1
|
Sciascia QL, van der Linden DS, Sales FA, Wards NJ, Blair HT, Pacheco D, Oliver MH, McCoard SA. Parenteral administration of l-arginine to twin-bearing Romney ewes during late pregnancy is associated with reduced milk somatic cell count during early lactation. J Dairy Sci 2019; 102:3071-3081. [PMID: 30712927 DOI: 10.3168/jds.2018-15433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022]
Abstract
Maternal milk is the primary source of nutrition for suckling mammals, and its yield and composition are important determinants of survival during the early neonatal period. The objective of this study was to examine whether parenteral administration of l-Arg to twin-bearing ewes, during mid to late pregnancy, influenced prepartum maternal mammary gland development and subsequent lactation performance in the early postpartum period (14 d). At 80 d of pregnancy, multiparous Romney ewes were housed indoors in group pens, split into 2 cohorts, and fed a lucerne-based pellet diet, formulated to meet 100% of National Research Council-recommended requirements for twin-bearing pregnant ewes, once a day. Cohort 1 was administered l-Arg (72.7 mg/kg of live weight via i.v, 3 times a day) from d 100 of pregnancy until d 140. At d 140, ewes were euthanized and maternal mammary tissues were collected for analysis of the biochemical indices total DNA, RNA, protein, protein synthetic efficiency (protein:RNA), cell size (protein:DNA), transcriptional efficiency (RNA:DNA), and the abundance of mammalian target of rapamycin (mTOR) and mTORSer2448 protein. Cohort 2 was administered an identical l-Arg regimen as cohort 1, but from d 100 until parturition. Milk was collected over a 14-d period (d 1, 4, 7, 10, and 14) to assess milk yield and composition. In cohort 1, total mammary DNA (cell number) tended to be higher in l-Arg ewes, with no change in total mammary RNA or protein content, biochemical indices of protein synthetic efficiency, cell size or transcriptional efficiency, or mTOR protein abundance or phosphorylation. In cohort 2, milk composition analysis from l-Arg ewes showed lower (d 7-14) milk somatic cell counts, greater crude protein percentage from d 7 to 10 but lower at d 14, and altered absolute concentrations of some free AA (d 7 and 14) compared with controls. We propose that parenteral administration of l-Arg during late pregnancy is associated with increased mammary gland cellular content and decreased somatic cell counts during early lactation.
Collapse
Affiliation(s)
- Quentin L Sciascia
- AgResearch Grasslands, Palmerston North 4442, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Danitsja S van der Linden
- AgResearch Grasslands, Palmerston North 4442, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Francisco A Sales
- AgResearch Grasslands, Palmerston North 4442, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand
| | - Nina J Wards
- AgResearch Grasslands, Palmerston North 4442, New Zealand
| | - Hugh T Blair
- Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand; International Sheep Research Centre, Massey University, Palmerston North 4442, New Zealand
| | - David Pacheco
- AgResearch Grasslands, Palmerston North 4442, New Zealand
| | - Mark H Oliver
- Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand; Ngapouri Research Farm, Liggins Institute, University of Auckland, Auckland 3083, New Zealand
| | - Susan A McCoard
- AgResearch Grasslands, Palmerston North 4442, New Zealand; Gravida, National Centre for Growth and Development, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
2
|
Regulation of sodium glucose co-transporter SGLT1 through altered glycosylation in the intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1208-14. [PMID: 24412219 DOI: 10.1016/j.bbamem.2014.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/10/2013] [Accepted: 01/02/2014] [Indexed: 01/21/2023]
Abstract
Inhibition of constitutive nitric oxide (cNO) production inhibits SGLT1 activity by a reduction in the affinity for glucose without a change in Vmax in intestinal epithelial cells (IEC-18). Thus, we studied the intracellular pathway responsible for the posttranslational modification/s of SGLT1. NO is known to mediate its effects via cGMP which is diminished tenfold in L-NAME treated cells. Inhibition of cGMP production at the level of guanylyl cyclase or inhibition of protein kinase G also showed reduced SGLT1 activity demonstrating the involvement of PKG pathway in the regulation of SGLT1 activity. Metabolic labeling and immunoprecipitation with anti-SGLT1 specific antibodies did not show any significant changes in phosphorylation of SGLT1 protein. Tunicamycin to inhibit glycosylation reduced SGLT1 activity comparable to that seen with L-NAME treatment. The mechanism of inhibition was secondary to decreased affinity without a change in Vmax. Immunoblots of luminal membranes from tunicamycin treated or L-NAME treated IEC-18 cells showed a decrease in the apparent molecular size of SGLT1 protein to 62 and 67 kD, respectively suggesting an alteration in protein glycosylation. The deglycosylation assay with PNGase-F treatment reduced the apparent molecular size of the specific immunoreactive band of SGLT1 from control and L-NAME treated IEC-18 cells to approximately 62 kD from their original molecular size of 75 kD and 67 kD, respectively. Thus, the posttranslational mechanism responsible for the altered affinity of SGLT1 when cNO is diminished is secondary to altered glycosylation of SGLT1 protein. The intracellular pathway responsible for this alteration is cGMP and its dependent kinase.
