1
|
Fridmanis D, Petrovska R, Kalnina I, Slaidina M, Peculis R, Schiöth HB, Klovins J. Identification of domains responsible for specific membrane transport and ligand specificity of the ACTH receptor (MC2R). Mol Cell Endocrinol 2010; 321:175-83. [PMID: 20206229 DOI: 10.1016/j.mce.2010.02.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/23/2010] [Accepted: 02/23/2010] [Indexed: 12/26/2022]
Abstract
The adrenocorticotropic hormone (ACTH) receptor has highly specific membrane expression that is limited to adrenal cells; in other cell types the polypeptide fails to be transported to the cell surface. Unlike other evolutionarily related members of the melanocortin receptor family (MC1R-MC5R) that recognize different melanocortin peptides, ACTHR (MC2R) binds only ACTH. We used a mutagenesis approach involving systematic construction of chimeric ACTHR/MC4R receptors to identify the domains determining the selectivity of ACTHR membrane transport and ACTH binding. In total 15 chimeric receptors were created by replacement of selected domains of human ACTHR with the corresponding regions of human MC4R. We developed an analytical method to accurately quantify cell-membrane localization of recombinant receptors fused with enhanced green fluorescent protein by confocal fluorescence microscopy. The chimeric receptors were also tested for their ability to bind ACTH (1-24) and the melanocyte-stimulating hormone (MSH) analog, Nle4, DPhe7-alpha-MSH, and to induce a cAMP response. Our results indicate that substitution of the MC4R N-terminal segment with the homologous segment of ACTHR significantly decreased membrane transport. We also identified another signal localized in the third and fourth transmembrane regions as the main determinant of ACTHR intracellular retention. In addition, we found that the fourth and fifth transmembrane domains of the ACTHR are involved in ACTH binding selectivity. We discuss the mechanisms involved in bypassing these arrest signals via an interaction with melanocortin 2 receptor accessory protein (MRAP) and the possible mechanisms that determine the high ligand-binding specificity of ACTHR.
Collapse
|
2
|
Sánchez E, Rubio VC, Cerdá-Reverter JM. Characterization of the sea bass melanocortin 5 receptor: a putative role in hepatic lipid metabolism. ACTA ACUST UNITED AC 2010; 212:3901-10. [PMID: 19915133 DOI: 10.1242/jeb.035121] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The melanocortin 5 receptor (MC5R) plays a key role in the regulation of exocrine secretion in mammalian species. This receptor has also been characterized in some fish species but its function is unknown. We report the molecular and pharmacological characterization, as well as the tissue expression pattern, of sea bass MC5R. Cloning of five active alleles showing different levels of sensitivity to endogenous melanocortin and one non-functional allele demonstrate the allelic complexity of the MC5R locus. The sea bass receptor was activated by all the melanocortins tested, with ACTH and desacetyl-MSH and beta-MSH showing the lowest efficiency. The acetylation of the MSH isoforms seems to be critical for the effectiveness of the agonist. Agouti-related protein had no effect on basal or agonist-stimulated activation of the receptor. SbMC5R was mainly expressed in the brain but lower expression levels were found in several peripheral tissues, including liver. Progressive fasting did not induce up- or downregulation of hypothalamic MC5R expression, suggesting that central MC5R is not involved in the regulation of food intake in the sea bass. MTII, a sbMC5R agonist, stimulated hepatic lipolysis in vitro, measured as free fatty acid release into the culture medium after melanocortin agonist exposure of liver fragments, suggesting that MC5R is involved in the regulation of hepatic lipid metabolism. Taken together, the data suggest that different allelic combinations may confer differential sensitivity to endogenous melanocortin in tissues where MC5R is expressed and, by extension, in hepatic lipid metabolism.
