3(sf/Y) mice have elevated expression of thyroid-stimulating hormone beta (Tshb), suggesting that they may suffer from thyroiditis as well. Expression of the pituitary transcription factors, Pitx1, Pitx2, Lhx3, and Egr1, is normal; however, expression of Foxl2 and Gata2 is elevated. These data are the first to demonstrate a defect at the pituitary level in the absence of FOXP3, which contributes to the infertility observed in mice with Foxp3 loss of function mutations.
Collapse
Affiliation(s)
- Deborah O. Jung
- Department of Physiology, Southern Illinois University, Carbondale, Carbondale, Illinois
| | - Jake S. Jasurda
- Department of Physiology, Southern Illinois University, Carbondale, Carbondale, Illinois
| | - Noboru Egashira
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Buffy S. Ellsworth
- Department of Physiology, Southern Illinois University, Carbondale, Carbondale, Illinois
| |
Collapse
|
48
|
L'Hôte D, Georges A, Todeschini AL, Kim JH, Benayoun BA, Bae J, Veitia RA. Discovery of novel protein partners of the transcription factor FOXL2 provides insights into its physiopathological roles. Hum Mol Genet 2012; 21:3264-74. [PMID: 22544055 DOI: 10.1093/hmg/dds170] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
FOXL2 transcription factor is responsible for the Blepharophimosis Ptosis Epicantus inversus Syndrome (BPES), a genetic disease involving craniofacial malformations often associated with ovarian failure. Recently, a somatic FOXL2 mutation (p.C134W) has been reported in >95% of adult-type granulosa cell tumors. Here, we have identified 10 novel FOXL2 partners by yeast-two-hybrid screening and co-immunoprecipitation. Most BPES-inducing mutated FOXL2 proteins display aggregation in cultured cells. Here, we show that two of the partners (NR2C1 and GMEB1) can be sequestered in such aggregates. This co-aggregation can contribute to the pathogenesis of FOXL2 mutations. We have also measured the effects of FOXL2 interactants on the transcriptional regulation of a series of target promoters. Some of the partners (CXXC4, CXXC5, BANF1) were able to repress FOXL2 activity indistinctively of the promoter. Interestingly, CREM-τ2α, which acted as a repressor on most promoters, increased wild-type (WT) FOXL2 activity on two promoters (PTGS2 and CYP19A1), but was unable to increase the activity of the oncogenic mutant p.C134W. Conversely, GMEB1, which also acted as a repressor on most promoters and increased WT FOXL2 activity on the Per2 promoter, increased to a greater extent the activity of the p.C134W variant. Interestingly, partners with intrinsic pro-apoptotic effect were able to increase apoptosis induction by WT FOXL2, but not by the p.C134W mutant, whereas partners with an anti-apoptotic effect decreased apoptosis induction by both FOXL2 versions. Altogether, these results suggest that the p.C134W mutated form fails to integrate signals through protein-protein interactions to regulate target promoter subsets and in particular to induce cell death.
Collapse
Affiliation(s)
- David L'Hôte
- Institut Jacques Monod, UMR 7592 CNRS-Université Paris Diderot, Paris 75205, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Schang AL, Quérat B, Simon V, Garrel G, Bleux C, Counis R, Cohen-Tannoudji J, Laverrière JN. Mechanisms underlying the tissue-specific and regulated activity of the Gnrhr promoter in mammals. Front Endocrinol (Lausanne) 2012; 3:162. [PMID: 23248618 PMCID: PMC3521148 DOI: 10.3389/fendo.2012.00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/28/2012] [Indexed: 01/27/2023] Open
Abstract
The GnRH receptor (GnRHR) plays a central role in the development and maintenance of reproductive function in mammals. Following stimulation by GnRH originating from the hypothalamus, GnRHR triggers multiple signaling events that ultimately stimulate the synthesis and the periodic release of the gonadotropins, luteinizing-stimulating hormone (LH) and follicle-stimulating hormones (FSH) which, in turn, regulate gonadal functions including steroidogenesis and gametogenesis. The concentration of GnRHR at the cell surface is essential for the amplitude and the specificity of gonadotrope responsiveness. The number of GnRHR is submitted to strong regulatory control during pituitary development, estrous cycle, pregnancy, lactation, or after gonadectomy. These modulations take place, at least in part, at the transcriptional level. To analyze this facet of the reproductive function, the 5' regulatory sequences of the gene encoding the GnRHR have been isolated and characterized through in vitro and in vivo approaches. This review summarizes results obtained with the mouse, rat, human, and ovine promoters either by transient transfection assays or by means of transgenic mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Noël Laverrière
- *Correspondence: Jean-Noël Laverrière, Physiologie de l’Axe Gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Bâtiment Buffon, case courrier 7007, 4 rue MA Lagroua Weill-Hallé, 75205 Paris Cedex 13, France. e-mail:
| |
Collapse
|
50
|
Justice NJ, Blount AL, Pelosi E, Schlessinger D, Vale W, Bilezikjian LM. Impaired FSHbeta expression in the pituitaries of Foxl2 mutant animals. Mol Endocrinol 2011; 25:1404-15. [PMID: 21700720 DOI: 10.1210/me.2011-0093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Forkhead box L2 (FoxL2) is required for ovarian development and differentiation. FoxL2 is also expressed in the pituitary where it has been implicated in the development and regulation of gonadotropes, which secrete LH and FSH, the endocrine signals that regulate folliculogenesis in the ovary and spermatogenesis in the testis. Here, we show that FoxL2 is not required for the specification of gonadotropes; the pituitaries of Foxl2 mutant mice contain normal numbers of gonadotropes that express glycoprotein α subunit and LHβ. Whereas the specification of gonadotropes and all other hormonal cell types is normal in the pituitaries of Foxl2 mutant animals, FSHβ levels are severely impaired in both male and female animals, suggesting that FoxL2 is required for normal Fshb expression. The size of the pituitary is reduced in proportion to the smaller body size of Foxl2 mutants, with a concomitant increase in the pituitary cellular density. In primary pituitary cultures, activin induces FSH secretion and Fshb mRNA expression in cells from wild-type mice. In cells from Foxl2 mutant mice, however, FSH secretion is not detected, and activin is unable to drive Fshb expression, suggesting that the mechanism of activin-dependent activation of Fshb transcription is impaired. However, a small number of gonadotropes in the ventromedial region of the pituitaries from Foxl2 mutant mice maintain FSHβ expression, suggesting that a FoxL2- and activin-independent mechanism can drive Fshb transcription. These data indicate that, in addition to its role in the ovary, FoxL2 function in the pituitary is required for normal expression of FSH.
Collapse
Affiliation(s)
- Nicholas J Justice
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|