Collapse
|
3
|
Albu RI, Constantinescu SN. Extracellular domain N-glycosylation controls human thrombopoietin receptor cell surface levels. Front Endocrinol (Lausanne) 2011; 2:71. [PMID: 22649382 PMCID: PMC3355985 DOI: 10.3389/fendo.2011.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/21/2011] [Indexed: 01/13/2023] Open
Abstract
The thrombopoietin receptor (TpoR) is a type I transmembrane protein that mediates the signaling functions of thrombopoietin (Tpo) in regulating megakaryocyte differentiation, platelet formation, and hematopoietic stem cell renewal. We probed the role of each of the four extracellular domain putative N-glycosylation sites for cell surface localization and function of the receptor. Single N-glycosylation mutants at any of the four sites were able to acquire the mature N-glycosylated pattern, but exhibited a decreased Tpo-dependent JAK2-STAT response in stably transduced Ba/F3 or Ba/F3-JAK2 cell lines. The ability of JAK2 to promote cell surface localization and stability of TpoR required the first N-glycosylation site (Asn117). In contrast, the third N-glycosylation site (Asn298) decreased receptor maturation and stability. TpoR mutants lacking three N-glycosylation sites were defective in maturation, but N-glycosylation on the single remaining site could be detected by sensitivity to PNGaseF. The TpoR mutant defective in all four N-glycosylation sites was severely impaired in plasma membrane localization and was degraded by the proteasome. N-glycosylation receptor mutants are not misfolded as, once localized on the cell surface in overexpression conditions, they can bind and respond to Tpo. Our data indicate that extracellular domain N-glycosylation sites regulate in a combinatorial manner cell surface localization of TpoR. We discuss how mutations around TpoR N-glycosylation sites might contribute to inefficient receptor traffic and disease.
Collapse
Affiliation(s)
- Roxana I. Albu
- Ludwig Institute for Cancer ResearchBrussels, Belgium
- de Duve Institute, Université catholique de LouvainBrussels, Belgium
| | - Stefan N. Constantinescu
- Ludwig Institute for Cancer ResearchBrussels, Belgium
- de Duve Institute, Université catholique de LouvainBrussels, Belgium
- *Correspondence: Stefan N. Constantinescu, Ludwig Institute for Cancer Research, de Duve Institute, Université catholique de Louvain, Avenue Hippocrate 74, UCL 75-4, Brussels B-1200, Belgium. e-mail:
| |
Collapse
|
4
|
Abstract
In mouse mammary epithelial cells, prolactin transiently elevates nitric oxide (NO) to a maximum of 6 nmol/mg protein at 15 min, after which levels fall rapidly. This stimulation can be achieved by as little as 100 ng prolactin/ml and can be mimicked by 100 microg sodium nitroprusside/ml. NO is both necessary and sufficient to mediate the prolactin-induced redistribution of its receptor from internal pools to the cell surface. NO can also enhance DNA synthesis stimulated by submaximal prolactin concentrations (50 ng/ml), but it is not necessary at pharmacological prolactin concentrations (1 microg/ml). In contrast, NO completely inhibits alpha-lactalbumin production. In summary, prolactin transiently elevates NO to enhance DNA synthesis and suppress premature differentiation; thereafter, NO declines, DNA synthesis ceases and differentiation proceeds. This data suggest that NO may mediate some of the effects of prolactin on growth in the mammary gland.
Collapse
Affiliation(s)
- F F Bolander
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
5
|
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80:1523-631. [PMID: 11015620 DOI: 10.1152/physrev.2000.80.4.1523] [Citation(s) in RCA: 1518] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Collapse
Affiliation(s)
- M E Freeman
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4340, USA.
| | | | | | | |
Collapse
|