Collapse
Affiliation(s)
- E Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, 12595 Torre de la Sal, Ribera de Cabanes, Castellón, Spain
| | | | | |
Collapse
|
3
|
Haitina T, Takahashi A, Holmén L, Enberg J, Schiöth HB. Further evidence for ancient role of ACTH peptides at melanocortin (MC) receptors; pharmacology of dogfish and lamprey peptides at dogfish MC receptors. Peptides 2007; 28:798-805. [PMID: 17306418 DOI: 10.1016/j.peptides.2006.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/21/2006] [Accepted: 12/21/2006] [Indexed: 11/29/2022]
Abstract
The cloning of melanocortin (MC) receptors in distant species has provided us tools to get insight in how the ligand-receptors interactions in the MC system have evolved. We have however lacked studies on pharmacology of native ancient melanocortin peptides at the ancient MC receptors. In this paper we synthesized melanocortin peptides from both the sea lamprey (Petromyzon marinus) and spiny dogfish (Squalus acanthias) and tested them on the MC3 and MC4 receptors from spiny dogfish. The results show that both the dogfish and lamprey ACTH peptides have similar or higher affinity than the dogfish alpha-, beta- and gamma-MSH peptides to the dogfish MC3 and MC4 receptors. Moreover, both the dogfish and lamprey ACTH peptides have more than 10-fold higher affinity than alpha-MSH to the dogfish MC4 receptor. We also show that dogfish delta-MSH is able to bind to MC receptors and its potency is higher than of dogfish beta-MSH, which is considered to be its precursor. Our results provide the first evidence that native ACTH ligands from dogfish and lamprey have a preference above native MSH peptides to ancient version of the MC3 and MC4 receptors. This further strengthens the hypotheses that the ligand contributing to the first version of the melanocortin ligand-receptor system resembled ACTH.
Collapse
Affiliation(s)
- Tatjana Haitina
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, BMC, SE 75124 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
4
|
Schiöth HB, Haitina T, Ling MK, Ringholm A, Fredriksson R, Cerdá-Reverter JM, Klovins J. Evolutionary conservation of the structural, pharmacological, and genomic characteristics of the melanocortin receptor subtypes. Peptides 2005; 26:1886-900. [PMID: 15985310 DOI: 10.1016/j.peptides.2004.11.034] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Accepted: 11/21/2004] [Indexed: 11/21/2022]
Abstract
We have cloned melanocortin receptors (MCRs) from several species of fish. The MC4R and MC5R subtypes arose early in vertebrate evolution and their primary structure is remarkably conserved. Expression and pharmacological characterization of the MCRs in fish has revealed that they bind and respond to melanocortin peptides with high potency. Detailed characterization of the binding properties of the different subtypes suggests that MCRs in early vertebrates had preference for adrenocorticotropic hormone (ACTH) peptides, while the high sensitivity for the shorter proopiomelanocortin (POMC) products, such as the alpha-, beta-, and gamma-melanocyte-stimulating hormone (MSH), has appeared later, perhaps as the MCR subtypes gained more specialized functions. The MCR repertoire shows in general high similarities in their primary structures, while they are however not similar in terms of functional roles. The MCRs serve therefore as an interesting model family to understand the molecular mechanisms of how functions of the genes can diverge during evolution. In this review, we provide an overview of our recent studies on the cloning, expression, pharmacology, 3D modeling, and genomic studies of the MCRs in non-mammalian species.
Collapse
Affiliation(s)
- Helgi B Schiöth
- Department of Neuroscience, Uppsala University, Biomedical Centre, Box 593, SE75124 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
5
|
Koikov LN, Ebetino FH, Solinsky MG, Cross-Doersen D, Knittel JJ. Analogs of sub-nanomolar hMC1R agonist LK-184 [Ph(CH2)3CO-His-d-Phe-Arg-Trp-NH2]. An additional binding site within the human melanocortin receptor 1? Bioorg Med Chem Lett 2004; 14:3997-4000. [PMID: 15225714 DOI: 10.1016/j.bmcl.2004.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 05/19/2004] [Accepted: 05/20/2004] [Indexed: 11/21/2022]
Abstract
Twenty nine analogs of a superpotent MC1R agonist LK-184 (1) were tested at human melanocortin receptors (hMC1, hMC3, and hMC4Rs). All derivatives with the spacer between the N-terminus and the aromatic ring longer or shorter than C(3) were much less potent at hMC1R than 1. Only LK-312 PhCO(CH(2))(3)CO-His-d-Phe-Arg-Trp-NH(2) (3), partially mimicking the pi-system of 1, had an EC(50) of 0.05 nM at hMC1R, which confirms the localization of the pi-binding zone of the receptor. Truncation of 1 to Ph(CH(2))(3)CO-His-d-Phe-Arg-NH(2) gave a full MC1 agonist, LK-394 (30), with an EC(50) of 5 nM and a weak partial agonism at MC3/4Rs. This suggests the existence of an additional binding site within hMC1R next to that for the core sequence His-d-Phe-Arg-Trp-NH(2).
Collapse
Affiliation(s)
- L N Koikov
- College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
6
|
Cerdá-Reverter JM, Ling MK, Schiöth HB, Peter RE. Molecular cloning, characterization and brain mapping of the melanocortin 5 receptor in the goldfish. J Neurochem 2004; 87:1354-67. [PMID: 14713292 DOI: 10.1046/j.1471-4159.2003.02107.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The melanocortin 5 receptor (MC5R) is activated by melanocyte-stimulating hormones (MSHs) and has a widespread tissue distribution, while its detailed central expression pattern and brain functions are fairly unknown. We report cloning, pharmacological characterization, tissue distribution and detailed brain mapping of melanocortin 5 receptor in goldfish (gMC5R). The goldfish orthologue protein is 69% identical to human MC5R and is conserved in important functional domains. The gMC5R showed similar potency to alpha-, beta- and gamma-MSH peptides in radioligand binding as the mammalian orthologues, while MTII and HS024 were both agonists at this receptor. The gMC5R-mRNA was found in the peripheral tissues including kidney, spleen, skin and retina, with low expression levels in the intestine, fat, muscle, gill, pituitary and ovary. In situ hybridization studies demonstrated that gMC5R transcripts are widely distributed in the goldfish brain. The gMC5R expression was found in ventral telencephalon, pre-optic area, dorsal and ventral thalamus, infundibular hypothalamus, posterior tuberculum, tectum and tegmentum mesencephali, reticular formation, vagal and facial lobes and spinal cord. The cloning and characterization of this receptor provides an important tool to elucidate its participation in neuroendocrine and behavioural control.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding, Competitive
- Blotting, Southern
- Brain/anatomy & histology
- Brain/metabolism
- Brain Mapping
- Cell Line
- Cloning, Molecular
- Cyclic AMP/metabolism
- Dose-Response Relationship, Drug
- Embryo, Mammalian
- Embryo, Nonmammalian
- Female
- Goldfish
- Humans
- In Situ Hybridization
- Kidney/metabolism
- Male
- RNA, Messenger/biosynthesis
- Radioligand Assay
- Receptor, Melanocortin, Type 4/chemistry
- Receptors, Corticotropin/genetics
- Receptors, Corticotropin/metabolism
- Receptors, Melanocortin
- Retina/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Skin/metabolism
- Spleen/metabolism
- Transfection
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacokinetics
Collapse
|
7
|
Ringholm A, Fredriksson R, Poliakova N, Yan YL, Postlethwait JH, Larhammar D, Schiöth HB. One melanocortin 4 and two melanocortin 5 receptors from zebrafish show remarkable conservation in structure and pharmacology. J Neurochem 2002; 82:6-18. [PMID: 12091460 DOI: 10.1046/j.1471-4159.2002.00934.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the cloning, genome mapping, functional expression, pharmacology and anatomical distribution of three melanocortin (MC) receptors from zebrafish (z). Phylogenetic analysis showed with high bootstrap support that these genes represent one MC4 receptor and two MC5 receptors. Chromosomal mapping showed conserved synteny between regions containing zMC4 and human (h) MC4 receptors, whereas the two zMC5 receptor genes map on chromosome segments in which the zebrafish has several genes with two orthologues of a single mammalian gene. It is likely that the two copies of zMC5 receptors arose through a separate duplication in the teleost lineage. The zMC4, zMC5a, and zMC5b receptors share 70-71% overall amino acid identity with the respective human orthologues and over 90% in three TM regions believed to be most important for ligand binding. All three zebrafish receptors also show pharmacological properties remarkably similar to their human orthologues, with similar affinities and the same potency order, when expressed and characterized in radioligand binding assay for the natural MSH) peptides alpha-, beta-, and gamma-MSH. Stimulation of transfected mammalian cells with alpha-MSH caused a dose-dependent increase in intracellular cAMP levels for all three zebrafish receptors. All three genes were expressed in the brain, eye, ovaries and gastrointestinal tract, whereas the zMC5b receptor was also found in the heart, as determined by RT-PCR. Our studies, which represent the first characterization of MC receptors in a nonamniote species, indicate that the MC receptor subtypes arose very early in vertebrate evolution. Important pharmacological and functional properties, as well as gene structure and syntenic relationships have been highly conserved over a period of more than 400 million years implying that these receptors participate in vital physiological functions.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Biological Assay
- Blotting, Southern
- Cell Line
- Chromosome Mapping
- Cloning, Molecular
- Conserved Sequence
- Humans
- Ligands
- Molecular Sequence Data
- Organ Specificity
- Phylogeny
- Radioligand Assay
- Receptor, Melanocortin, Type 4
- Receptors, Corticotropin/biosynthesis
- Receptors, Corticotropin/chemistry
- Receptors, Corticotropin/genetics
- Receptors, Melanocortin
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Zebrafish
- Zebrafish Proteins/biosynthesis
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
- alpha-MSH/analogs & derivatives
- alpha-MSH/pharmacokinetics
Collapse
Affiliation(s)
- Aneta Ringholm
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, BMC, 75 124 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
8
|
Dunér T, Conlon JM, Kukkonen JP, Akerman KEO, Yan YL, Postlethwait JH, Larhammar D. Cloning, structural characterization and functional expression of a zebrafish bradykinin B2-related receptor. Biochem J 2002; 364:817-24. [PMID: 12049646 PMCID: PMC1222631 DOI: 10.1042/bj20011201] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The actions of bradykinin (BK) in mammals are mediated through the activation of the B1 and B2 BK receptors. The only BK receptor that has been cloned from a non-mammalian species is a B2-like receptor from the chicken (termed the ornithokinin receptor). Pharmacological studies have demonstrated the presence of BK receptors in tissues of teleost fishes, such as trout and cod, but the ligand-binding properties of these receptors differ appreciably from those of the mammalian and chicken receptors. We report here the cloning of a B2-like receptor in zebrafish that shares 35% identity with human B2 and 30% identity with human B1. Phylogenetic analyses confirm a closer relationship with B2 than B1. The receptor gene was mapped to linkage group 17, which is syntenic to the human B2-B1 gene region. After functional expression of the zebrafish B2 receptor in mammalian cells, nanomolar concentrations of trout BK ([Arg0,Trp5,Leu8]-BK) and the derivative [des-Arg0,Trp5,Leu8]-BK (where 'des' indicates a missing amino acid) induced a significant transient rise in intracellular free Ca2+. The B1-selective analogue [Arg0,Trp5,Leu8,des-Arg9]-BK was inactive at nanomolar concentrations. Taken together, these results strongly support the gene's identity as a piscine orthologue of the mammalian B2 receptor.
Collapse
Affiliation(s)
- Torun Dunér
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, P.O. Box 593, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Schiöth HB, Bouifrouri AA, Rudzish R, Muceniece R, Watanobe H, Wikberg JES, Larhammar D. Pharmacological comparison of rat and human melanocortin 3 and 4 receptors in vitro. REGULATORY PEPTIDES 2002; 106:7-12. [PMID: 12047904 DOI: 10.1016/s0167-0115(02)00025-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The melanocortin 3 and 4 receptors are G-protein-coupled receptors found in the hypothalamus with important role in regulation of the energy balance. In this study, we performed pharmacological comparison of the rat and human melancortin (MC) 3 and MC4 receptors. We transiently expressed the genes for these receptors individually in a mammalian cell line and determined the binding affinities to several MSH peptides. The results showed no major difference between the rat and human MC3 receptors while the rat MC4 receptor had higher affinity to several peptides compared with the human MC4 receptor. NDP-, alpha-, beta-, gamma-MSH, ACTH(1-24), HS014 and MTII had from 5- to 34-fold higher affinity for the rat MC4 receptor, while SHU9119, HS024 and HS028 had similar affinity for both the MC4 receptors. Pharmacological species difference have earlier been reported for the MC1 and MC5 receptors but this is the first report showing important differences between the rat and human MC4 receptors.
Collapse
Affiliation(s)
- Helgi B Schiöth
- Department of Neuroscience, Biomedical Center, Box 593, 751 24 Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
10
|
Hatta N, Dixon C, Ray AJ, Phillips SR, Cunliffe WJ, Dale M, Todd C, Meggit S, Birch-MacHin MA, Rees JL. Expression, candidate gene, and population studies of the melanocortin 5 receptor. J Invest Dermatol 2001; 116:564-70. [PMID: 11286624 DOI: 10.1046/j.0022-202x.2001.01286.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mouse the melanocortin 5 receptor is known to regulate sebaceous gland function. To clarify its role in man, we have studied melanocortin 5 receptor expression in skin, and allelic variation at the melanocortin 5 receptor locus in diverse human populations and candidate disease groups. Melanocortin 5 receptor protein and mRNA expression were studied by immunohistochemistry and reverse transcriptase polymerase chain reaction. Melanocortin 5 receptor mRNA was detected in normal skin and cultured keratinocytes but not in cultured fibroblasts or melanocytes. Immunohistochemistry revealed melanocortin 5 receptor immunoreactivity in the epithelium and appendages, including the sebaceous gland, eccrine glands, and apocrine glands, as well as low level expression in the interfollciular epidermis. In order to screen for genetic diversity in the melanocortin 5 receptor that might be useful for allelic association studies we sequenced the entire melanocortin 5 receptor coding region in a range of human populations. One nonsynonymous change (Phe209Leu) and four synonymous changes (Ala81Ala, Asp108Asp, Ser125Ser, and Thr248Thr) were identified. Similar results were found in each of the populations except for the Inuit in which only the Asp108Asp variant was seen. The apparent "global distribution" of melanocortin 5 receptor variants may indicate that they are old in evolutionary terms. Variation of melanocortin 5 receptor was examined in patients with acne (n = 21), hidradenitis supprativa (n = 4), and sebaceous gland lesions comprising sebaceous nevi, adenomas, and hyperplasia (n = 13). No additional mutations were found. In order to determine the functional status of the Phe209Leu change, increase in cAMP in response to stimulation with alpha-melanocyte-stimulating hormone was measured in HEK-293 cells transfected with either wild-type or the Phe209Leu variant. The variant melanocortin 5 receptor was shown to act in a concentration-dependent manner, which did not differ from that of wild type. We have therefore found no evidence of a causative role for melanocortin 5 receptor in sebaceous gland dysfunction, and in the absence of any association between variation at the locus and disease group, the pathophysiologic role of the melanocortin 5 receptor in man requires further study.
Collapse
Affiliation(s)
- N Hatta
- Department of Dermatology, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Muceniece R, Mutule I, Mutulis F, Prusis P, Szardenings M, Wikberg JE. Detection of regions in the MC1 receptor of importance for the selectivity of the MC1 receptor super-selective MS04/MS05 peptides. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1544:278-82. [PMID: 11341936 DOI: 10.1016/s0167-4838(00)00227-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have investigated the ability of our earlier identified MS04-MS05 MSH-peptide analogues to bind to chimeric MC1-MC3 receptors. While the MS04 and MS05 peptides bind with nanomolar and sub-nanomolar affinities to the wild type MC1 receptor, they bind only with micromolar affinities for the wild type MC3 receptor, thus being the hitherto most MC1 receptor selective ligands. Upon exchanging portions involving transmembrane regions TM1, TM2-3, and TM6-7 of the MC1 receptor with corresponding portions of the MC3 receptor both of these peptides showed major losses of affinities. By contrast exchanges involving TM4-5 did not appreciably affect the affinity of either MS04 or MS05. Our data suggest that the binding pocket for the MS04-MS05 MSH-peptides is located between TM1-3 and TM6-7 of the melanocortin receptors.
Collapse
Affiliation(s)
- R Muceniece
- Department of Pharmaceutical Pharmacology, Box 591, BMC, Uppsala University, SE-751 24, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- H B Schiöth
- Department of Neuroscience, Biomedical Center, Uppsala University, Sweden
| |
Collapse
|
13
|
Abstract
The cloning of five different subtypes of melanocortin receptor subtypes have recently opened up new possibilities for the development of drugs. The physiological roles of the five melanocortin receptors have started to become understood, and compounds with selective actions on some of the five subtypes have become available. Presently, most clinically promising application for drugs active on melanocortin receptors are for control of feeding homeostasis and body weight and for treatment of inflammatory diseases. I review here the cloning, localisation, function and structure of the melanocortin receptors, in relation to the possibilities to develop selective drugs for these receptors.
Collapse
Affiliation(s)
- J E Wikberg
- Department of Pharmaceutical Pharmacology, Uppsala University, Sweden.
| |
Collapse
|